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Abstract

Recently, for high-reliable information systems, it is strongly desirable to use model

checking techniques. Well-known state explosion, however, might occur in model check-

ing of large systems. In particular, in model checking of the real time systems, the number

of states of models increases exponentially with the number of clock variables. Such ex-

plosion severely limits the scalability of model checking. In order to avoid it, several ab-

straction techniques are proposed. Some of them are based on CounterExample-Guided

Abstraction Refinement (CEGAR) loop technique suggested by E. Clarkeet al..

The paper proposes a concrete abstraction technique for timed automata used in model

checking of real time systems, and evaluates its efficiency. The proposed technique is

also based on CEGAR, in which we use a counter example as a guide to refine the model

which is abstracted excessively. Although, in general, the refinement operation is applied

to abstract models, the method modifies the original timed automata, and next generates

refined abstract models from the modified automata.

Experimental results show the abstraction algorithm can reduce the total memory con-

sumption by at most 80 percent compared to applying model checking without abstrac-

tion.
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1 Introduction

In recent years, there is more and more demand for applying model checking to design

of dependable systems. Model checking proves that a given system satisfies specifications

by searching a finite transition system exhaustively which describes the system’s whole

behavior. There is, however, a limitation in scalability including a state explosion. In

order to improve the scalability, model abstraction technique becomes important[1, 2, 3].

In verification of real time systems, a timed automaton is used[8, 9], which can de-

scribe real time behavior of system . For a timed automaton, real-valued clock constraints

are assigned to a state of finite automaton (called location). Therefore, it has an infinite

state space which is represented in a product of discrete state space made by locations

and continuous state space made by clock variables. In traditional model checking for a

timed automaton, using the property that we can treat the state space of clock variables

as a finite set of regions; we can apply model checking to a finite model. However, the

size of the finite model increases exponentially with clock variables; thus an abstraction

technique is needed.

Paper[1] proposed a well-organized abstraction algorithm called CEGAR (Counter

Example-Guided Abstraction Refinement). The algorithm is used for abstraction of finite

models[1, 2], hybrid systems[3], timed automata[14, 15], and other models. In the CE-

GAR algorithm, we use a counter example produced by a model checker as a guide to

refine models which is abstracted excessively. A General CEGAR algorithm consists of

several steps. First, it abstracts the original model (the obtained model is called abstract

model) and performs model checking on the abstract model. Next, if a counter example

(CE) is found, it checks the counter example on the concrete model. If the CE is spurious,

it refines the abstract model. The last step is repeated until the valid output is obtained.

This paper proposes a model abstraction technique for timed automata based on the

CEGAR algorithm. In general, most CEGAR based algorithms[1, 2, 3, 14, 15] obtain

refined abstract models from the previous abstract models by modifying some transfor-

mations. In our algorithm, however, the refined model is obtained indirectly; we trans-

form the original timed automaton preserving the equivalence and from it we generate an

abstract model by eliminating clock attributes.

In this paper, we give formal descriptions of our algorithms. Also we prove correct-

ness of our algorithms by proving that the transformation preserves bi-simulation equiva-
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lence and that the refined abstract model is the spurious CE free.

As related works, papers[14, 15] proposed CEGAR based abstraction techniques for

timed automata. The technique of [14] intends SAT based model checking, and refines

propositions which represent models to remove a spurious counter example. The tech-

nique of [15] limits the model to PLC automata, a sub class of timed automaton. Although

these techniques mainly refine the abstract models by adding clock variables which have

removed by abstraction, our refinement method modifies the original timed automata and

produces the spurious CE free model from the modified models, instead of adding clock

variables.

The rest of the paper is organized as follows. In Sec. 2, some definitions are described.

Sec. 3 gives our CEGAR algorithm. Sec. 4 proves the correctness of the algorithm. Sec.

6 gives experimental results. Sec. 7 concludes the paper.
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2 Preliminaries

In this section, we give definitions of a timed automaton, a region automaton which

specifies whole states of a timed automaton with finite clock regions, and others.

2.1 Timed Automaton

Definition 2.1 (Differential inequalities onC). Syntax and semantics of a differential

inequalityE on a finite setC of clocks is given as follows:

E ::= x − y ∼ a | x ∼ a,

wherex, y ∈ C, a is a literal of a real number constant, and∼∈ {≤,≥, <,>}.

Semantics of a differential inequality is the same as the ordinal inequality.

Definition 2.2 (Clock constraints onC). Clock constraintsc(C) on a finite setC of clocks

is defined as follows:

A differential inequalityin onC is a element ofc(C).

Let in1 andin2 be elements ofc(C), in1 ∧ in2 is also a element ofc(C).

Definition 2.3 (Timed Automaton). A timed automatonA is a 6-tuple(A,L, l0, C, I, T ),

where

A : a finite set of actions;

L : a finite set of locations;

C : a finite set of clocks;

l0 ∈ L :an initial location;

T ⊂ L × A × 2c(C) × R × L;

where,2c(C) is a set of clock constraints, called guards;

R = 2C : a set of clocks to reset;

and I ⊂ (L → 2c(C)) : a mapping from locations to clock constraints, called location

invariants.

