Generating Simpler AST Edit Scripts
by Considering Copy-and-Paste

Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Abstract—In software development, there are many situations
in which developers need to understand given source code
changes in detail. Until now, a variety of techniques have
been proposed to support understanding source code changes.
Tree-based differencing techniques are expected to have better
understandability than text-based ones, which are widely used
nowadays (e.g., diff in Unix). In this paper, we propose to
consider copy-and-paste as a kind of editing action forming tree-
based edit script, which is an editing sequence that transforms
a tree to another one. Software developers often perform copy-
and-paste when they are writing source code. Introducing copy-
and-paste action into edit script contributes to not only making
simpler (more easily understandable) edit scripts but also making
edit scripts closer to developers’ actual editing sequences. We
conducted experiments on an open dataset. As a result, we
confirmed that our technique made edit scripts shorter for 18%
of the code changes with a little more computational time. For
the other 82% code changes, our technique generated the same
edit scripts as an existing technique. We also confirmed that our
technique provided more helpful visualizations.

I. INTRODUCTION

In various situations in software development such as source
code review and merge conflict resolution, developers have to
understand given source code changes in detail. To support un-
derstanding source code changes, previous work has proposed
various techniques that visualize given changes.

The most widely-used differencing techniques are text-
based ones [[I], [2], [B]. For example, in Unix diff, added lines
and deleted lines are visualized with special prefixes. An issue
of the text-based differencing techniques is that the structure
of source code is not considered. Because of this, visualized
changes are not necessarily easy to understand in detail.

Techniques overcoming the issue of the text-based differenc-
ing techniques are AST®-based ones [4], [B], [B], [7]. In AST-
based differencing techniques, given changes are visualized
according to the structure of source code. In the techniques, an
edit script is generated from two ASTs which have been built
from pre-change and post-change source code. An edit script
is a sequence of editing actions to convert the pre-change AST
to the post-change AST [4]. Longer edit scripts are generated
from bigger changes. Falleri et al. showed that length of edit
scripts could be an indicator of the need to understand given
changes [R]. Changes with shorter edit scripts are easier to
understand.

Generating an edit script takes a long time if target source
code is large or code move is considered. Falleri et al.

I Abstract Syntax Tree

succeeded to shorten generation time by adopting some heuris-
tics [8]. They also showed that their edit scripts were more
helpful to understand the changes.

Currently, we are trying to generate more easily-
understandable edit scripts. In this paper, we propose a new
technique for edit script generation. Our technique is based on
Falleri’s one, which visualizes code changes with four kinds
of actions: inserting, deleting, updating, and moving. We are
giving an eye to copy-and-paste, which is a commonly per-
formed operation when developers are writing source code [U],
[[0]. In existing differencing techniques, a change made by
developer’s copy-and-paste is visualized as a sequence of new
code insertions. As a result, long edit scripts are generated
for changes on which developer performed copy-and-paste
operations.

In this research, we propose to consider copy-and-paste as
a kind of editing actions in edit scripts. Introducing copy-
and-paste to edit scripts contributes to not only making them
shorter but also making them closer to developers’ actual
editing sequences. In other words, our technique generates
edit scripts for more easily understanding code changes. Our
technique is a lower-level representation of changes, but the
authors consider that it can be used to generate higher-level
abstracted changes. Higher-level changes are useful in various
contexts of software development such as version control
merging [IT], [I2]. We conduct an experiment on 14 open
source software with an implemented tool of our technique.
The followings are main findings of the experiment.

e Our technique generated shorter edit scripts for 18%
changes than Falleri’s technique [B]. For the remaining
82% changes, our technique generated the same edit
scripts as Falleri’s one.

e Our technique took longer time to generate edit scripts
than Falleri’s technique. However, for 96% changes, gen-
eration time was less than one-and-a-half times than
Falleri’s technique. For 96% changes, our technique gen-
erated edit scripts in two seconds.

o The visualization of our technique was more helpful than
Falleri’s technique for 12 research participants on all the
ten change understanding tasks.

The reminder of this paper is organized as follows: Sec-
tion I shows an actual example for which our technique
generates a better edit script and then lists RQs to reveal
in this research; Section M introduces some terminologies

Pre-change source code Post-change source code

Pre-change source code Post-change source code

public abstract class
AbstractCommonBehaviorHelperDecorator
implements CommonBehaviorHelper {

public abstract class
AbstractCommonBehaviorHelperDecorator
implements CommonBehaviorHelper {

public void setReceiver
(Object handle, Object receiver) {
impl.setReceiver(handle, receiver);

public void setReceiver
(Object handle, Object receiver) {
impl.setReceiver(handle, receiver);

¥ }

public void setReception
(Object handle, Collection c) {
impl.setReception(handle, c);

public void setRecurrence
(Object handle, Object expr) {
impl.setRecurrence(handle, expr);

¥ }

} public void setRecurrence
(Object handle, Object expr) {
impl.setRecurrence(handle, expr);

¥

}

(a) GumTree’s visualization

public abstract class
AbstractCommonBehaviorHelperDecorator
implements CommonBehaviorHelper {

public abstract class
AbstractCommonBehaviorHelperDecorator
implements CommonBehaviorHelper {

public void setReceiver
(Object handle, Object receiver) {
impl.setReceiver(handle, receiver);

public void setReceiver
(Object handle, Object receiver) {
impl.setReceiver(handle, receiver);

} }

public void setReception
(Object handle, Collection c) {
impl.setReception(handle, c);

public void setRecurrence
(Object handle, Object expr) {
impl.setRecurrence(handle, expr);

} public void setRecurrence

(Object handle, Object expr) {
impl.setRecurrence(handle, expr);

¥

(b) Ours visualization

Fig. 1. An actual change where our technique generated a shorter edit script than Falleri’s technique

for this research; Section M explains edit script and our
research motivation; in Section M, we propose a new AST
edit script generation technique by considering copy-and-paste;
Section M shows our experimental results and then answers
the RQs; Section MII dicsusses the results; Section MIIN
describes some threats in the experiment; lastly, we conclude
this paper in Section [XI.

