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Abstract

Recently, for high-reliable information systems, it is strongly desirable to use model
checking techniques. Well-known state explosion, however, might occur in model check-
ing of large systems. In particular, in model checking of the real time systems, the number
of states of models increases exponentially with the number of clock variables. Such ex-
plosion severely limits the scalability of model checking. In order to avoid it, several ab-
straction techniques are proposed. Some of them are based on CounterExample-Guided
Abstraction Refinement (CEGAR) loop technique suggested by E. Ghadde

The paper proposes a concrete abstraction technique for timed automata used in model
checking of real time systems, and evaluates its efficiency. The proposed technique is
also based on CEGAR, in which we use a counter example as a guide to refine the model
which is abstracted excessively. Although, in general, the refinement operation is applied
to abstract models, the method modifies the original timed automata, and next generates
refined abstract models from the modified automata.

Experimental results show the abstraction algorithm can reduce the total memory con-
sumption by at most 80 percent compared to applying model checking without abstrac-
tion.
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1 Introduction

In recent years, there is more and more demand for applying model checking to design
of dependable systems. Model checking proves that a given system satisfies specifications
by searching a finite transition system exhaustively which describes the system’s whole
behavior. There is, however, a limitation in scalability including a state explosion. In
order to improve the scalability, model abstraction technique becomes important[1, 2, 3].

In verification of real time systems, a timed automaton is used[8, 9], which can de-
scribe real time behavior of system . For a timed automaton, real-valued clock constraints
are assigned to a state of finite automaton (called location). Therefore, it has an infinite
state space which is represented in a product of discrete state space made by locations
and continuous state space made by clock variables. In traditional model checking for a
timed automaton, using the property that we can treat the state space of clock variables
as a finite set of regions; we can apply model checking to a finite model. However, the
size of the finite model increases exponentially with clock variables; thus an abstraction
technique is needed.

Paper[1] proposed a well-organized abstraction algorithm called CEGAR (Counter
Example-Guided Abstraction Refinement). The algorithm is used for abstraction of finite
models[1, 2], hybrid systems[3], timed automata[14, 15], and other models. In the CE-
GAR algorithm, we use a counter example produced by a model checker as a guide to
refine models which is abstracted excessively. A General CEGAR algorithm consists of
several steps. First, it abstracts the original model (the obtained model is called abstract
model) and performs model checking on the abstract model. Next, if a counter example
(CE) is found, it checks the counter example on the concrete model. If the CE is spurious,
it refines the abstract model. The last step is repeated until the valid output is obtained.

This paper proposes a model abstraction technique for timed automata based on the
CEGAR algorithm. In general, most CEGAR based algorithms[1, 2, 3, 14, 15] obtain
refined abstract models from the previous abstract models by modifying some transfor-
mations. In our algorithm, however, the refined model is obtained indirectly; we trans-
form the original timed automaton preserving the equivalence and from it we generate an
abstract model by eliminating clock attributes.

In this paper, we give formal descriptions of our algorithms. Also we prove correct-
ness of our algorithms by proving that the transformation preserves bi-simulation equiva-



lence and that the refined abstract model is the spurious CE free.

As related works, papers[14, 15] proposed CEGAR based abstraction techniques for
timed automata. The technique of [14] intends SAT based model checking, and refines
propositions which represent models to remove a spurious counter example. The tech-
nigue of [15] limits the model to PLC automata, a sub class of timed automaton. Although
these techniques mainly refine the abstract models by adding clock variables which have
removed by abstraction, our refinement method modifies the original timed automata and
produces the spurious CE free model from the modified models, instead of adding clock
variables.

The rest of the paper is organized as follows. In Sec. 2, some definitions are described.
Sec. 3 gives our CEGAR algorithm. Sec. 4 proves the correctness of the algorithm. Sec.
6 gives experimental results. Sec. 7 concludes the paper.



2 Preliminaries

In this section, we give definitions of a timed automaton, a region automaton which
specifies whole states of a timed automaton with finite clock regions, and others.

2.1 Timed Automaton

Definition 2.1 (Differential inequalities or'). Syntax and semantics of a differential
inequality £/ on a finite set” of clocks is given as follows:

E:=x—y~al|z~a,

wherex, y € C, a is a literal of a real number constant, ande {<, >, <, >}.

Semantics of a differential inequality is the same as the ordinal inequality.

Definition 2.2 (Clock constraints on). Clock constraintg(C') on a finite set” of clocks
is defined as follows:

A differential inequalityin on C'is a element of(C).

Letin,; andin, be elements of(C'), in, A ins is also a element of(C').

Definition 2.3 (Timed Automaton) A timed automatony is a 6-tuple(A, L, k,C,I,T),
where

A : afinite set of actions;

L : afinite set of locations;

C': afinite set of clocks;

lp € L :an initial location;

TCLxAx2 x#xL;

where2¢“) is a set of clock constraints, called guards;

# = 2¢ : a set of clocks to reset;

andI c (L — 2°9)): a mapping from locations to clock constraints, called location
invariants.

aﬂg:T

A transitiont = (1, a, g,7,1l2) € T is denoted by; —= [,.