A transitiont = (l1, a, g, r, l2) ∈ T is denoted byl1
a,g,r−→ l2.

A mapν : C → R≥0 is called a clock assignment. We can extend the domain ofν

into a set ofC as follows: ν ∈ RC
≥0. We define(ν + d)(x) = ν(x) + d for d ∈ R≥0.

r(ν) = ν[x 7→ 0], x ∈ r is also defined forr ∈ 2C . By N , a set of wholeν is denoted.
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Definition 2.4 (Semantics of Timed Automaton). For a given timed automatonA =

(A,L, l0, C, I, T ), let a set of whole states ofA beS = L × N .

The initial state ofA shall be given as(l0, 0C) ∈ S.

For a transitionl1
a,g,r−→ l2 (∈ T ), the following two transitions are semantically defined.

The first one is called an action transition, while the latter one is called a delay transition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,

∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Definition 2.5 (A semantic model of Timed Automaton). For Timed AutomatonA =

(A,L, l0, C, I, T ), an infinite transition system is defined according to the semantics of

A , where the model begins with the initial state. ByT (A ), the semantic model ofA is

denoted.

2.2 Region Automaton

For a given timed automatonA , we can introduce a corresponding clock region

CR(A )[5, 6]. In general, a clock region divides a|C|-dimensional Euclidean space into

finite points, segments, and faces. By[u], an element (a region) inCR(A ) is denoted.

For [u] ∈ CR(A ), g([u]) andI([u]) represent that any point in[u] satisfies a guardg and

invariantI, respectively. Also byr([u]), applying clock resettingr onto [u] is denoted,

wherer([u]) = [u][x 7→ 0], andx ∈ r.

Definition 2.6 (Region Automaton). A region automatonAr = (A,Lr, lr 0, Tr) of a given

timed automatonA = (A,L, l0, C, I, T ) is defined as follows.

Lr ⊂ L × CR(A ),

lr 0 = (l0, [0
C ]), where[0C ] satisfiesI(l0 ),

Tr ⊂ Lr × A × Lr,

Tr consists of

(l , [u])
a⇒ (l ′, [v]) iff (l , u)

d⇒ (l , u′) ∈ T (A ) for d ∈ R≥0

∧(l , u′)
a⇒ (l ′, v) ∈ T (A ) for a ∈ A

∧ u ∈ [u] ∧ v ∈ [v].

There is bi-simulation equivalence between a timed automatonA and its region au-

tomatonAr [4].
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2.3 DBM (Difference Bound Matrix)

In [9, 13], a data structure DBM is introduced to represent a convex space in|C|
-dimensional Euclidean space, whereC is a set of clock variables. DBM is a set of

differential inequalities on two clock variables, and represents a state space which satisfies

all inequalities over it (the state space is called a zone). DBM represents these set of

inequalities as a|C0| × |C0| matrix, whereC0 = C ∪ { 0 }, and0 is a special variable

which means a constant value0. A (i, j)-th entry (Di j) of the matrix means a differential

inequality ofxi − xj for xi, xj ∈ C0. Suppose there is an inequalityxi − xj ¹ n for

¹∈ { < . ≤ }, the (i, j)-th entryDi j is represented by(n,¹). Also, whenxi − xj is

unbounded, the entryDi j is represented by∞. In addition, the upper bound and lower

bound ofxi itself are indicated byD0,i andDi,0 respectively.

As an example of DBM, let’s consider a zone which satisfies following constraint.

x − 0 < 20 ∧ y − 0 ≤ 20 ∧ x − y ≤ −10 ∧ y − x ≤ 10 ∧ 0 − z < 5.

When we represent this zone as DBM, variables0，x，y，z are numbered with0，1，2，

3 respectively in the matrix. DBM which represents the zone of the constraint is given by

(1).

D =


(0,≤) (0,≤) (0,≤) (5, <)

(20, <) (0,≤) (−10,≤) ∞
(20,≤) (10,≤) (0,≤) ∞
∞ ∞ ∞ (0,≤)

 . (1)

DBM is also represented as a set of some elements in the clock regionCR(A ). There-

fore a state set of states of a region automatonAr = (Lr, lr 0, Tr, A), can be represented in

(l , D) = {(l , [u]) | [u] ∈ D} using the corresponding DBMD. Paper[9] gives operation

functions on DBM, such asup, and and other functions, which represent elapsing time,

intersection of time spaces and so on, respectively. There is a minimum set of differential

inequalities which can represents DBMD [9]. Such a set is denoted byc(D). c(D) can

be obtained by reduction operations on DBM. A set of every region which satisfies an

invariantI(l) of locationl is denoted by(l , DInv).

2.4 General CEGAR Algorithm

Model abstraction sometimes over-approximates an original model, which causes spu-

rious counter examples which are not actually counter examples in the original model.
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Figure 1: General CEGAR Algorithm

Paper[1] gives an algorithm called CEGAR (Counterexample-Guided Abstraction Re-

finement) shown in Figure 1.