II. A CHANGE EXAMPLE AND RESEARCH QUESTIONS

Figure [0 shows an actual change for which our technique
generates a different edit script from Falleri’s one [R]. In
this change, a method named setReception has been newly
added. setReception has a similar structure to another method
named setRecurrence while the used variables and the invoked
methods in the two methods are different.

Figure M{a] shows a visualized change with Falleri’s tech-
nique. We can easily understand that green-colored setRecep-
tion has been added by the change. Figure M[b] shows a
visualized change with our technique. The purple area in the
pre-change code means a copied code fragment and the same
color in the post-change code means its pasted code fragment.
The yellow tokens in the purple areas are different tokens
between the copied and pasted code fragments.

By using Falleri’s technique, we can easily understand that
setReception has been added. However, there is no information
about the followings in the visualization.

o setReception is similar to setRecurrence.

o The developer might have copied and pasted setRecur-
rence, and then he/she might have updated some tokens
inside the pasted code.

By using our technique, we can easily obtain the above
information. The knowledge that setReception is similar to
setRecurrence should be useful for program understanding. For
example, if a developer is trying to understand sefReception
and he/she knows that setReception is similar to setRecurrence
with which he/she is familiar, he/she should be able to easily
understand setReception.

Falleri’s edit script for this change includes 20 editing
actions while our edit script includes only five. Our technique
shortens the edit script for this change by 75%.

In this research, we try to answer the following research
questions.

RQ1: how often and how much does our technique gener-
ate shorter edit scripts than Falleri’s one?
can our technique generate edit scripts at short times?
are edit scripts of our technique more helpful to
understand source code differences than Falleri’s
one?

RQ2:
RQ3:

III. PRELIMINARIES
A. Abstract Syntax Tree

Abstract Syntax Tree (in short, AST) is a tree-structured
representation of source code. Figure D shows toy source code
and an AST generated from it. This AST has 19 nodes, each
of which corresponds to a program element in the source code.
Each node has a label for type and some nodes have values
too. For example, in Figure P[b), “NumberLiteral: 0” means
that “NumberLiteral” is its node type and “0” is its value. If a
node has child nodes, the child nodes represent more detailed
information of the node. For example, the Ifstatement node
whose ID is n has two child nodes, an InfixExpresson node
and a ReturnStatement node. They represent the conditional
expression and the inner statement of the if-statement.

B. Copy-and-Paste

When developers are writing source code, they often copy
and paste code [[[0]. There is a study that 64% copy-and-paste
is performed within a single source file [9]. Copied and pasted
code become code clones. Kim et al. proposed clone geneal-
ogy, which approximates how programmers create, propagate,
and evolve code clones by copying, pasting, and modifying
code [M3]. Li et al. pointed out that copy-and-pasted code
can include bugs because developers occasionally forget to
change identifier names after copy-and-pasted operations [14].

public class Test{

public String foo(int 1i){
if(i == @) return "Foo!";

}

}

(a) Source code

’ Compilation
Unit

Modifier:
public
£
Modifier:
public

d
SimpleName:
Test
SimpleType
SimpleName:
String

i
SingleVariable
Declaration
D
SimpleName:
i
0
InfixExpression:
v
NumberlLiteral:
0

SimpleName: foo
PrimitiveType;
int

g
SimpleName
i

(b) AST
Fig. 2. An AST example

Stringliteral:
“Fool”

They developed a tool, CP-Miner, to find such copy-and-
pasted related bugs and found several dozen of new bugs
in open source operating systems. Jablonski et al. developed
an Eclipse plug-in to track code generated by copy-and-paste
operations [I5]. The plug-in monitors developer’s behavior on
Eclipse to catch copy-and-paste operations.

C. Code Clone

A code clone (in short, clone) is a code fragment that
is similar or identical to another code fragment in source
code. Clones occur in source code for various reasons [[I6],
[7]. Clones are classified as follows based on the degree of
similarity to their correspondences.

o TYPE-1 clone is completely identical code except white

spaces, tabs, new-line characters, and comments.

o TYPE-2 clone is similar code that includes token-level
differences. For example, similar code having different
variable names or literals are classified into TYPE-2.

o TYPE-3 clone is similar code that includes larger dif-
ferences than token-level. For example, if a program
statement is inserted or deleted after a copy-and-paste
operation, the pasted code becomes a TYPE-3 clone of
its original code.

Various clone detection techniques have been proposed until
now [[1], [IX]. Each detection technique has a different clone
definition. Thus, different detection techniques find different
clones from the same source code.

In this research, clones are similar subtrees in ASTs. Our
TYPE-1 clones mean identical subtrees, which have the same
structures and the same values in their nodes. Our TYPE-2
clones mean they have the same structures but include different
values. Our TYPE-3 clones mean their structures are similar
but not identical, including some extra nodes compared with

their correspondences. Currently, our technique utilizes only
TYPE-1 and TYPE-2 clones for copy-and-paste operations.

IV. AST EDIT SCRIPT

An AST edit script is a sequence of editing actions to
transform a given AST to another AST. In existing research,
the following edit actions are considered [8], [5], [K].

o insert(t,t,,i,l,v) means inserting a new node to the AST.
t is the inserted node. Its label is /. Its value is v. Its
parent node is f,. i means that ¢ is the i-th child of .

o delete(t) means deleting an existing node from the AST.
t is the deletion target.

e update(t,v) means updating value of an existing node in
the AST. ¢ is the updating target node. v is a new value.

« move(t,t,,i) means moving a subtree to another place in
the AST. ¢ is the root node of the moving target subtree.
tp is the new parent node after was moved. i means that
t is the i-th child of 7,.

The length of an edit script is the number of editing actions
included in it. Previous research reported that longer edit
scripts require more effort to understand [B]. Consequently,
shorter edit scripts are better from the viewpoint of under-
standing code changes.