Amapr : C — Ry is called a clock assignment. We can extend the domain of
into a set ofC' as follows: v € RY,,. We define(v + d)(x) = v(z) + d for d € Rx,.
r(v) = v[z — 0],z € ris also defined for € 2°. By N, a set of whole’ is denoted.
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Definition 2.4 (Semantics of Timed Automaton}or a given timed automatorn/ =

(A, L, lh,C,I,T), let a set of whole states of be S = L x N.

The initial state of7 shall be given asly, 0¢) € S.

For a transitionl; =25 [, (e T'), the following two transitions are semantically defined.
The first one is called an action transition, while the latter one is called a delay transition.

h =%y, g ( ) L(l2)(r(v))
(L, v) = (I, r(v))
Vd <d I(lh)(v+d)

(h,v) 2 (I, v +d)
Definition 2.5 (A semantic model of Timed Automatanlor Timed Automatony =
(A, L, L), C,I,T), an infinite transition system is defined according to the semantics of
</, where the model begins with the initial state. By.<7), the semantic model o is
denoted.

2.2 Region Automaton

For a given timed automaton/, we can introduce a corresponding clock region
CR(47)[5, 6]. In general, a clock region divideg@|-dimensional Euclidean space into
finite points, segments, and faces. By, an element (a region) i6'R(</) is denoted.
For[u] € CR(), g([u]) andI([u]) represent that any point jin] satisfies a guard and
invariant, respectively. Also by ([u]), applying clock resetting onto [u] is denoted,
wherer([u]) = [u][x — 0], andz € r.

Definition 2.6 (Region Automaton)A region automatowr?, = (A, L., . o, T,) of a given
timed automaton? = (A, L, ,, C,1,T) is defined as follows.

L, C LxCR(),

I, o = (k,[0°]), where[0¢] satisfiesl (1),

T, C L, xAxL,,

T, consists of

(IL[u]) = (U, [v) iff (Lu) = (I,u) € T() for d € Rsg
Al = (I v) € T (o) fora € A
Au € [u] Av € [v].

There is bi-simulation equivalence between a timed automatand its region au-
tomatongs, [4].



2.3 DBM (Difference Bound Matrix)

In [9, 13], a data structure DBM is introduced to represent a convex spacg in
-dimensional Euclidean space, wheteis a set of clock variables. DBM is a set of
differential inequalities on two clock variables, and represents a state space which satisfies
all inequalities over it (the state space is called a zone). DBM represents these set of
inequalities as &y| x |Cy| matrix, whereCy, = C' U { 0 }, andO is a special variable
which means a constant valOeA (i, j)-th entry (D; ;) of the matrix means a differential
inequality ofz; — z; for z;,z; € C,. Suppose there is an inequality — z; < n for
<e { <. <}, the(i,j)-th entry D, ; is represented byn, <). Also, whenz; — z; is
unbounded, the entry; ; is represented byo. In addition, the upper bound and lower
bound ofz; itself are indicated by, ; and D, , respectively.

As an example of DBM, let's consider a zone which satisfies following constraint.

r—0<20Ny—0<20N2—y< 10Ny —2<10N0—2z <5

When we represent this zone as DBM, varialileisc[] y[ z are numbered withd 10 20

3 respectively in the matrix. DBM which represents the zone of the constraint is given by
(2).

0,<) (0,) (0,) (5,<)
(20,<) (0,<) (-10,<) oo
(20, <) (10,<)  (0,<) 00

00 00 00 (0, <)

D= (1)

DBM is also represented as a set of some elements in the clock €giow ). There-
fore a state set of states of a region automaibonr- (L., [, o, T,., A), can be represented in
(I, D) ={(l,[u]) | [u] € D} using the corresponding DBMP. Paper[9] gives operation
functions on DBM, such asp, and and other functions, which represent elapsing time,
intersection of time spaces and so on, respectively. There is a minimum set of differential
inequalities which can represents DBM[9]. Such a set is denoted kyD). ¢(D) can
be obtained by reduction operations on DBM. A set of every region which satisfies an
invariant/([) of location! is denoted by, D;,.,).

2.4 General CEGAR Algorithm

Model abstraction sometimes over-approximates an original model, which causes spu-
rious counter examples which are not actually counter examples in the original model.
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(concrete) abstract
model model

Initial . —) Model . Specification

abstraction Checking is satisfied
refined counterexample
model

Refinement | 4=( Simulation |

Specification
is unsatisfied

Figure 1. General CEGAR Algorithm

Paper[1] gives an algorithm called CEGAR (Counterexample-Guided Abstraction Re-
finement) shown in Figure 1.

In the algorithm, at the first step (called Initial Abstraction), it over-approximates the
original model. Next, we perform model checking to the abstract model. In this step,
if the model checker proofs the model satisfies a given specification, the original model
also satisfies the specification, because the abstract model is an over-approximation of the
original model. If the model checker proofs the model does not satisfy the specification,
however, we have to check a counter example produced by it whether it is spurious counter
example or not in the next step (called Simulation). In the Simulation step, if we find the
counter example is valid, we report it to the user and stop the loop. Otherwise, we have
to refine the abstract model to eliminate the spurious counter example, and repeat these
steps until valid output is obtained.