In the algorithm, at the first step (called Initial Abstraction), it over-approximates the

original model. Next, we perform model checking to the abstract model. In this step,

if the model checker proofs the model satisfies a given specification, the original model

also satisfies the specification, because the abstract model is an over-approximation of the

original model. If the model checker proofs the model does not satisfy the specification,

however, we have to check a counter example produced by it whether it is spurious counter

example or not in the next step (called Simulation). In the Simulation step, if we find the

counter example is valid, we report it to the user and stop the loop. Otherwise, we have

to refine the abstract model to eliminate the spurious counter example, and repeat these

steps until valid output is obtained.
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Figure 2: Our Proposed Algorithm

3 Proposing CEGAR Algorithm

Our proposed algorithm generates an abstract modelM̂ from a given timed automaton

A by applying an abstraction functionh, and performs model checking on̂M . If a counter

exampleT̂ (represented as a path on the abstract model) is found while model checking,

it concretizesT̂ by applying inverse functionh−1.The concretized one is a set of paths.

We denote it byT (which is a set of paths onA ). At Simulation Step, it checks whether

each path inT is feasible onA or not. If every path inT is infeasible, the next step shall

refine the model so that the counter exampleT̂ becomes infeasible. Our algorithm does

not directly refineM̂ but it refinesA and then obtains a new abstract mode by applying

h to the refined timed automaton. Figure 2 shows flow of our CEGAR algorithm.

The proposed algorithm checks a propertyAG
∨

e∈E ¬e, whereE (⊂ L) of a timed

automatonA is a set of error locations of the target system. The property means there is

no path to locations inE from the initial state. Please note that any counter example of

such a property can be represented in a finite length of sequence without loops. Therefore,

hereafter, we assume that counter examples are finite sequences without loops.

7



3.1 Abstract Model

Definition 3.1 defines the abstraction functionh onLr of a region automatonAr.

Definition 3.1 (Abstraction Functionh). For a region automatonAr = (A,Lr, lr 0, Tr)

of a given timed automatonA , an abstraction functionh : Lr → Ŝ is defined as follows:

• ∀lr i, lr j ∈ Lr. h(lr i) = h(lr j) ⇐⇒ Loc(lr i) = Loc(lr j),

whereLoc : Lr → L is a function which retrieves a location attribute from a state ofAr.

The inverse functionh−1 : Ŝ → 2Lr of h is also defined as in a usual manner.

The abstraction functionh defined in Definition 3.1 maps any state ofLr which be-

longs to the same location into the same abstract state. Otherwise they are mapped into

the different states. This means that there is a one-to-one correspondence between the

location set ofA and the abstract state setŜ. Therefore, the abstraction functionh can

be extended its domain as in Definition 3.2.

Definition 3.2 (Extension of Abstraction Functionh). Abstraction functionh : L → Ŝ of

a timed automatonA = (A,L, l0, C, I, T ) is defined as follows:

• ∀li, lj ∈ L. h(li) = h(lj) ⇐⇒ li = lj.

Similarly, the inverse functionh−1 : Ŝ → L of h is also defined.

Definition 3.3 gives an abstract model̂M of a given timed automatonA using the

abstraction functionh defined in Definition 3.2.

Definition 3.3 (Abstract Model). An abstract modelM̂ = (Ŝ, ŝ0, →̂) of a given timed

automatonA = (A,L, l0, C, I, T ) using the abstraction functionh defined in Definition

3.2 is defined as follows:

• Ŝ = {h(l) | l ∈ L)},

• ŝ0 = h(l0),

• →̂ = {(l̂1, a, l̂2) | (l1, a, g, r, l2) ∈ T}.

Definition 3.4 (Counter Example). A counter example on̂M is a sequence of states ofŜ.

A counter examplêT of lengthn is represented in̂T = 〈ŝ0, · · · , ŝn〉.

8



Abstraction

InputsA , h
{h = abstraction function}
Ŝ := ∅, →̂ := ∅ {M̂ = (Ŝ, ŝ0, →̂)}
foreach l ∈ L do

Ŝ := Ŝ ∪ {h(l)}
end for

ŝ0 := h(l0)

foreach (l1, a, g, r, l2) ∈ T do

→:=→ ∪{(h(l1), h(l2))}
end for

return M̂

Figure 3: Abstraction

A setT of a run sequences onA obtained by concertizing a counter exampleT̂ =

〈ŝ0, · · · , ŝn〉, is defined as follows:

T = {(l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln)|

( li = h−1(si) for 0 ≤ i ≤ n ) ∧

( (li−1, ai, gi, ri, li) ∈ T for 1 ≤ i ≤ n )}.

3.2 Initial Abstraction

Initial Abstraction generates an abstract modelM̂ from a timed automatonA =

(A,L, l0, C, I, T ) using the abstraction functionh. Figure 3 shows the algorithm of Initial

Abstraction.

3.3 Simulation

For a setT of concretized counter example sequences obtained fromT̂ onM̂ , Simula-

tion performs the algorithm in Fig. 4 on each sequencet ∈ T . Reachability from the first

location oft to the last location oft is checked in Simulation using a procedure Reach

in Fig. 5. Reach uses some operation functions of DBM. When the algorithm in Fig. 4

returns false, the counter exampleT̂ is judged as a spurious counter example.