An edit script shows how to transform an AST to another
one. However, edit scripts do not necessarily reproduce the
process of code changes that developers made. If we want to
reproduce such an actual change process, we need to record
developers’ changes themselves [I5], [T9].

A. Previous Research on Edit Script Generation

There are many research studies that proposed techniques of
edit script generations. Myers proposed an efficient algorithm
to compare two strings (A and B) and then generate a shortest
edit script that transforms A into B [B]. The algorithm requires
O(ND) time. N is the sum of the lengths of A and B. D is
the size of the shortest edit script for A and B. Miller et al.
proposed another algorithm for string comparison []. Their
algorithm is faster than Unix diff in the case where two very
similar strings are compared. However, if two completely dif-
ferent strings are compared, the performance of the algorithm
is much worse than diff. Both Myers’s and Miller’s algorithms
do not consider moving code.

Asaduzzaman et al. proposed a technqiue named LHDiff
for better tracking of source code lines [[]. Firstly, LHDiff
utilizes Unix diff to identify unchanged code lines in given
two source files. Then, for the remaining code lines, the
technique computes their context and content similarity. If it
identifies similar code lines, they are regarded as moved code.
In Asaduzzaman’s experiment, the time of LHDiff execution
was 20 ~ 30 times longer than Unix diff.

Recently, tree edit script generations have been researched
well. Pawlik et al. proposed RTED algorithm to compute a
shortest tree edit script [7]. In the worst case, their algorithm
requires O(n*) time where 7 is the number of tree nodes. How-
ever, RTED does not consider moving code. Their experiment
showed that RTED algorithm worked more efficiently for any

Input

STEP1
Syntax analysis
—

STEP2

Mapping generation R

Output

STEP3

L
o

STEP2-1

STEP2-2
Two source files

Two ASTs

Top-down mapping

Bottom-up mapping

Edit script generation EI

Edit Script

Two ASTs with
mapping information

Fig. 3. An overview of GumTree

shapes of trees than other algorithms that generate a shortest
edit script and do not consider moving code.

Chawathe et al. proposed an algorithm to generate an edit
script from given two trees [#]. The remarkable feature of
the algorithm is that the algorithm considers moving code.
Generating a shortest edit script in consideration with moving
code is an NP-hard problem. To finish edit script generation
quickly, the algorithm often generates longer edit scripts. In
the case where two similar trees are given to the algorithm, it
always generates a shortest edit script. The algorithm requires
O(ne+€?) time where 7 is the number of tree leaves and e is
the weighted edit distance (typically, e < n).

Fluri et al. proposed an algorithm to compute tree differ-
encing for source code change extraction [8]. This algorithm
is a specialized version of Chawathe’s algorithm [2] because
Chawathe’s algorithm is not for AST but for the general tree
structure. Fluri et al. introduced four kinds of modifications on
Chawathe’s algorithm to extract more significant source code
changes. Because of the modifications, Fluri’s algorithm gets
O(log n?) slower than Chawathe’s algorithm. However, in the
experiment, Fluri’s algorithm approximated the minimum edit
scripts 45% better than the Chawathe’s algorithm.

Hashimoto et al. proposed a technique to generate edit
scripts including code move [H]. Their technique utilizes
Zhang’s algorithm [20], which occasionally generates unfitting
AST edit scripts because it is for general tree structures,
not specialized for AST structures. Thus, Hashimoto et al.
introduced some preprocessing and postprocessing to generate
more appropriate AST edit scripts. In Hashimoto’s techngiue,
move operations are derived from pairs of deleted subtrees and
added subtrees satisfying some conditions. Even in the worst
case, the time complexity of Hashimoto’s technique cannot
be higher than O(n?) where 7 is the number of nodes in the
compared trees.

There are some algorithms that generate edit scripts for
XML documents [2T], [22]. Their algorithms give shortening
the computational time the utmost importance. Thus, edit
scripts generated with them are not suited to be understood
by the human.

public class Test{
private String foo(int i){
if(i == @) return “Bar";
else if(i -1) return “Foo!”’;
}
}

(a) Source Code After Change

insert(t,,
insert(t,,
insert(t,,
insert(t,,
insert(ts,

n, 2, ReturnStatement, €)
t,, 1, StringlLiteral, Bar)
n, 3, IfStatement, €)

t;, 1, InfixExpression, ==)
t,, 1, SimpleName, i)
insert(tq, t,, 2, PrefixExpression, -)
insert(t,, tg, 1, NumberLiteral, 1)
move(p, t;, 2)

update(c, private)

=N R

(b) Generated Edit Script

Fig. 4. An example of GumTree’s edit script

B. GumTree

Falleri et al. proposed a technique, GumTree, which can
generate edit scripts from larget ASTs in consideration with
moving code at short times [R]. Figure B shows an overview of
GumTree. If GumTree takes the source code of Figure Dfa) and
B[] as its inputs, it outputs the edit script shown in Figure B[b].

GumTree executes the following steps for given two source
files, and then it outputs an edit script.

« STEP1 (Syntax analysis) performs syntax analysis for
given source files to generate an AST for each of them.

o STEP2 (Mapping generation) generates mappings of
subtrees between the two ASTs by executing STEP2-1
and STEP2-2.

— STEP2-1 (Top-down mapping) searches identical
subtrees between the two ASTs. The search starts at
the root nodes of the ASTs.

— STEP2-2 (Bottom-up mapping) searches similar
subtrees from other than the identical subtrees found
in STEP2-1. This search begins with each leaf node
of the ASTs.

« STEP3 (Edit script generation) generates an edit script
based on the mappings generated in STEP2-1 and STEP2-

2. Chawathe’s algorithm [#] is used to generate edit
scripts.

C. Research Motivation

Developers occasionally copy existing code fragments and
paste them in other places of the source code when they are
writing code [0]. However, GumTree does not consider copy-
and-paste operations. In edit scripts of GumTree and other
differencing techniques, a copy-and-paste is represented with
a sequence of insert actions.