1.initial abstraction 2.model checking

h true
A
i model check

CE]

4 refinement 3.simulation

@L e —ce

Ttransform false simulate H1T
() oe

Figure 2: Our Proposed Algorithm

3 Proposing CEGAR Algorithm

Our proposed algorithm generates an abstract matiebm a given timed automaton
<7 by applying an abstraction functidn and performs model checking ai. If a counter
examplel (represented as a path on the abstract model) is found while model checking,
it concretizesI” by applying inverse functioh~!.The concretized one is a set of paths.
We denote it byl" (which is a set of paths o). At Simulation Step, it checks whether
each path ir{" is feasible one or not. If every path ir{’ is infeasible, the next step shall
refine the model so that the counter exaniplbecomes infeasible. Our algorithm does
not directly refineM but it refinesez and then obtains a new abstract mode by applying
h to the refined timed automaton. Figure 2 shows flow of our CEGAR algorithm.

The proposed algorithm checks a propetty \/ .. —e, whereE (C L) of a timed

ecE
automatone is a set of error locations of the target system. The property means there is
no path to locations itk from the initial state. Please note that any counter example of
such a property can be represented in a finite length of sequence without loops. Therefore,

hereafter, we assume that counter examples are finite sequences without loops.



3.1 Abstract Model

Definition 3.1 defines the abstraction functibion L, of a region automatogy,..

Definition 3.1 (Abstraction Functior). For a region automaton, = (A, L., . o, T,)
of a given timed automato#’, an abstraction function : L, — S is defined as follows:

Vi ;, er eL,. h(lr z) = h(lr j) <~ LOC(ZT z) = LOC(ZT j)!

whereLoc : L, — L is a function which retrieves a location attribute from a states0f
The inverse functioh! : S — 2L+ of 4 is also defined as in a usual manner.

The abstraction functioh defined in Definition 3.1 maps any state Iof which be-
longs to the same location into the same abstract state. Otherwise they are mapped into
the different states. This means that there is a one-to-one correspondence between the
location set ofe7 and the abstract state s&t Therefore, the abstraction functidncan
be extended its domain as in Definition 3.2.

Definition 3.2 (Extension of Abstraction Functidr). Abstraction functiorh : L — S of
a timed automaton? = (A, L, ,, C, I, T) is defined as follows:

Similarly, the inverse functioh™' : S — L of h is also defined.

Definition 3.3 gives an abstract modil of a given timed automator’ using the
abstraction function defined in Definition 3.2.

Definition 3.3 (Abstract Model) An abstract model/ = (S, 3,, =) of a given timed
automatones = (A, L, k), C, I, T) using the abstraction functioh defined in Definition
3.2 is defined as follows:

S={n(l)|1eL)},

§0 = h(ZO>1

= ={(h,a,b) | (b,a,g,7, k) €T}

Definition 3.4 (Counter Example)A counter example oY/ is a sequence of states 8f
A counter examplé of lengthn is represented il = (5, - - - , 4,).



ADbstraction

Inputs.e?, h
{h = abstraction functioh

S:=0, 5 :=0{M=(S,5,>)}
foreach/ € L do
S:=Su{nl)}
end for
S0 := h(l)
foreach (I, a,g,7, k) € T do
—:=— U{(h(h), h(R))}

end for

return M

Figure 3: Abstraction

A setT of a run sequences om obtained by concertizing a counter example=

(S0, ,Sn), is defined as follows:
{( al gl T1 GQ,ng"Q . an&'rn l,n)‘
li=h'(s;)for0<i<n) A

(
((ZZ 17al7guruli) € T forl Slﬁn)}

3.2 Initial Abstraction

Initial Abstraction generates an abstract modélfrom a timed automatony =
(A, L, l,C,I,T) using the abstraction function Figure 3 shows the algorithm of Initial
Abstraction.

3.3 Simulation

For a sefl” of concretized counter example sequences obtainedfromA?, Simula-
tion performs the algorithm in Fig. 4 on each sequene€l’. Reachability from the first
location oft to the last location of is checked in Simulation using a procedure Reach
in Fig. 5. Reach uses some operation functions of DBM. When the algorithm in Fig. 4
returns false, the counter examfilds judged as a spurious counter example.



Simulation
Inputs.<7, (I "===" 4 257 - T (L, = e))

Ry := (b, Do) {Dy = {0}}
D := up(Dy) {Any elapsing time
D :=and(D, I(l)) {Add Invariant ofl, }
for i :=1tondo
R; :=Reacl<’, R; 1, (l;i_1,a;,9i,7i, ;)
if R; = (then
return false
end if
end for
return true

Figure 4: Simulation

Reach
Inputse/, R = (1, D), (h,a,g,7, b)

D :=and(D, g) {add guards of transitions
D :=reset(D,r) {reset the clocKs

D :=and(D, I(l)) {add Invariant of,, }

D := up(D) {Any elapsing timé

D :=and(D, I(l)) {add Invariant of; }
return (b, D)

Figure 5: Reach
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3.4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model which does not admit the
spurious counter example (we call it the spurious CE free model for a given CE). When a
counter example is judged as a spurious counter example, there is a Bakl\Btath has
a corresponding state sBt = (/,, D;) reachable from the initial state but unreachable to
l.ext, @nd another state s&x = (1,, D) unreachable from the initial state but reachable
to .., are merged (mapped into the same state) as in Fig. 6.