9



Simulation

InputsA , (l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e))

R0 := (l0, D0) {D0 = {0C}}
D := up(D0) {Any elapsing time}
D := and(D, I(l0)) {Add Invariant ofl0}
for i := 1 to n do

Ri :=Reach(A , Ri−1, (li−1, ai, gi, ri, li))

if Ri = ∅ then

return false

end if

end for

return true

Figure 4: Simulation

Reach

InputsA , R = (l , D), (l1, a, g, r, l2)
D := and(D, g) {add guards of transitions}
D := reset(D, r) {reset the clocks}
D := and(D, I(l2)) {add Invariant ofl2}
D := up(D) {Any elapsing time}
D := and(D, I(l2)) {add Invariant ofl2}
return (l2, D)

Figure 5: Reach

10



3.4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model which does not admit the

spurious counter example (we call it the spurious CE free model for a given CE). When a

counter example is judged as a spurious counter example, there is a Bad Statel̂b which has

a corresponding state setB1 = (lb, D1) reachable from the initial state but unreachable to

lnext, and another state setB2 = (lb, D2) unreachable from the initial state but reachable

to lnext, are merged (mapped into the same state) as in Fig. 6.

In general, refinement algorithm should divide statel̂b into more than two states as

stateB1 and stateB2 are mapped into differential states. Dividing of a state space of

a timed automaton usually needs Subtraction operation of DBM. However, DBM is not

closed under Subtract operation[13], so applying such an approach is difficult.

We proposes another approach, in which it duplicates stateB1 in the concrete model

and also performs other transformation on the concrete model. Applying the abstraction

function to the transformed concrete model produces a new refinement abstract model

where a state mapped fromB2 is unreachable (refer in Fig. 7).

The algorithm of Refinement in Fig. 8 consists of three sub algorithms, called dupli-

cation of states, duplication of transitions, and removal of transitions, shown in Fig.9, 10,

and 11, respectively.

Here, we gives definitions of states to duplicate, transitions to duplicate, and transi-

tions to remove.

Definition 3.5 (States to Duplicate). LetB1 = (lb, D1) and duplication of a locationlb be

l ′b. A set of states to duplicate, of a region automaton is defined as(l ′b, D1).

Duplication of transition duplicates the following kinds of transitions: “transitions

from lprev to lb,” and “ transitions not only fromlb but also enable from(lb, D1).”

Definition 3.6 (Transitions to Duplicate). For a region automatonAr = (A,Lr, lr 0, Tr),

B1 = (lb, D1), states to duplicate(l ′b, D1), and a previous locationlprev of a locationlb in

a counter example, transitions to duplicate of a region automaton is defined as follows:

Tr d = {(lprev, [v])
a⇒ (l ′b, [v

′]) |

∀(lprev, [v]) ∈ (lprev, DInv).∀(lb, [v
′]) ∈ (lb, D1).(lprev, [v])

a⇒ (lb, [v
′]) ∈ Tr}

∪ {(l ′b, [v])
a⇒ (l , [v′]) |∀(lb, [v]) ∈ (lb, D1). ∀(l , [v′]) ∈ Lr.(lb, [v])

a⇒ (l , [v′]) ∈ Tr}.

11



Figure 6: Counter Example

Figure 7: Refined Model
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Refinement

InputsAi, h, B1 = (lb, D1), eb = (lprev, a, g, r, lb)

{eb = a transition tolb}
Ai+1 := Ai

Ai+1 := DuplicateState(Ai+1, B) {Duplication of States}
Ai+1 := DuplicateTransition(Ai+1, B, eb)

{Duplication of Transitions}
Ai+1 := RemoveTransition(Ai+1, B) {Removal of Transitions}
M̂i+1 :=Abstraction(Ai+1, h)

return M̂i+1

Figure 8: Refinement

DuplicateState

InputA , B1 = (lb, D1)
l ′b := newLoc() {Generate a new locationl ′b}
L := L ∪ {l ′b}
I( l ′b ) := c(Db) {A set of inequalities representingDb}

Figure 9: Duplication of States

DuplicateTransition

InputsA , B1 = (lb, D1), eb = (lprev, a, g, r, lb)

{eb = a transition tolb}
T := T ∪ {(lprev, a, g, r, l ′b)}

{Duplicate a transitioneb to aBadState}
foreach (l1, a

′, g′, r′, l2) ∈ T such thatl1 = lb do

if Reach( A , (lb, Db), (l1, a
′, g′, r′, l2)) 6= ∅ then

T := T ∪ {(l ′b, a′, g′, r′, l2)}
{duplicate transitions fromlb only enable from ((l ′b, Db).)}

end if

end for

Figure 10: Duplication of Transitions
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RemoveTransition

InputsA , B1 = (lb, D1), eb = (lprev, a, g, r, lb)

{eb = a transition tolb}
Prev := (lprev, DInv)

{a set of every region satisfying an invariant oflprev}
R :=Reach(A , P rev, eb) {obtain regions oflb reachable fromPrev}
if relation(R,B1) = 〈true, true〉 then

{whenR = B, relation(R,B1) returns〈 true, true〉.}
T := T \ {(l , a, g, r, lb)}

end if

Figure 11: Removal of Transitions

Definition 3.7 (Transitions to Remove). For a region automatonAr = (A,Lr, lr 0, Tr),

B1 = (lb, Dd), states to duplicate(l ′b, D1), and a previous locationlprev of a location in a

counter example, transitions to remove of a region automaton is defined as follows:

Tr r = {(lprev, [v])
a⇒ (lb, [v

′]) |∀(lprev, [v]) ∈ (lprev, DInv).(lprev, [v])
a⇒ (lb, [v

′]) ∈ Tr}

.