Figure B shows a code change example where a new method
is added to the source code shown in Figure D[a). The added
method newFoo is quite similar to the existing method foo.
Figure B[b] shows an AST of the post-change source code. For
this change, GumTree outputs an edit script shown in Figure
B[c]. This edit script means that 15 new nodes were added to
the AST by the change.

However, the subtree of the added method has the same
structure as the subtree of the existing method. In this case,
by considering copy-and-paste, a simpler edit script can be
generated. Figure B{d] shows an edit script generated by our
technique. In this edit script, firstly the subtree of the existing
method is copied and pasted, then two nodes in the pasted
subtree are updated.

V. PROPOSED TECHNIQUE

Herein, we explain our technique. An implemented tool of
our technique for Java is publicly available 2

A. Outline

As described in Subsection V=0, by representing an added
subtree with a copy-and-paste action rather than a sequence
of insert actions, simpler edit scripts can be generated. In our
technique, a new editing action representing copy-and-paste
is introduced in addition to the conventional editing actions
(insert, delete, update, and move). In the case of Figure B,
the length of the edit script reduces by one-fifth. Our edit
script is not only shorter but also easier-to-understand because
a combination of copy-and-paste and update actions implies
that similar code has been added by a given change.

Our technique is designed by extending GumTree [K]. Fig-
ure B shows an overview of our technique. Our technique takes
two source files, and it outputs an edit script. Our technique
includes three steps as well as GumTree. Our technique
considers five editing actions, insert, delete, update, move,
and c&p. The former four actions are the same as GumTree’s
ones which are described in Section M. The following is the
definition of the new action.

o c&p(t,1p,i) means copying an existing subtree and past-
ing it to another place in the AST. ¢ is the root of the
subtree of the copying target. ¢, is the parent node of the
pasted place. i means that ¢ is pasted as the i-th child of
Ip.

2 http://sdl.1st.osaka-u.ac.jp/~higo/ase201//

public class Test{
public String foo(int i){

if(i == @) return "Foo!";
}
public String newFoo(int i){
if(i == @) return "newFoo!";
¥

}

(a) Post-change code
c Compilation
Unit
b Type
Declaration
d
C Maodifier: SimpleName: Method
public Test Declaration
f ! \ :
Modifier: SimpleType simpleName: SingleVariable
public PleTYP foo Declaration
SimpleName:) PrimitiveType: SimpleName
String. int i
< p
9 InfixExpression: Return
= Statement
q r
simpleName: Numbertiteral: StringLiteral:
i 0 “Foo!”
e
Method
Declaration
. e v o
Maodifier: SimpleType SimpleName: SingleVariable
public PleTYP newFoo Declaration
, ’] .
SimpleName: PrimitiveType: SimpleName:
String. int i
Q InfixExpression: p Return
= Statement
o 7 ,
simpleName: L Numbertiteral: S StringLiteral:
i [“newFool!”

(b) Post-change AST

insert(e’,
insert(f’,
insert(g’,
insert(k’,
insert(h’,
insert(i’,
insert(1’,

b MethodDeclaration, €)
e
e
g
e
e
i
insert(m’, i’
e
J
n
o
o
n
p

Modifier, public)
SimpleType, String)
SimpleName, String)
SimpleName, newFoo)
SingleVariableDeclaration, €)
PrimitiveType, int)
SimpleName, i)

Block, €)

IfStatement, €)
InfixExpression, ==)
SimpleName, €)
NumberLiteral, ©0)
ReturnStatement, €)
StringlLiteral, newFoo!)

O

M

insert(j’,
insert(n’,
insert(o’,
insert(q’,
insert(r’,
insert(p’,
insert(s’,

PV

-

-

RPRNNRPRRPRPRUNRPDAWRNERED
M

M

(c) Edit script by GumTree

c&p(e, b, 4)
update(h’, newFoo)
update(s’, “newFoo!”)

(d) Edit script by our technique

Fig. 5. A change example where a new method was added

http://sdl.ist.osaka-u.ac.jp/~higo/ase2017/

Input Output
STEP1 STEP2 STEP3
===| Syntax analysis Mapping generation s Edit script generationI —
=7 STEP2-1 % Q. ‘g Edit Script
= Top-down mapping y
- % '22‘ STEP2-2 3 4
Two source files Bottom-up mapping

Two ASTs

STEP2-3
C&P cognition

Two ASTs with
mapping information

Fig. 6. An overview of our technique

B. Procedure

Our technique is an extended version of GumTree. In
Figure B, the steps that have been added or changed in our
technique are emphasized. The followings are short descrip-
tions for each of the steps.

« STEP2-1 (Top-down mapping) searches identical sub-
trees between the two ASTs. This step also finds candi-
dates for copy-and-pasted subtrees.

+ STEP2-3 (C&P cognition) checks whether each of the
copy-and-pasted candidates has been mapped in STEP2-2
or not. If not, the candidate is regarded as generated by
copy-and-paste.

« STEP3 (Edit script generation) generates an edit script
with the two ASTs generated in STEP1 and the mapping
information (including the copy-and-paste information).

The remainder of this section explains each of the above
steps in detail.

C. STEP2-1 (Top-down mapping)

In STEP2-1, our technique finds candidates of subtrees
added by copy-and-paste operations in addition to the process-
ings of original GumTree. STEP2-1 of our technique consists
of the following processings. The processings (I) and (D) are
the same as original GumTree. The processing (B) has been
newly added in our technique.

1) Finding similar subtrees between the two ASTs. In this
explanation, we assume that n subtrees in the pre-change
AST are similar to m subtrees of the post-change AST.
Those subtrees can be represented by a bipartite graph
where a set of n nodes and another set of m nodes exist.
An edge exists between each pair of two nodes whose
similarity is higher than a given threshold.

