
Toward Identifying Inter-project Clone Sets for Building
Useful Libraries

Yoshiki Higo, Kensuke Tanaka, Shinji Kusumoto

Suita, Osaka, Japan

{higo,k-tanaka,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
The present paper discusses how clone sets can be generated
from an very large amount of source code. The knowledge of
clone sets can help to manage software asset. For example,
we can figure out the state of the asset easier, or we can
build more useful libraries based on the knowledge.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms
Measurement, Management

Keywords
Code clone, Reengineering for libraries

1. INTRODUCTION
Recently, code clones have attracted a great deal of at-

tention in software engineering, and various studies of code
clone related research have been performed. Most of them
focus on code clones in a sole software system: for example,
effective detection methodologies, identifying candidates for
potential bugs or refactoring. The authors think that the
knowledge of inter-project clone sets can help to manage
software asset. For example, if we can extract common func-
tionalities included in multiple software systems developed
in the past, they will be strong candidates for useful libraries.
The present paper discusses how we can identify frequent
functionalities in a very large amount of source code.

Simone et al. detected code clones from over 7,000 sys-
tems with 80 PC workstations [1]. The detection result was
visualized as a scatterplot, which made it possible to grasp
which systems share code clones. However, they detected

clone pairs, not clone sets. Consequently, their analysis can-
not reveal how frequently the cloned functionalities occur,
or how many systems include a specific functionality. The
authors think that the knowledge of clone sets is important
to manage software asset efficiently and effectively.

2. TERMS
This subsection explains two terms used in the present

paper. The first one is Clone Pair, which is a pair of code
fragments that are identical or similar to each other. The
second one is Clone Set. Arbitrary pair of code fragments
in a clone set forms a clone pair. That is, there is an equiva-
lence relation (reflexive, transitive, and symmetric relation)
between code fragments in a clone set.

3. CLONE SET GENERATION

3.1 Why knowledge of clone sets is required?
The knowledge of clone sets can be an assistance for soft-

ware asset management (and reverse engineering). For ex-
ample, in a specific department of a company, if the de-
velopers can know how frequently duplicated logics are re-
implemented in the past or how many systems share a spe-
cific functionality, they will build useful libraries based on
the knowledge. Such libraries can avoid unavailing reimple-
mentations, and reduce development cost and period.

Also, detecting inter-project clone sets can reveal copy-
and-pasted code created by each developer in the past de-
velopment, and the team (or the department) can share the
code as the organization knowledge. Even if it is impossible
to create libraries based on the knowledge, it can be used as
a useful template. Especially, the knowledge is pretty effec-
tive to inexperienced fresh men because they can learn the
sophisticated stereotyped code created by skilled people.

3.2 Methods to build clone sets
This research focuses on code clone detection from a very

large amount of source code, so that it is impossible to detect
code clones from all the target at one time. Consequently,
the target is split into multiple units, which are sets of source
files of a fixed size. Code clones are detected from each unit,
and the results are merged after all the detection finished.

However, it is not easy to build clone sets from multiple
detection results. Figure 1 shows a simple example. In this
example, two detections are performed; the first one is be-
tween software A and B; the second one is software B and
C. the former identified code fragments fA and fB as code
clones, and the latter identified f ′

B and fC as code clones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWSC’10, May 8, 2010, Cape Town, South Africa.
Copyright © 2010 ACM 978-1-60558-980-0/10/05…$10.00.

Graduate School of Information Science and Technorogy, Osaka University

87

Figure 1: Merging Results of Multiple Detections

Code fragments fB and f ′
B are partly overlapped. If the

two code fragments are judged as identical, Code fragments
fA, fB , and fC form a single clone set. However, is it no
problem to judge as identical? If the number of detections is
only 2 like this example, it is appropriate to introduce min-
imum overlapping threshold for jugding as identical. How-
ever, splitting a very large amount of source code generates
a large number of units. Consequently, if we use the thresh-
old, it is possible that a clone set indudes two or more code
fragments that are not similar to one another at all.

To solve this problem, in this research, structural blocks
of programming language are the unit of code clones. In the
case of C language, the unit of code clones is function, and in
the case of Java language, the unit is method. After detecting
code clones, they are mapped to the unit. If two functions
are more similar than the threshold, they are regarded as
clone pairs. The present paper proposed two methods to
build clone sets from function clone pairs:

Methodology 1: Create an undirected graph from all the
clone pairs. Nodes are functions, and edges are clone
relation. After creating the graph, local maximum
cliques (complete subgraphs) are extracted from it.
Extracted cliques are clone sets (see Figure 2(b)).

Methodology 2: Create undirected graphs from each clone
pair. Created graphs are clone sets (see Figure 2(c)).

In the case of Meth.1, every pair of code fragments in-
cluded in the extracted cliques is more duplicated than the
threshold, so that the cliques are proper as clone sets. How-
ever, extracting local maximum cliques requires more cost
than maximum clique problem, which is known as NP-hard.
Consequently, authors think that it is difficult to extract
clone sets with Meth.1 within practical timeframe.

On the other hand, in the case of Meth.2, it is possible
that some pairs of code fragments in a clone set do not have
enough duplication, so that graphs do not satisfy the defi-
nition of clone set described in Section 2. However, every
function in a clone set have enough duplication with the
center node of the clone set (Center nodes have gray color
in Figure 2(c)). Consequently, we can think that the cen-
ter nodes are base functions and, other nodes are derived
functions from them.

4. CONCLUSION
The present paper briefly described two methods to build

clone sets from a very large amount of source code. In the

(a) Detected Clone Pairs

(b) Generated Clone Sets (Meth.1) (Nodes in dashed
lines forms a clone set)

(c) Generated Clone Sets (Meth.2) (Every
graph is a clone set)

Figure 2: Simple Example of Clone Set Generation
(In this example, we extract clone sets that include
three or more code fragments)

workshop, we would like to show the results, and discuss
how we can use such clone sets data for effective/efficient
software development and maintenance.

ACKNOWLEDGMENTS
The present research is being conducted as a part of the
Stage Project, the Development of Next Generation IT In-
frastructure, supported by the Ministry of Education, Cul-
ture, Sports, Science, and Technology of Japan. This study
has been supported in part by Grants-in-Aid for Scientific
Research (A)(21240002) and (C)(20500033) from the Japan
Society for the Promotion of Science.

5. REFERENCES
[1] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue.

Very-Large Scale Code Clone Analysis and
Visualization of Open Source Program Using
Distributed CCFinder: D-CCFinder. In Proc. of the
29th International Conference on Software Engineering,
pages 106–115, May 2007.

88

	Welcome Page
	Hub Page

	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