The algorithm of Removal of Transitions removes transitions only when a set of states

reachable fromlprev is the same as a set(lb, D1) of Bad States. Therefore, for every

(lprev, [v])
a⇒ (lb, [v

′]) ∈ Tr r, (lb, [v
′]) ∈ (lb, D1) holds. It means that every transition in

Tr r has its duplication inTr d.

3.5 Example

We give an example of applying our abstraction method to Light Switch model[9].

The model is shown in Fig12, and it is composed of a switch model (left side of the figure)

and a user model (right side of the model). Hereafter we assume locations(dim, idle) and

(bright, idle) of the two models as error locations.

In order to apply our method to these models, first, we have to produce a parallel

composition of the models. Figure13 shows the composition. The property which we

want to check is:

AG¬((dim, idle) ∨ (bright, idle)). (2)
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When we check the property (2) on the model of Fig13 using the model checker UPPAAL[10,

11, 12], it outputs a result of “valid”. This means the model of Fig13 satisfies the property

(2).

Here, we show an example of applying our abstraction method to the model.

As a first step, we produce an initial abstract model from the parallel composition. In

this step, we apply Initial Abstraction in which we remove clock variablesx andy from

the composition. Figure14 shows the initial abstract model.

Next, we perform model checking on the abstract model, and the model checker out-

puts a counter example〈(off, idle), (dim, relax), (bright, idle)〉. This counter example

corresponds to a path from(off, idle) to (bright, idle) in the original automaton.

When we simulate this path on the original automaton, however, a transition from

(dim, relax) to (bright, idle) is unable. The reason is as follows; a reachable clock state

space of the (bright, idle) always satisfiesx = y, and it does not satisfy the guard condition

x ≤ 10 ∧ y > 10. Therefore, we can conclude that the counter example is spurious.

In the refinement step, first, we duplicate the location(dim, relax) on the timed au-

tomaton. (a duplicate of(dim, relax) is denoted by(dim, relax′)). Please note that

we duplicate states only reachable from the initial state, and the reachable state space of

(dim, relax) always satisfiesx = y. Consequently, we have to add an invariantx = y to

the duplicated location(dim, relax′). Also, we duplicate transitions from(dim, relax)

except that being unable from the state space which satisfiesx = y. Next, we remove a

transition between(bright, idle) and(dim, relax). We can remove the transition because

there is a corresponding transition(bright, idle) to (dim, relax′). Figure15 represents the

refinement guided by this counter example. Finally, we produce a refined abstract model

from the refined timed automaton.

After the refinement, we perform model checking again, and we obtain another counter

example〈(off, idle), (dim, t), (off, study), (dim, idle)〉. For this counter example, Sim-

ulation decides it is spurious, and the refinement is performed in the same way. Figure16

depicts the second refinement.

The additional model checking proves that the model satisfy the property. The timed

automaton and abstract model generated in the final loop are presented in Fig17 and Fig18

respectively.
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Figure 12: Light Switch model

Figure 13: Parallel composed model
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Figure 14: Initial abstract model

Figure 15: First refinement
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Figure 16: Second refinement

Figure 17: Timed automaton generated in the final loop
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Figure 18: Abstract model generated in the final loop

19



4 Correctness Proof

As mentioned in Section 3, the proposed algorithm checks a propertyAG
∨

e∈E ¬e,

whereE (⊂ L) of a timed automatonA is a set of error locations of the target system.

Paper [2] gives a theorem on a conservative class of abstractions which attempts to

preserve semantics of automata against state reductions under the condition that it checks

only a propertyAG p for a propositionp.

From the theorem, we can derive the following theorem.

Theorem 4.1. For a timed automatonA and a setE of error locations. Let the abstract

model and a set of error states of the abstract model beM̂and Ê = {h(e) | e ∈ E},

respectively. The following statement always holds.

M̂ |= AG
∨
ê∈Ê

¬ê ⇒ A |= AG
∨
e∈E

¬e (3)

Proof. Let a concrete model and its abstract model abstracted byh beM andM̂ , respec-

tively. For a propositionp, if an abstraction functionh satisfies the following for every

s ∈ S:

h(s) |= p ⇒ s |= p (4)

thenM̂ |= AG p ⇒ M |= AG p holds from Theorem 1 in Paper [2].

Here we assume thatp =
∨

ê∈Ê ¬ê for M̂ , andp =
∨

e∈E ¬e for A . In addition, an

abstraction function defined in Definition 3.2 maps each location inA to a stateM̂ and

the mapping is one-to-one mapping. Thus,h(l) = ê ⇐⇒ l = e holds. As a result, the

abstraction functionh satisfies the statement 4; Theorem 4.1 is proved.