2) Making mappings between the n nodes and the m nodes
with the following procedure. Firstly, finding a pair of
nodes that has the highest similarity between the n nodes
and the m nodes. The found pair is recorded and the two
nodes forming the pair are removed from the bipartite
graph. Secondly, finding a pair of nodes that has the
highest similarity between the n — 1 nodes and the m — 1
nodes. This processing is repeated until all edges in the
bipartite graph disappear.

3) When the processing (I) has finished, the remaining
nodes in the bipartite graph mean that their subtrees have
not been mapped to any other subtrees. In other words,
their subtrees are similar to other subtrees, but the other
subtrees have more similar subtrees. In our technique,
non-mapped subtrees in the post-change AST are treated
as candidates for copy-and-paste from the most-similar
subtrees in the pre-change AST.

D. STEP2-3 (C&P cognition)

In this step, our technique determines which candidates
are copy-and-paste operations. Our technique traverses the
post-change AST to find nodes satisfying both the following
conditions:

o found as candidates for copy-and-paste operation in
STEP2-1, and

« not mapped to any nodes in the pre-change AST when
STEP2-2 has finished.

If our technique finds a node that satisfies both the condi-
tions, it regards a pair of the candidate and its most-similar
subtrees as a copy-and-paste mapping.

In this step, we use a heuristic. In our technique, subtrees’
similarities are calculated based on their structure and node
labels. Node values are ignored. Thus, many false positives
are found. For example, all variable declaration statements are
regarded as identical subtrees even if their variable types and
variable names are different. To reduce such false positives, if
all node values in a subtree are different from ones of another
subtree, the two subtrees are not regarded as a copy-and-paste
operation.

E. STEP3 Edit script generation

Chawathe’s algorithm is used in STEP3 to identify insert,
delete, update, and move as well as original GumTree. Our
technique extends Chawathe’s algorithm to identify c&p too.
In STEP3, the two ASTs are traversed once and an edit script
is generated.

1) Identifying insert, update, move, and c&p actions by

traversing the post-change AST.

2) Identifying delete actions by traversing the pre-change

AST.

pre-change AST
Unit

Type
Declaration

Modifier:
public

£

Modifier:
public

SS
.
Ss
g 12 Retum

Stringliteral
“Fool”

InfixExpression:

g
L Nambertiteral
i 0

©/\© Root nodes of subtrees mapped in STEP2-1
Root nodes of subtrees found as copy-and-

Q/\O paste candidates in STEP2-1

O/\O Nodes mapped in STEP2-2

:) Different nodes in copy-and-past candidates

post-change AST

7 Compilation
Unit.

ion
~o N
~ ~
~
¢ <o~ ” T N
Modfer SimoleType K SimpleName: > SingleVariable
public pleTYP) newFoo Declaration
®
<
~
, g > , g
SE D
~
~
\\
o - p Return
Statement
StringLiteral:
“newFoo!”

Infisxpression:
EY

S
~
~
. g ~
q
SimpleName: L Nmbertiterat X
i o

Fig. 7. An example of mappings (mappings between Figure P[b] and Figure B[B])

In the processing (), if our technique finds a node in the
copy-and-paste mappings, a c&p action is added to the edit
script.

F. An example of edit script generation

Figure @ shows an example of mappings between pre-
change and post-change ASTs. In this figure, the pre-change
AST is the same as Figure D[b), and the post-change AST is
the same as Figure B[DB].

In STEP2-1 (Top-down mapping), subtree e in the pre-
change AST gets mapped with subtree e in the post-change
AST. Besides, subtree e in the pre-change AST is very similar
to ¢’ in the post-change AST, so that they become a candidate
for copy-and-paste operation.

In STEP2-2 (Bottom-up mapping), firstly container map-
pings are generated. A container mapping means, if most
nodes under a subtree have been mapped, the root node of the
subtree also gets mapped. In the process of container mapping
generation, node b in the pre-change AST gets mapped with
node b in the post-change AST. Then, recovery mappings
are generated. Recovery mappings mean mapping nodes by
traversing from the nodes of the container mappings to their
leaves. In this example, nodes ¢ and d get mapped in the
process of recovery mapping generation.

In STEP2-3 (C&P cognition), each copy-and-paste candi-
date found in STEP2-1 is checked whether it has been mapped
in STEP2-2 or not. If not, the candidate is regarded as copy-
and-paste operation. In this example, subtree e in the pre-
change AST and ¢’ of the post-change AST found as a copy-
and-paste candidate in STEP2-1, and ¢ is not mapped in

STEP2-2. Consequently, they are regarded as a copy-and-paste
operation in STEP2-3.

In STEP3, an edit script is generated with the mapping and
copy-and-paste information as follows.

o For each pair of moved subtrees, a move action is added
to the edit script. In this example, there are no moved
subtrees.

o For each pair of nodes that includes different values, an
update action is added to the edit script. Node pairs under
a pair of copy-and-paste are not targets of this processing.
Thus, no update action is added to the edit script in the
example.

« If the pre-change AST includes nodes that are not mapped
to any nodes in the post-change AST, delete actions for
them are added to the edit script. In this example, there
is no node for delete actions.

o If the post-change AST includes nodes that are neither
mapped nor copy-and-paste, insert actions for them are
added to the edit script. In this example, there is no node
for insert actions.

o For each subtree of copy-and-paste in the post-change
AST, a c&p action is added to the edit script. If there are
nodes under the subtree that have different values from
their counterparts, update actions for them are added to
the edit script. In this example, action c&p(e,b,4) is
added and then two more actions update (h’, newFoo)
and update (s’, "newFoo!") are also added.

As a result, the edit script shown in Figure B[d] is generated
by our technique.

VI. EVALUATION

As described in Section [V=A|, there are many techniques
to generate edit scripts. Falleri’s experiment showed that
GumTree’s edit scripts were easier to understand for the human
than other techniques [8]. Hence, we compare our technique
with GumTree and then answer the RQs listed in Section .