In general, refinement algorithm should divide sttato more than two states as
state B; and stateB, are mapped into differential states. Dividing of a state space of
a timed automaton usually needs Subtraction operation of DBM. However, DBM is not
closed under Subtract operation[13], so applying such an approach is difficult.

We proposes another approach, in which it duplicates €taia the concrete model
and also performs other transformation on the concrete model. Applying the abstraction
function to the transformed concrete model produces a new refinement abstract model
where a state mapped froBy, is unreachable (refer in Fig. 7).

The algorithm of Refinement in Fig. 8 consists of three sub algorithms, called dupli-
cation of states, duplication of transitions, and removal of transitions, shown in Fig.9, 10,
and 11, respectively.

Here, we gives definitions of states to duplicate, transitions to duplicate, and transi-
tions to remove.

Definition 3.5 (States to Duplicate)Let B, = (1,, D) and duplication of a location, be
l;. A set of states to duplicate, of a region automaton is definéd as, ).

Duplication of transition duplicates the following kinds of transitions: “transitions
from [,,., to },,” and “ transitions not only frong, but also enable frony,, D;).”

Definition 3.6 (Transitions to Duplicate)For a region automatowy, = (A, L., L. o, T}),
By = (4, D,), states to duplicat¢l;, D, ), and a previous locatio#,.,, of a locationi, in
a counter example, transitions to duplicate of a region automaton is defined as follows:

Toa = {reo, V]) = (5 [V]) |
v(lprevv [U]) € (lpremDInU)‘v(lba [vl]) € (Zb7 Dl)'(Lpreva [U]) é (lb7 [vl]) € TT}
U (G, [v]) = (4, []) (b, [0]) € (b, D1). V(L [V]) € Li(by [0]) = (1, [v]) € T}

11



Path of the
Abstract
Model

Bad
State lb

rev

X

Corresponding
path of the Timed

~| 1@~

prev

>
lb
Automaton " PQ >Q
| | |
Transition Relation — — —
in Region L E B
Automaton " @ e 1
— @ ) ()
o [ >0
Bz L J >0
Figure 6: Counter Example
Path of the f o lb Z\
Abstract prev O\‘Zb ) '6’“
Model Q
Corresponding Iprev [b' lb Inext
path of the Timed = [ ) >~ >®‘>
Automaton C%“@ \ C%
Transition Relation
in Region
Automaton ° °
[ >0
— @ o

Figure 7: Refined Model
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Refinement
lnpUtsfﬂzﬁ h7 Bl - (lb) D1)7 €p = (lprem a,g,rn, Zb)

{e, = a transition ta, }
i1 =
<1 := DuplicateStatés; ,,, B) {Duplication of Statep
<71 := DuplicateTransitio0s 1, B, e;)
{Duplication of Transition}
;11 := RemoveTransitiof7;, 1, B) {Removal of Transitions
M, :=Abstractior{.<7,_ 1, h)
return M.,

Figure 8: Refinement

DuplicateState
Input.e/, B, = (l, D)

I} :== newLoc() {Generate a new locatidfy}
L:=LuU{l}
I( ) := c(Dy) {A set of inequalities representing, }

Figure 9: Duplication of States

Duplicate Transition
InpUtS%a Bl - (Zb, Dl)a €y = (Zpreva a,g,r, lb)

{ep, = a transition taj, }
T :=TU{(lrev,a, 9,7, 1)}
{Duplicate a transitiom, to a BadState}

foreach (i, d’,¢', 7', k) € T such that; = [, do

if Reaclt «, (I, Dy), (li,a’,q',7", b)) # 0 then

T:=TU{(l,d, ¢ L)}
{duplicate transitions from only enable from ({;, D;).)}

end if

end for

Figure 10: Duplication of Transitions
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Remove [ransition
Inputse?, By = (b, D1),es = (byrev, @, 9,7, )
{e, = atransition td, }
Prev = (lyrev, Drnw)
{a set of every region satisfying an invariantgf, }
R :=ReaclieZ, Prev, ;) {obtain regions of, reachable fronPrev}
if relation(R, By) = (true,true) then
{whenR = B, relation(R, B;) returns( true, true).}
T:=T\{(l,a,g9,7,4)}
end if

Figure 11: Removal of Transitions

Definition 3.7 (Transitions to Remove)For a region automaton, = (A, L., L. o, T}),
By = (, D), states to duplicaté/;, D, ), and a previous locatio#,.,, of a location in a
counter example, transitions to remove of a region automaton is defined as follows:

T, v = {(lorew: [0)) = (s [V']) ¥ (revs [V]) € (prev, Drn)-(prens [v]) = (b, [v']) € o}

The algorithm of Removal of Transitions removes transitions only when a set of states
reachable from,,,., is the same as a séf,, D,) of Bad States. Therefore, for every
(Lrews [V]) = (b, [V']) € Ty, (b, [v']) € (b, D1) holds. It means that every transition in
T, , has its duplication irT;, ,.