Lemma 4.1 (Bi-simulation equivalence among timed automata). Let denote byAi and

Ai+1 a timed automaton before applyingi + 1-th application of Refinement and one after

applyingi + 1-th application of Refinement, respectively.Ai is bi-simulation equivalent

to Ai+1.

Proof. Let denote byAr i andAr i+1 their region automaton forAi andAi+1, respec-

tively. In a similar way,A 1
i , A 1

r i，A 2
i , A 2

r i，A 3
i (= Ai+1), A 3

r i(= Ar i+1) are defined,

where the superfix means a sub algorithm of the Refinement. Therefore the superfixes1,

2, and3 stand for after applying Duplication of States, Duplication of Transitions, and

Removal of Transition, respectively.
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Figure 19: Relations among models

We will prove thatAi is bi-simulation equivalent toAi+1 by proving bi-simulation

equivalence over the corresponding region automata. Forlb, let l′b be a duplicated state.

For a setD1 of regions which associates to a location to duplicate, a set of states inAr

will be (lb, D1)，and(l ′b, D1). Let Tr d andTr r be a set of transitions be added inAr and

that to be removed inAr, respectively.

i) Ar i andA 1
r i

Let’s considerAr i = (Lr i, lr i 0, Tr i, Ai) andA 1
r i = (L1

r i, l
1
r i 0, T

1
r i, A

1
i ). From the

assumption,lr i 0 = l1r i 0，Tr i = T 1
r i，Ai = A1

i andL1
r i = Lr i ∪ (l ′b, D1) hold.

The initial statelr i 0 = l1r i 0，andTr i = T 1
r i. So, there is no transition to the dupli-

cated state set(l ′b, D1) in A 1
r i. Thus, there is bi-simulation equivalence betweenAr i and

A 1
r i.

ii) A 1
r i andA 2

r i

For A 2
r i = (L2

r i, l
2
r i 0, T

2
r i, A

2
i ), obviouslyL2

r i = L1
r i and l2r i 0 = l1r i 0，A2

i = A1
i

hold. T 2
r i = T 1

r i ∪ Tr d also holds.
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We show that for every[v] ∈ D1, a state(lb, [v]) and a state(l ′b, [v]) have a bi-

simulation equivalence relation. When there exists a transition(lb, [v])
a⇒ (l , [v′]) , as

defined in definition 3.6, the corresponding transition(lb′ , [v]) ⇒ (l , [v′]) is generated.

Also, when there exists a transition(l ′b, [v])
a⇒ (l , [v′]), there must be an original transi-

tion (lb, [v])
a⇒ (l , [v′]). Thus, we proved the first goal.

Thus, the concrete bi-simulation equivalence relation∼ betweenl1r i ∈ L1
r i andl2r i ∈

L2
r i is defined as follows:

l1r i ∼ l2r i ⇐⇒ l1r i = l2r i or

l2r i is duplication of l1r i (5)

For the initial states,l1r i 0 ∼ l2r i 0 holds. A transition setT 1
r i satisfiesT 1

r i ⊂ T 2
r i.

For each transition inT 1
r i, thus, there is a corresponding transition inT 2

r i. Suppose that

l1r i ∼ l2r i and l1r i
a⇒ l1′r i. Then there exists a transitionl2r i

a⇒ l2′r i and l1′r i ∼ l2′r i. Let

consider converse. For each transition inT 2
r i, there is the corresponding transition inT 1

r i.

Please note that for a transition inTr d, there exists the original transition. Suppose that

l1r i ∼ l2r i andl2r i
a⇒ l2′. Then there exists a transitionl1r i

a⇒ l1′r i andl1′r i ∼ l2′r i.

Therefore,A 1
r i andA 2

r i are bi-simulation equivalent.

iii) A 2
r i andA 3

r i

Let’s considerA 3
r i = (L3

r i, l
3
r i 0, T

3
r i, A

3
i ). ObviouslyL3

r i = L2
r i, l3r i 0 = l2r i 0 and

A3
i = A2

i hold. T 3
r i = T 1

r i \ Tr r also holds.

The case when the algorithm in Fig. 11 does not perform any removal of transitions

is trivial. A 2
r i is equivalent toA 3

r i, thus also holds the relation∼.

Otherwise, in other words, in the case of removal of a transition, from Definition 3.7,

each element inTr r has its duplication inTr d. Thus, even if the transition is removed,∼
is also preserved between(lprev, [v]) ∈ (lprev, DInv) of A 2

r i and(lprev, [v]) ∈ (lprev, DInv)

of A 3
r i. Thus each state ofL2

r i and that ofL3
r i satisfy the relation defined in (5). In a

similar way of case ii),A 2
r i andA 3

r i are bi-simulation equivalent.

From the facts i), ii) and iii), we can conclude thatAr i andAr i are bi-simulation

equivalent.

Lemma 4.2. At mostn times repetition of Refinement yields the spurious CE free model,

wheren is the length of the spurious counter example.
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Proof. Let A , Ar andM̂ be a timed automaton, its region automaton and its abstract

model, respectively. For a counter exampleT̂ = 〈ŝ0, ŝ1, · · · , ŝn〉, whereŝn is an abstract

state obtained by reducing the error location, let consider one of the corresponding se-

quencest = (l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln) to T̂ on A , whereln is error location.