A. Preparation

We use the following values as the thresholds of GumTree
and our technique. Those values are the same as ones that
were used in Falleri’s experiment [&].

¢ The minimum subtree height for top-down mappings is

2.

o The minimum similarity for bottom-up mappings is 0.5.

e Only subtrees having 100 or fewer nodes are targets of

bottom-up mappings.

Our experimental targets are 14 software systems that are
included in CVS-Vintage dataset [Z3]. This dataset includes
42,250 source files and 352,182 revisions in total. This dataset
was used in Falleri’s experiment [E] too.

B. Procedure for RQ1 and RQ?2

We run GumTree and our technique for the same changes
and then compared generated edit scripts®. In the remainder
of this section, we call a pair of two consecutive revisions
of a source file a change. Thus, the number of changed
source files is the same as the number of changes in this
experiment. Changes for the two tools were extracted from the
14 projects. For each project, 1,000 changes were extracted. If
a project included less than 1,000 changes, all the changes
were extracted. The target changes were extracted in the
following way, which is the same as Fellari’s experiment.

1) We identified revisions in which at least a source file is
committed, and then we obtained a list of the committed
source files for each of the identified revisions.

2) We retrieved the pre-change revision for each of the files
in the lists.

3GumTree and our technique were executed on a personal workstation
equipped with a 2.40GHz 6-core CPU and 32GB DDR4 memory.

TABLE I
EDIT SCRIPT LENGTH OF OUR TECHNIQUE AND GUMTREE FOR THE
CHANGES FOR WHICH OUR TECHNIQUE GENERATED DIFFERENT EDIT
SCRIPTS FROM GUMTREE

Project Maximum value Median Minimum value
GT Ours GT Ours | GT Ours

argouml 3,049 2,708 69 49 4 2
carol 1,586 1,581 | 116 107 7 3
columba 892 872 47 39 5 1
dnsjava 1,632 1,544 75 71 4 2
jboss 2,876 2,457 76 62 5 2
jedit 2,858 2,853 79 67 4 2
jhotdraw 1,691 1,686 72 64 4 2
junit 751 728 75 64 7 2
log4j 3,029 2,827 75 60 4 2
jdtcore 13,269 12,628 84 65 4 2
workbench 3,651 3,351 72 55 4 2
scarab 3,016 2,928 83 70 5 2
struts 1,486 1,313 59 43 5 1
tomcat 2,152 2,064 54 43 4 2

104 + -+ — = + - — — — - «— — — -
064 oo o : i
oo T ;o P
0.4 T T N T S S R !
' ' ' ' l i : ' ' '
oo T b .
' + . H . ' , -+ ' i
02 - L A -
‘ R [o
-+ i - . oy
00 - '
T T T T T T T T T T T T 1
= ° © ©] = = = I o < e} §2) ©
ESE S 283 85 %8 8t ¢ E
§ ¢ 5 ¢ & T2 T = £ 8 & 3 g
- o
H
Fig. 8. Edit script length ratio of our technique to GumTree
20
15 i
|
|
5 : !
_i__i__i_-i-;_i_.ﬁé—:—_i_é-i-_i_
0 - T T T T T T T T T T T T 1
T 3 8 © © = 3z 2 ¥ © £ 2o 9 %
E 5 € 58 88 85 g g s 8
- [<]
]

Fig. 9. Execution time ratio of our technique to GumTree

3) We stored each pair of the pre-change and post-change
texts of the files as a change.

4) We removed changes where only comments and/or
formatting are modified because empty edit scripts are
generated from such changes.

5) We selected 1,000 changes randomly from the remaining
ones.

We obtained 13,699 changes in total. All the obtained

changes were given to GumTree and our technique to generate
edit scripts. The execution time of the tools was measured.

C. Results for RQI and RQ2

For 18% changes, our technique generated shorter edit
scripts than GumTree. For the remaining 82% changes, our
technique generated the same edit scripts as GumTree. There
was no change for which our technique generated a longer edit
script than GumTree.

Table B shows the length of the edit scripts for the 18%
changes. Figure B shows the length ratio of our technique to
GumTree for the 18% changes. For most of the projects, the
median values are between 0.8 and 0.9. More concretely, for
58.5% of the changes in the graph, our technique shortened
edit scripts by 10% or more.

Figure @ shows the execution time ratio of our technique to
GumTree. The execution time of our technique tends to longer
than GumTree. For all the changes, we confirmed that there
was a significant difference in execution time between our
technique and GumTree by using Wilcoxon signed-rank test
with oo = 0.05. However, the difference of execution time is not
so large. For 96% changes, our technique took one-and-a-half
times or less than GumTree. For 75% and 96% changes, our
technique took less than 1 second and 2 seconds, respectively.

Our answer to RQ1 is that our technique generated shorter
edit scripts for 18% changes and for 58.5% of those changes
our technique shortened 10% or more.

Our answer to RQ2 is that our technique can generate edit
scripts at short times. Our technique took less than 2 seconds
for 96% of all target changes.

D. Procedure for RQ3

Twelve research participants took part in the experiment for
RQ3. The participants include one professor, nine graduate
students, and two undergraduate students. The professor and
all the graduate students had experiences in the research of
software engineering. They had at least 1-year experiences
of Java programming in their research. The undergraduate
students had finished a half-year Java exercise in their course.
All the participants are not the authors of this paper.

In this experiment, the authors prepared ten changes (here-
after, we call them tasks), all of which were selected from the
13,699 changes. All the ten tasks satisfy both the following
conditions.

« GumTree and our technique generate different edit scripts
for the tasks.

o The tasks do not include huge code changes such as
changing all over the source files.