3.5 Example

We give an example of applying our abstraction method to Light Switch model[9].
The model is shown in Figl2, and it is composed of a switch model (left side of the figure)
and a user model (right side of the model). Hereafter we assume locéafionsidle) and
(bright,idle) of the two models as error locations.

In order to apply our method to these models, first, we have to produce a parallel
composition of the models. Figurel3 shows the composition. The property which we
want to check is:

AG—((dim, idle) V (bright,idle)). (2)

14



When we check the property (2) on the model of Fig13 using the model checker UPPAAL][10,
11, 12], it outputs a result of “valid”. This means the model of Fig13 satisfies the property
2).

Here, we show an example of applying our abstraction method to the model.

As a first step, we produce an initial abstract model from the parallel composition. In
this step, we apply Initial Abstraction in which we remove clock variablesdy from
the composition. Figurel4 shows the initial abstract model.

Next, we perform model checking on the abstract model, and the model checker out-
puts a counter exampléof f, idle), (dim, relax), (bright,idle)). This counter example
corresponds to a path frofaf f, idle) to (bright, idle) in the original automaton.

When we simulate this path on the original automaton, however, a transition from
(dim, relax) to (bright,idle) is unable. The reason is as follows; a reachable clock state
space of the (bright, idle) always satisfies- y, and it does not satisfy the guard condition
x < 10 Ay > 10. Therefore, we can conclude that the counter example is spurious.

In the refinement step, first, we duplicate the locat{idim, relax) on the timed au-
tomaton. (a duplicate ofdim, relax) is denoted by(dim,relaz’)). Please note that
we duplicate states only reachable from the initial state, and the reachable state space of
(dim, relax) always satisfies = y. Consequently, we have to add an invariant y to
the duplicated locatiofidim, relax’). Also, we duplicate transitions froffalim, relax)
except that being unable from the state space which satisfieg. Next, we remove a
transition betweelbright, idle) and(dim, relaz). We can remove the transition because
there is a corresponding transitidnight, idle) to (dim, relax’). Figurel5 represents the
refinement guided by this counter example. Finally, we produce a refined abstract model
from the refined timed automaton.

After the refinement, we perform model checking again, and we obtain another counter
example((of f,idle), (dim,t), (of f, study), (dim, idle)). For this counter example, Sim-
ulation decides it is spurious, and the refinement is performed in the same way. Figurel6
depicts the second refinement.

The additional model checking proves that the model satisfy the property. The timed
automaton and abstract model generated in the final loop are presented in Figl7 and Fig18
respectively.

15
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x>10 pTeSE

press” =
dim
x<=10
press?
bright
Figure 12: Light Switch model
bright,study off,idlg_= _dim,relax

x<=10&&y>10

bright,relax

x<=10
y:=0

y:=0 -
y<5 bright,idle

off.relax

Figure 13: Parallel composed model
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bright,study off,idle dim,relax

dim,t
dim,study
off,study bright,relax
. dim,idle
bright,t - >
N
bright,idle
off.relax
Figure 14: Initial abstract model
offidle dim,relax <=108&v>10
y X<=
Concrete e Y bright,idle
Model @ .
\:m,relax’ Q
x:=0, Q
- X::y
dim,relax

im,relax’

O

Figure 15: First refinement

Abstract off.idle y@ bright,idle
Model \L '
©\£ Q
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dim,t off,study dim,idle

>10
Concrete Off 'd'e Q‘X >< > > Q
Model y<S
0 dlmt
y<b && X==y

dim,t off,study dim,idle
Abstract ~ °ffidle V@ > ()

Model @\dl@ht

Figure 16: Second refinement

x>10&&y>10 dim,relax

off,idl;/“ O x<=10&&y>
‘X\\=‘O_Y/=0 <d)im,relax’

bright,study

x>10 y<5 &&
off,study

brlght idle

Figure 17: Timed automaton generated in the final loop
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bright,study

dim,t

o™

off,study bright,relax

bright,t

off,idV\Q

dim,t’

dim,idle

dim,relax

b <(gm,relax’

dim,study

>

bright,idle

off,relax

Figure 18: Abstract model generated in the final loop
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4 Correctness Proof

As mentioned in Section 3, the proposed algorithm checks a property ., —e,
whereE (C L) of a timed automatony is a set of error locations of the target system.

Paper [2] gives a theorem on a conservative class of abstractions which attempts to
preserve semantics of automata against state reductions under the condition that it checks
only a propertyAG p for a propositiorp.

From the theorem, we can derive the following theorem.

Theorem 4.1. For a timed automatoryand a setF of error locations. Let the abstract
model and a set of error states of the abstract modehbend £ = {h(e) | e € E},
respectively. The following statement always holds.

MEA\ —¢ = =6\ e (3)
éck eck
Proof. Let a concrete model and its abstract model abstractéddey\/ and M/, respec-
tively. For a propositiorp, if an abstraction function satisfies the following for every
s €S
h(s)Ep=skp (4)
thenM = AG p = M |= AG p holds from Theorem 1 in Paper [2].