Let Ri be a set of reachablei-th states along with the sequencet, andURi be that of

unreachable(= (li, DInv) \ Ri).

We prove that “for sub-sequence starting froml0 to lk(1 ≤ k ≤ n) of t, by applying

at mostk times repetition of Refinement yields that it is reachable to an abstract state

corresponding toRk but unreachable to an abstract state corresponding toURk.” (*)

Let duplicated location fromRi be l ′i . Let the abstract state ofl ′i be ŝ′i( = h(l ′i)).

i) k = 1

R0 = (l0, DInv) holds. A set of reachable states from(l0, DInv) through a transition

(l0, a1, g1, r1, l1) is in factR1 from the definition ofRi. Therefore, Refinement duplicates

R1, which is a locationl ′1 and Refinement also removes a transition froml0 to l1. In

the obtained abstract model, it is reachable to onlyŝ′1 corresponding toR1, and it is

unreachable to a stateh(l1) corresponding toUR1.

ii) k ≥ 2

As inductive assumption, we assume that at mostk−1 times repetition of Refinement

yields that it is reachable to an abstract state corresponding toRk−1 but unreachable to an

abstract state corresponding toURk−1.

Let R′
k(⊇ Rk) be a set of reachable states from(lk−1, DInv). If Rk = R′

k, then in a

similar way ask = 1, applying one more Refinement leads to the goal.

Let consider whenRk ⊂ R′
k holds. A transition fromlk−1 to lk cannot be removed be-

causeURk is reachable from(lk−1, DInv). In such a case, from the inductive assumption,

we can obtain the refined abstract model, in which an abstract state corresponding toRk−1

is reachable butURk−1 is not. Letl ′k−1 andl ′k be duplicated locations ofRk−1 in k − 1-th

time-Refinement andRk in k-th time-Refinement, respectively. Adding transition from

l ′k−1 to l ′k improves the model so that it is reachable to only a state corresponding toRk.

From (i) and (ii), statement (*) is proved.

If the counter example is spurious, it is unreachable fromRn−1 to error state(ln, DInv)

in M . Similarly, inM̂ , it is unreachable from̂s′n−1 toŝn. Thus the lemma is proved.
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Theorem 4.2(Correctness). If a counter example is spurious, at mostn times repetition

of Refinement in Fig. 8 yields a spurious CE free model.

Proof. From Lemma 4.1, Refinement preserves bi-simulation equivalence. From Lemma

4.2, at mostn times repetition of Refinement yields a refined spurious CE free model.
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5 A tool based on the algorithm

In [20], a tool for evaluating the proposed abstraction is implemented. The inputs of

the tool are an UPPAAL model file written in xml format and also a query file which

describes specifications, and it outputs the result of model checking. In the tool, the algo-

rithms of Initial Abstraction, Simulation, and Abstraction Refinement are implemented,

and it performs model checking by calling a model checking command in UPPAAL, ‘ver-

ifyta’. When a given model does not satisfy a given specification, Execution of this com-

mand produces a counter example as a file. In the tool, to interpret the output file, it calls

a command ‘tracer’ provided by UPPAAL parser library.

The tool is implemented in Java, and details of it are presented in [20]
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6 Experimental Results

This section shows experimental results of applying the proposed abstraction to some

examples using the tool, and also evaluates effectiveness of the abstraction mainly from

the view points of space consumption. The experiments are executed in the following

environment.

OS : Fedora 7

CPU : AMD Athlon(tm) 64 Processor 3400+ 2.2GHz

Memory : 930MB

UPPAAL : version 4.0.6

Eclipse : version 3.3.1.1

JDK : version 1.5.014

6.1 Aims of Experiments

In the experiments, we evaluate how the proposing abstraction saves memory con-

sumption. Specifically, we compare memory consumption in performing UPPAAL model

checking with the proposing abstraction with that without it.

6.2 Results of Experiments

Here, results of applying to examples “Fischer’s mutual execution protocol”[11, 18],

and “Gearbox Controller”[19] are presented. In [20], other results are shown.

6.2.1 Fischer’s mutual execution protocol

The model of Fischer’s mutual execution protocol is composed of several number

of same processes. The experiments are executed on the models of2 processes to8

processes, and a requirement specification is that more than two processes do not stay in

the critical section at the same time. Table 1 shows results of these experiments.

The columns of ‘original’ and ‘composition’ represent results of performing model

checking to the original model and parallel composition of it, respectively, and they are

the result without abstraction. Also, the columns of ‘abstract’ represent results of applying
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Table 1: Result of Fischer’s mutual execution protocol
original composition abstraction

Proc location clock time mem time mem time mem loop dup

2 16 2 0.10 2.81 0.10 2.82 0.74 2.82 5 10

3 64 3 0.10 2.81 0.10 2.81 2.44 2.82 13 30

4 256 4 0.10 2.81 0.20 5.51 10.9 21.6 25 60

5 1024 5 0.10 2.81 0.81 51.0 69.4 48.1 41 100

6 4096 6 0.10 2.81 5.26 125 662 95.0 61 150

7 16384 7 0.30 37.2 57.8 427 12571 293 85 210

8 65536 8 1.11 38.4 N/A N/A N/A N/A N/A N/A

abstraction. The columns of ‘time’ represent total execution time (sec), and those of

‘mem’ represent the maximum memory consumption during model checking (MB). The

columns of ‘loop’, ‘dup’ represent a count of loop, and a number of duplicated location,

respectively. In the experiment for the eight processes, results are not obtained because

‘verifyta’ cannot handle the model which has more than216 locations.