This experiment included two phases. In the first phase, the
research participants were divided into two groups. The partic-
ipants in the first group used our technique to understand the
changes for the odd-numbered tasks and they used GumTree
for the even-numbered tasks. The participants in the second
group used GumTree and our technique in an opposite way.
Each of the participants wrote down what he/she understood
on the tasks after they had finished understanding the tasks.
To keep participants’ concentration, we set one hour as the
time limit for understanding the tasks. Thus, there were some
participants who were not able to finish some tasks.

In the second phase, for each of the tasks, each participant
compared visualization of our technique with GumTree and
then chose from the following five options.

1) The visualization of GumTree is definitely more helpful
to understand the tasks.

2) The visualization of GumTree seems a little more helpful
to understand the tasks.

3) No differences in the visualization of GumTree and our
technique from the viewpoint of understanding the tasks.

4) The visualization of our technique seems a little more
helpful to understand the tasks.

350
300
250
200
15

=}

seconds

10

[0
o o

01 02 03 04 05 06 07 08 09 10

GumTree (total = 2,220 secs.) B Ours (total =2,187 secs.)

Fig. 10. Understanding time for the tasks

0
jo)
£ 600
el
40.0
20.0 I
0.0
01 02 03 04 05 06 07 08 09 10

GumTree (total = 604.4 bytes)

m Ours (total =706.3 bytes)

Fig. 11. Description length for the tasks

5) The visualization of our technique is definitely more
helpful to understand the tasks.

E. Evaluation Measure for RQ3

In this experiment, we used the following evaluation indi-
cators to compare our technique with GumTree:

« the time required to understand the tasks,

« the degree of understanding the tasks, and

« participants’ qualitative comparison.

The participants timed themselves for the time required
to understand the tasks. Before this experiment, we told the
participants not to count the time required to write down what
they understood on the tasks in the time required to understand
the tasks.

We considered that, if a participant understood a task well,
he/she would write down what she/he understood in detail.
Thus, we used the length of participants’ descriptions as the
degree of understanding the tasks.

We used the questionnaire described in the last paragraph
of Subsection VI=D for the qualitative comparison.

F. Results for RO3

Figure M shows the average understanding time of the
research participants for each of the tasks. To reduce influences
of the outliers, we eliminated the minimum and maximum
values in calculating average time. The total time of our
technique was 2,187 seconds and GumTree is 2,220 seconds,
respectively. To investigate whether there was a significant
difference in understanding time between our technique and
GumTree, we firstly checked the presence of normality in
the time data with Shapiro-Wilk test. After we confirmed
the presence of normality, we applied Paired-T test to the

TABLE II
ANSWERS OF THE RESEARCH PARTICIPANTS FOR QUALITATIVE COMPARISONS

Research participants
A B C D E F G H 1 J K L Ave. Med.
01 1 3 4 2 2 5 4 5 5 5 2 2 3.33 35
02 1 4 5 4 4 5 3 5 5 5 2 4 3.92 4.0
03 1 2 5 2 5 5 5 5 5 4 5 1 3.75 5.0
04 1 4 4 2 4 5 5 5 3 5 5 4 3.92 4.0
Tasks 05 1 4 5 1 5 5 4 5 5 5 2 3 3.75 45
06 1 2 1 2 3 5 3 5 4 5 4 4 3.25 35
07 1 4 3 5 - 5 5 5 5 4 4 5 4.18 5.0
08 1 4 3 2 - 4 3 5 4 4 2 3 3.18 3.0
09 1 2 3 3 - 5 3 - 4 4 - - 3.13 3.0
10 1 5 3 3 — 5 3 — 5 5 - - 3.75 4.0
Ave. | 1.00 340 360 260 383 490 380 500 450 460 325 325
Med. 1.0 4.0 3.5 2.0 4.0 5.0 3.5 5.0 5.0 5.0 3.0 3.5

data. As a result, there was no significant difference in the
understanding time between our technique and GumTree.

Figure [T shows the average length of participants’ descrip-
tions for each of the tasks. We eliminated the minimum and
maximum values in calculating average length, too. The total
length of our technique was 706.3 bytes, and GumTree was
604.4 bytes, respectively. To investigate the presence of a
significant difference in the description length of our technique
and GumTree, we firstly checked the presence of the normality
in the description length data with Shapiro-Wilk test. After we
confirmed that there was no normality in the data, we applied
Wilcoxon signed-rank test to the data. As a result, there was
no significant difference in the description length between our
technique and GumTree.

Table O shows the participants’ answers for the question-
naire. For all the tasks, the average and median values were
more than 3%. In other words, the research participants felt that
our technique was more helpful than GumTree for all the tasks.
On the other hand, there were two participants whose average
and median values were less than 3. Research participants A
and D considered that GumTree was better than our technique
for the tasks. Consequently, we conclude that our technique
provides better visualization than GumTree. However, there
were some developers who preferred GumTree’s visualization
than our technique.

Our answer to RQ3 is that the research participants tended
to prefer change visualization based on our technique than
Falleri’s one for all their tasks.

VII. DISCUSSION

In the current implementation, identical subtrees (same
structure and same values) and structurally-identical subtrees
(same structure but different values) are regarded as copy-and-
paste. The former is a TYPE-1 clone and the latter is a TYPE-
2 clone, respectively. In the experiment, for 82% changes,
our technique generated the same edit scripts as GumTree.
Those edit scripts did not include c&p actions at all. If we
use an AST-based TYPE-3 clone detection techniques such as
CloneDR [I6] or Deckard [?4], our technique can be extended

“In the questionnaire, 1. ~ 5. are ordinal scale, not ratio scale. Thus, the
average values in this experiment should be used only as a guide.

to regard TYPE-3 clones as copy-and-paste. If we do such an
extension, more edit scripts will include c&p actions.

We used value “2” as the minimum height of subtrees for
copy-and-paste. If we use a greater value, less edit scripts
include c&p actions.

VIII. THREATS TO VALIDITY

In the experiment, the target programming language was
only Java. Our technique’s and GumTree’s algorithms are not
specialized for Java. However, currently, we do not know
whether our technique works well for other programming
languages.