Here we assume that=\/,_; —é for M, andp = \/,_, —e for &/. In addition, an
abstraction function defined in Definition 3.2 maps each locatiow ito a statel/ and
the mapping is one-to-one mapping. Thia€,) = é <= [ = e holds. As a result, the
abstraction functior satisfies the statement 4; Theorem 4.1 is proved. O

Lemma 4.1 (Bi-simulation equivalence among timed automatagt denote by, and
;1 atimed automaton before applying- 1-th application of Refinement and one after
applying: + 1-th application of Refinement, respectively. is bi-simulation equivalent
t0 o7, 1.

Proof. Let denote by, ; and.«, ;. their region automaton fatz; and <7, ;, respec-
tively. In a similar way, /!, &7!,0 <72, %0 o3 (= ;11), 42,(= 4, ;+1) are defined,
where the superfix means a sub algorithm of the Refinement. Therefore the superfixes
2, and3 stand for after applying Duplication of States, Duplication of Transitions, and
Removal of Transition, respectively.
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Region
Automaton

duplicate
Transition

remove
Transition

duplicate
State

Timed
Automaton ﬂf

4>
@
Abstract refine
Model

Figure 19: Relations among models

We will prove thate is bi-simulation equivalent tez;, ., by proving bi-simulation
equivalence over the corresponding region automata.,Ftet [; be a duplicated state.
For a setD; of regions which associates to a location to duplicate, a set of stat&s in
will be (4, D)0 and({;, D,). LetT,. ; andT, , be a set of transitions be addeddf and
that to be removed iny,, respectively.

i) <, ;and<!,

Let's considere, ; = (L, i, b i 0, Ty i, A;) andZ!, = (L%, 1}, ,, T}, Al). From the

assumption}, ;o =}, ,07,; =T},0 A, = A} andL; , = L, ; U (§, Dy) hold.
The initial staté. ; , = ', 0 andT,; = T!,. So, there is no transition to the dupli-

T

cated state s€f/, D) in </!,. Thus, there is bi-simulation equivalence betwegn and
AL

i) o', ande7?,

For«/?, = (L?,, 1%, ,,T?,, A?), obviouslyL?, = L!,andi?, , = I}

r i r i 0 740

hold. 7?2, = T}, U T, 4 also holds.

0 A2 = A}
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We show that for everyv] € D, a state(l, [v]) and a statgl], [v]) have a bi-
simulation equivalence relation. When there exists a transitiphv]) = (I,[v']) , as
defined in definition 3.6, the corresponding transitién [v]) = (I, [v]) is generated.
Also, when there exists a transitidff, [v]) = (I, [v]), there must be an original transi-
tion (4, [v]) = (I, [v]). Thus, we proved the first goal.

Thus, the concrete bi-simulation equivalence relatiobetween! ; € L., and/?, €

T

L?, is defined as follows:

1 2 1 _ 72
lriNl’ri — lri_lrior

I?,is duplication of [/, (5)

For the initial states]'., ~ [?,, holds. A transition sef}, satisfiesT}}, c T7?,.

r ri0
For each transition ifi’! ;, thus, there is a corresponding transitiorZjf,. Suppose that
I', ~ 2, andl!;, = [".. Then there exists a transitidp, = /% and[, ~ [*.. Let
consider converse. For each transitioff}h), there is the corresponding transitioriif,.
Please note that for a transitionln 4, there exists the original transition. Suppose that
I, ~ 12, and/?, = [¥. Then there exists a transitigh, = /', and[", ~ 2.

Therefore, o', and.<7?; are bi-simulation equivalent.
iii) 7%, and./3,

Let's considerer?, = (L2, 13, ,,T3,, A?). ObviouslyL?, = L2, I?,, = I?,, and
A3 = A?hold. T3, = T}, \ T, , also holds.

The case when the algorithm in Fig. 11 does not perform any removal of transitions
is trivial. «7?; is equivalent tozZ?;, thus also holds the relation.

Otherwise, in other words, in the case of removal of a transition, from Definition 3.7,
each element iff;. . has its duplication iff},. ;. Thus, even if the transition is removed,
is also preserved betweeh, ..., [v]) € (Lyrev, Diny) Of &2, and(Lyey, [v]) € (byrevs Diny)
of &/3,. Thus each state df? ; and that ofL? ; satisfy the relation defined in (5). In a
similar way of case ii)#?, and.</3, are bi-simulation equivalent.

From the facts i), ii) and iii), we can conclude thef ; and <7, ; are bi-simulation

equivalent. ]

Lemma 4.2. At mostn times repetition of Refinement yields the spurious CE free model,
wheren is the length of the spurious counter example.
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Proof. Let <7, <. and M be a timed automaton, its region automaton and its abstract
model, respectively. For a counter examﬁl& (80,81, , 8,), Wheres, is an abstract
state obtained by reducing the error location, let consider one of the corresponding se-
quences = (J "2 "2 LI 1) to T on o7, wherel, is error location.
Let R; be a set of reachableth states along with the sequengeandU R; be that of
unreachablé= (/;, D;,,) \ R;).