The results of this experiments show the proposed abstraction can reduce the memory

consumption from applying model checking without abstraction in the cases of more than

five processes. In particular, in the case of seven processes, it can reduce it about 30

percent.

6.2.2 Gearbox Controller

The model of Gearbox Controller is composed of five processes, and has five clock

variables. Paper[19] gives 14 requirement specifications to verify for the model, and the

proposed abstraction method can verify 5 specifications of them (specifications (7) to (11)

in [19]). Table 2 shows results of experiments. The column of ‘spec’ means a specification

verified in its experiment.

The results of the second experiment show more effectiveness of the abstraction. For

all specifications, the abstraction reduces the memory consumption more than 80 percent.

6.3 Discussion

Let consider results of our algorithm (see abstraction columns of in Table 1 and Table

2). In Fischer’s mutual execution protocol, the size of memory which the tool consumes is
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Table 2: Result of Gear Box Controller
original composition abstraction

spec time mem time mem time mem loop dup

(7) 0.10 2.82 0.82 50.0 5.51 8.71 3 8

(8) 0.10 2.81 0.81 50.0 5.35 8.71 3 8

(9) 0.10 2.78 0.81 50.0 7.47 8.67 5 18

(10) 0.10 2.81 0.82 50.0 7.63 8.84 5 49

(11) 0.10 2.82 0.81 50.0 7.30 8.67 5 22

about 70% of that of parallel composite version (parallel), whereas in Gearbox Controller,

The rate becomes about 20%.

The reason why the memory reduction rate of Fischer’s mutual execution protocol is

lower than that of GearBox Controller are (1) state explosion caused by parallel composi-

tion and (2) the number of clock guards is very small; the guard expressionx > k, x ≤ k

only exists on the transition to Critical Session location.

In such a case, normalization operation [9] for DBM reduces the size of clock state

space, consequently, UPPAAL can effectively reduce memory size. On the other hand,

Gearbox Controller uses a lot of clock constraints, which increases the size of total state

space.

Unfortunately, without parallel composition scheme (original) has the best results.

Our approach needs parallel composition which increases the memory size (see columns

‘original’ and ‘composition’ in Table 1 and Table 2). In the original version, the size is

very small, because UPPAAL creates the total state space on-the-fly from parallel proce-

dure presentation and also it uses Partial Order Reduction[16] techniques to reduce the

size of total state space, especially in Fischer’s mutual execution protocol.

6.4 Complexity

Here, the computational complexity and space complexity of our algorithm (Initial

Abstraction, Simulation and Refinement) are given.

ForA = (L, l0, T, I, C,A)，let n = |C|.

Initial Abstraction From the algorithm of Fig3, the computational complexity isO(|L|+
|T |) and the space complexity is alsoO(|L| + |T |)
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Simulation Let a length of counter example bel. In the algorithmReach in Fig5,

operational functionsup andand are used. The computational complexity ofup andand

areO(n) andO(n2), respectively. Therefore, the computational complexity ofReach

is O(n2). Also, because a new DBM is generated in the algorithmReach, the space

complexity isO(n2) . Because the algorithmReach is calledl times in Simulation, its

computational complexity and space complexity areO(l×n2) andO(l×n2), respectively.

Abstraction Refinement The computational complexity of the algorithmsDuplicate

State, DuplicateTransition, RemoveTransition is O(n3), O(|T |), O(n2). Therefore

that of the algorithm Refinement becomesO(n3 + |T |). Also, the space complexity of

these algorithms areO(n2), O(|T |), andO(1). Thus, that of the algorithm Refinement is

O(n2 + |T |).
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7 Conclusion

This paper proposes a model abstraction technique for timed automata based on the

CEGAR algorithm. In general, most CEGAR based algorithmsobtain refined abstract

models from the previous abstract models by modifying some transformations. In our

algorithm, however, the refined model is obtained indirectly; we transform the original

timed automaton preserving the equivalence and from it we generate an abstract model

by eliminating clock attributes.

This paper gives formal descriptions of our algorithms, and also correctness proof

of our algorithms by proving that the transformation preserves bi-simulation equivalence

and that the refined abstract model is the spurious CE free.

The future work will be extensions of our algorithm. First, we want to handle integer

variables used in UPPAAL timed automata[10, 11, 12]. To abstract the state space over

integer variables, we are considering applying predicate abstraction[7] to it. Second, we

want to extend a range of specification formula for model checking.

In addition, we are considering that when we refine an abstract model, we apply a

Subtraction operation[13] to divide a bad state into a reachable state and unreachable one

instead of duplicating it, and also compare its efficiency with the method proposed in this

paper.
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