In the experiment, we used the same experimental tar-
gets and the same threshold values as Falleri’s experiment.
However, if we use different projects or different threshold
values, we may obtain different experimental results. More
experiments are required with more projects and more different
threshold values to evaluate our technique more solidly.

IX. CONCLUSION

In this paper, we proposed to introduce copy-and-paste
operation to AST edit script to promote change understand-
ability. In the process of designing our technique, we were
greatly affected by an existing technique GumTree and our
technique is its extended version. We conducted an experiment
to compare our technique with GumTree. As a result, our
technique generated shorter edit scripts than GumTree for
18% changes. For the remaining 82% changes, our technique
generated the same edit scripts as GumTree. We also confirmed
that the execution time of our technique tends to be longer
than GumTree. However, for 96% changes, the execution time
of our technique was less than 2 seconds. We conducted an-
other experiment with 12 research participants and confirmed
that our technique provided more helpful visualization than
GumTree for all the ten change understanding tasks.

In the future, we are going to apply our technique for more
projects. Extending our technique to regard TYPE-3 clones as
copy-and-paste is another future work.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI
25220003.

[1]

[2

—

[3]
[4]

[6]

[7]
[8

=

[9]

(10]

[11]

[12]

REFERENCES

M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. D. Penta, “LHD-
iff: A Language-Independent Hybrid Approach for Tracking Source
Code Lines,” in Proc. of the 2013 IEEE International Conference on
Software Maintenance, 2013, pp. 230-239.

W. Miller and E. W. Myers, “A file comparison program,” Software:
Practice and Experience, vol. 15, no. 11, pp. 1025-1040, 1985.

E. W. Myers, “An o(nd) difference algorithm and its variations,” Algo-
rithmica, vol. 1, pp. 251-266, 1986.

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,
“Change Detection in Hierarchically Structured Information,” in Proc.
of the 1996 ACM SIGMOD International Conference on Management
of Data, 1996, pp. 493-504.

B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725-743,
Nov. 2007.

M. Hashimoto and A. Mori, “Diff/TS: A Tool for Fine-Grained Struc-
tural Change Analysis,” in Proc. of the 2008 15th Working Conference
on Reverse Engineering, 2008, pp. 279-288.

M. Pawlik and N. Augsten, “Rted: A robust algorithm for the tree edit
distance,” Proc. VLDB Endow., vol. 5, no. 4, pp. 334-345, Dec. 2011.
J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing,” in Proc. of the 29th
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2014, pp. 313-324.

T. M. Ahmed, W. Shang, and A. E. Hassan, “An empirical study of
the copy and paste behavior during development,” in Proc. of the 12th
Working Conference on Mining Software Repositories, 2015, pp. 99-110.
M. Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethnographic Study of
Copy and Paste Programming Practices in OOPL,” in Proc. of the 2004
International Symposium on Empirical Software Engineering, 2004, pp.
83-92.

D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen, “Effective
Software Merging in the Presence of Object-Oriented Refactorings,
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 321-
335, 2008.

D. Dig, R. Johnson, D. Marinov, B. Bailey, and D. Batory, “COPE:
Vision for a Change-oriented Programming Environment,” in Proceed-
ings of the 38th International Conference on Software Engineering
Companion, 2016, pp. 773-776.

>

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An Empirical Study
of Code Clone Genealogies,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2005,
pp. 187-196.

Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176-192, 2006.

P. Jablonski and D. Hou, “CReN: A Tool for Tracking Copy-and-paste
Code Clones and Renaming Identifiers Consistently in the IDE,” in
Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology
eXchange, 2007, pp. 16-20.

I. Baxter, A. Yahin, M. A. L. Moura, and L. Bier, “Clone detection
using abstract syntax trees,” Proc. of the 14th International Conference
on Software Maintenance, pp. 368-377, Mar. 1998.

D. Rattan, R. Bhatia, and M. Singh, “Software Clone Detection: A
Systematic Review,” Information and Software Technology, vol. 55,
no. 7, pp. 1165-1199, 2013.

S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Transactions Software
Engineering, vol. 31, no. 10, pp. 804-818, Oct. 2007.

T. Omori and K. Maruyama, “An Editing-operation Replayer with
Highlights Supporting Investigation of Program Modifications,” in Proc.
of the 12th International Workshop on Principles of Software Evolution
and the 7th Annual ERCIM Workshop on Software Evolution, 2011, pp.
101-105.

K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance Between Trees and Related Problems,” SIAM Journal of
Computing, vol. 18, no. 6, pp. 1245-1262, 1989.

R. Al-Ekram, A. Adma, and O. Baysal, “diffx: An algorithm to detect
changes in multi-version xml documents,” in Proc. of the 2005 Con-
ference of the Centre for Advanced Studies on Collaborative Research,
2005, pp. 1-11.

G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in xml
documents,” in Inproceedings of the 18th International Conference on
Data Engineering, 2002, pp. 41-52.

M. Monperrus and M. Martinez, “Cvs-vintage: A dataset of 14 cvs
repositories of java software,” INRIA, Tech. Rep. hal-00769121, 2012.
L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-Based Detection of Code Clones,” in Proceedings of
the 29th International Conference on Software Engineering, 2007, pp.
96-105.

	Introduction
	A Change Example and Research Questions
	Preliminaries
	Abstract Syntax Tree
	Copy-and-Paste
	Code Clone

	blackAST Edit Script
	Previous Research on Edit Script Generation
	GumTree
	Research Motivation

	Proposed Technique
	Outline
	Procedure
	STEP2-1 (Top-down mapping)
	STEP2-3 (C&P cognition)
	STEP3 Edit script generation
	An example of edit script generation

	Evaluation
	Preparation
	Procedure for RQ1 and RQ2
	Results for RQ1 and RQ2
	Procedure for RQ3
	Evaluation Measure for RQ3
	Results for RQ3

	Discussion
	Threats To Validity
	Conclusion
	References