We prove that “for sub-sequence starting frégno (1 < k£ < n) of ¢, by applying
at mostk times repetition of Refinement yields that it is reachable to an abstract state
corresponding tdz, but unreachable to an abstract state correspondibgQ” *)

Let duplicated location fron®; be /. Let the abstract state ¢fbe 5;( = h(l))).

i) k=1

Ry = (l, D1ny) holds. A set of reachable states fraip D, ) through a transition
(b, a1, 91,71, h) isin fact R; from the definition ofR;. Therefore, Refinement duplicates
Ry, which is a location; and Refinement also removes a transition frgnto /,. In
the obtained abstract model, it is reachable to oi’il)corresponding ta?;, and it is
unreachable to a stat€/, ) corresponding té/ R;.

i) k> 2

As inductive assumption, we assume that at mhestl times repetition of Refinement
yields that it is reachable to an abstract state correspondifRg tpbut unreachable to an
abstract state correspondingl{d@?;, ;.

Let R, (D Ry) be a set of reachable states fr@fy.,, D;,,). If R, = R}, thenin a
similar way ast = 1, applying one more Refinement leads to the goal.

Let consider wherR, C R;. holds. A transition from,_, to J;, cannot be removed be-
causel Ry, is reachable frontl,_1, Dr,,). In such a case, from the inductive assumption,
we can obtain the refined abstract model, in which an abstract state correspon@ing to
is reachable bul/ R, is not. Letl,_, andl; be duplicated locations d?;_, in k — 1-th
time-Refinement and,, in k-th time-Refinement, respectively. Adding transition from
l,_, to [, improves the model so that it is reachable to only a state corresponditg to

From (i) and (ii), statement (*) is proved.

If the counter example is spurious, it is unreachable fiym, to error statéi,, Dy,,,)
in M. Similarly, in M, it is unreachable frong’,,_; t0s,,. Thus the lemma is proved. ]
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Theorem 4.2(Correctness)If a counter example is spurious, at mastimes repetition
of Refinement in Fig. 8 yields a spurious CE free model.

Proof. From Lemma 4.1, Refinement preserves bi-simulation equivalence. From Lemma
4.2, at most times repetition of Refinement yields a refined spurious CE free model.
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5 Atool based on the algorithm

In [20], a tool for evaluating the proposed abstraction is implemented. The inputs of
the tool are an UPPAAL model file written in xml format and also a query file which
describes specifications, and it outputs the result of model checking. In the tool, the algo-
rithms of Initial Abstraction, Simulation, and Abstraction Refinement are implemented,
and it performs model checking by calling a model checking command in UPPAAL, ‘ver-
ifyta’. When a given model does not satisfy a given specification, Execution of this com-
mand produces a counter example as a file. In the tool, to interpret the output file, it calls
a command ‘tracer’ provided by UPPAAL parser library.

The tool is implemented in Java, and details of it are presented in [20]
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6 Experimental Results

This section shows experimental results of applying the proposed abstraction to some
examples using the tool, and also evaluates effectiveness of the abstraction mainly from
the view points of space consumption. The experiments are executed in the following
environment.

(O] . Fedora7

CPU . AMD Athlon(tm) 64 Processor 3400+ 2.2GHz
Memory : 930MB

UPPAAL : version 4.0.6

Eclipse : version 3.3.1.1

JDK : version 1.5.014

6.1 Aims of Experiments

In the experiments, we evaluate how the proposing abstraction saves memory con-
sumption. Specifically, we compare memory consumption in performing UPPAAL model
checking with the proposing abstraction with that without it.

6.2 Results of Experiments

Here, results of applying to examples “Fischer’s mutual execution protocol”’[11, 18],
and “Gearbox Controller’[19] are presented. In [20], other results are shown.

6.2.1 Fischer’'s mutual execution protocol

The model of Fischer's mutual execution protocol is composed of several number
of same processes. The experiments are executed on the modelgrafesses @
processes, and a requirement specification is that more than two processes do not stay in
the critical section at the same time. Table 1 shows results of these experiments.

The columns of ‘original’ and ‘composition’ represent results of performing model
checking to the original model and parallel composition of it, respectively, and they are
the result without abstraction. Also, the columns of ‘abstract’ represent results of applying
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Table 1: Result of Fischer’s mutual execution protocol

original composition abstraction
Proc | location | clock || time | mem || time | mem time | mem| loop | dup
2 16 2 0.10 | 2.81 || 0.10 | 2.82 0.74 | 2.82 5 10
3 64 3 0.10 | 2.81 || 0.10 | 2.81 2.44 | 2.82 13 30
4 256 41/ 0.10 | 2.81 || 0.20 | 5.51 10.9 | 21.6 25 60
5 1024 51 0.10 | 2.81 || 0.81 | 51.0 69.4 | 48.1 41 | 100
6 4096 6 | 0.10 | 2.81 || 5.26 125 662 | 95.0 61 | 150
7 16384 71 030 | 37.2 || 57.8 | 427 || 12571 | 293 85 | 210
8 65536 8 || 1.11 | 38.4 || N/A | N/A N/A | N/A | N/A | N/A

abstraction. The columns of ‘time’ represent total execution time (sec), and those of
‘mem’ represent the maximum memory consumption during model checking (MB). The
columns of ‘loop’, ‘dup’ represent a count of loop, and a number of duplicated location,
respectively. In the experiment for the eight processes, results are not obtained because
‘verifyta’ cannot handle the model which has more th&hlocations.

The results of this experiments show the proposed abstraction can reduce the memory
consumption from applying model checking without abstraction in the cases of more than
five processes. In particular, in the case of seven processes, it can reduce it about 30
percent.

6.2.2 Gearbox Controller

The model of Gearbox Controller is composed of five processes, and has five clock
variables. Paper[19] gives 14 requirement specifications to verify for the model, and the
proposed abstraction method can verify 5 specifications of them (specifications (7) to (11)
in[19]). Table 2 shows results of experiments. The column of ‘spec’ means a specification
verified in its experiment.

The results of the second experiment show more effectiveness of the abstraction. For
all specifications, the abstraction reduces the memory consumption more than 80 percent.

6.3 Discussion

Let consider results of our algorithm (see abstraction columns of in Table 1 and Table
2). In Fischer’'s mutual execution protocol, the size of memory which the tool consumes is
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Table 2: Result of Gear Box Controller
original composition abstraction

spec|| time | mem || time | mem || time | mem | loop | dup
(7) || 0.10 | 2.82 | 0.82 | 50.0 || 5.51 | &8.71 3 8
(8) || 0.10 | 2.81 || 0.81 | 50.0 || 5.35 | 8.71 3
(9) || 0.10 | 2.78 || 0.81 | 50.0 || 7.47 | 8.67 5 18
5
5

(10) || 0.10 | 2.81 || 0.82 | 50.0 || 7.63 | 8.84 49
(11) || 0.10 | 2.82 || 0.81 | 50.0 || 7.30 | 8.67 22

about 70% of that of parallel composite version (parallel), whereas in Gearbox Controller,
The rate becomes about 20%.

The reason why the memory reduction rate of Fischer’'s mutual execution protocol is
lower than that of GearBox Controller are (1) state explosion caused by parallel composi-
tion and (2) the number of clock guards is very small; the guard expressioh, ©r < k
only exists on the transition to Critical Session location.

In such a case, normalization operation [9] for DBM reduces the size of clock state
space, consequently, UPPAAL can effectively reduce memory size. On the other hand,
Gearbox Controller uses a lot of clock constraints, which increases the size of total state
space.

Unfortunately, without parallel composition scheme (original) has the best results.
Our approach needs parallel composition which increases the memory size (see columns
‘original’ and ‘composition’ in Table 1 and Table 2). In the original version, the size is
very small, because UPPAAL creates the total state space on-the-fly from parallel proce-
dure presentation and also it uses Partial Order Reduction[16] techniques to reduce the
size of total state space, especially in Fischer’'s mutual execution protocol.

6.4 Complexity

Here, the computational complexity and space complexity of our algorithm (Initial
Abstraction, Simulation and Refinement) are given.
Fore? = (L, 1, T,1,C,A)Oletn =|C|.

Initial Abstraction ~ From the algorithm of Fig3, the computational complexit9igL|+
|T|) and the space complexity is aléq|L| + |T|)
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Simulation Let a length of counter example Be In the algorithmReach in Fig5,
operational functionsp andand are used. The computational complexity.pfandand
areO(n) and O(n?), respectively. Therefore, the computational complexityRefich
is O(n?). Also, because a new DBM is generated in the algoritReach, the space
complexity isO(n?) . Because the algorithrReach is calledl times in Simulation, its
computational complexity and space complexity@(éx n?) andO(I x n?), respectively.

Abstraction Refinement The computational complexity of the algorithmsplicate
State, DuplicateTransition, RemoveTransition is O(n®), O(|T|), O(n?). Therefore
that of the algorithm Refinement becom@é»® + |T'|). Also, the space complexity of
these algorithms ar@(n?), O(|T|), andO(1). Thus, that of the algorithm Refinement is
O(n* + |TY).
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7 Conclusion

This paper proposes a model abstraction technique for timed automata based on the
CEGAR algorithm. In general, most CEGAR based algorithmsobtain refined abstract
models from the previous abstract models by modifying some transformations. In our
algorithm, however, the refined model is obtained indirectly; we transform the original
timed automaton preserving the equivalence and from it we generate an abstract model
by eliminating clock attributes.

This paper gives formal descriptions of our algorithms, and also correctness proof
of our algorithms by proving that the transformation preserves bi-simulation equivalence
and that the refined abstract model is the spurious CE free.

The future work will be extensions of our algorithm. First, we want to handle integer
variables used in UPPAAL timed automata[10, 11, 12]. To abstract the state space over
integer variables, we are considering applying predicate abstraction[7] to it. Second, we
want to extend a range of specification formula for model checking.

In addition, we are considering that when we refine an abstract model, we apply a
Subtraction operation[13] to divide a bad state into a reachable state and unreachable one
instead of duplicating it, and also compare its efficiency with the method proposed in this
paper.
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