
情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

Gradleビルドスクリプトの検証を目的とした
テストライブラリ

藪下 友1,a) 柗本 真佑1,b) 楠本 真二1,c)

受付日 2025年10月30日, 採録日 2026年1月14日

概要：ソフトウェア開発においてビルドツールが広く利用されている．ビルドツールは，ソースコードか
ら実行ファイルや配布パッケージなどを生成するビルド工程を自動化する．Gradleは Javaで広く用いら
れるビルドツールの 1つであり，ビルドスクリプトと呼ばれるファイルに基づきビルドを実行する．ビル
ドスクリプトは Groovy DSL で記述されたソースコードであり，一般的なプログラミング言語のソース
コードと同様に継続的な自動テストを実施すべきである．しかし，Javaソースコード内に存在し得るビル
ド失敗要因や，ビルドスクリプトの作用がメモリ上の変数にとどまらず多岐に渡ることから，ビルドスク
リプト自体のテストは容易ではない．本研究では，ビルドスクリプトの検証に特化したテストライブラリ
を提案する．本ライブラリは，検証のためのスタブとアサーションメソッドを提供する．スタブは，Java

ソースコードの代替としてビルド失敗要因を隠蔽する．またアサーションメソッドは，ビルドスクリプト
の作用に特化し検証を行う．評価実験及びケーススタディの結果，対象プロジェクトの 8割以上の適用に
成功し，テストによりビルドスクリプトに実在するバグを検出可能であることを確認した．

キーワード：Gradle，ビルドスクリプト，build.gradle，テストライブラリ，スタブ，アサーションメソッド

A Test Library for Verifying Gradle Build Scripts

Yu Yabushita1,a) Shinsuke Matsumoto1,b) Shinji Kusumoto1,c)

Received: October 30, 2025, Accepted: January 14, 2026

Abstract: Build tools are widely used in software development to automate the build process, which trans-
forms source code into executable files or distribution packages. Gradle is one of the most commonly used
build tools for Java and executes builds based on build scripts written in Groovy DSL. Like general-purpose
programming languages, these scripts should be continuously and automatically tested. However, testing
build scripts is challenging due to potential build failures originating from Java source code and the broad
effects of the scripts, which go beyond simple in-memory operations. This study proposes a test library
specialized for verifying build scripts. The library offers two main features: Stub, which replace Java source
code to hide failure causes, and Assertion Methods, which focus on validating the effects of the build script.
Evaluation experiments and case studies confirmed that the proposed method could be applied to over 80%
of target projects and was capable of detecting actual bugs in build scripts.

Keywords: Gradle, build script, build.gradle, test library, stub, assertion method

1 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technology,
The University of Osaka, Japan

a) y-yabust@ist.osaka-u.ac.jp
b) shinsuke@ist.osaka-u.ac.jp
c) kusumoto.shinji.ist@osaka-u.ac.jp

1. はじめに
ソフトウェア開発においてビルドツールが広く利用さ

れている [1][2]．ビルドツールは，ソースコードから実行
ファイルや配布パッケージなどを生成するビルド工程を
自動化する．Javaで広く用いられるビルドツールの 1つ

c⃝ 2026 Information Processing Society of Japan 1

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

して Gradleが挙げられる [3]．Gradleは，bulid.gradle

と呼ばれるビルドスクリプトに基づきビルドを実行する．
ビルドスクリプトを用いることで，依存関係の解決やコン
パイル，テストなどのビルド工程全体の自動化が可能とな
る [4]．
ソフトウェア開発におけるビルド失敗の原因を調査する

研究が数多く行われている [5][6][7]．また，ビルドスクリ
プトの記述に基づきビルド工程における影響やバグを検出
する研究も多く存在する [8][9][10]．これらの研究では，外
部依存ライブラリの宣言不足やビルド結果であるファイル
の欠如，タスク実行順序の誤りなど，ビルドスクリプトが
原因となるビルド失敗やバグの存在が指摘されている．し
たがって，ビルド工程の保守においてビルドスクリプトの
動作が期待通りであるかを検証することが重要である．
GradleのビルドスクリプトはGroovy DSLで記述された

ソースコードである．さらに，ビルドスクリプトのコード
レビューでは一般的なプログラミング言語のソースコード
に比べて，欠陥に関するコメントの割合が高い [11]．よっ
て我々は，一般的なプログラミング言語のソースコードと
同様に，ビルドスクリプトに対する継続的な自動テストを
実施すべきだと考える [12]．
しかし，ビルドスクリプトのテストは通常の単体テスト

などと違い容易ではない．ビルド対象となる Javaソース
コード内にランタイムエラーなどの実行時エラーが含まれ
ると，ビルドスクリプト自体に問題がなくてもビルド全体
が失敗する．そのため，ビルドスクリプト以外のビルド失
敗要因を隠蔽したうえで，純粋にビルドスクリプトのみを
検証できるテスト手法が必要となる． また，ビルドスクリ
プトの作用はメモリ上の変数にとどまらず，ファイルシス
テムや標準出力，リターンコードなど多岐にわたる [13]．
そのため，様々なビルドスクリプトの作用に応じた検証手
法が必要となる．
本研究の目的は，Gradleのビルドスクリプトに対する自

動テストの実現である．そのために，ビルドスクリプトの
検証に特化したテストライブラリを提案する．本ライブラ
リは，検証のためのスタブとアサーションメソッドを提供
する．スタブは，Javaソースコードの代替としてビルド失
敗要因を隠蔽し，開発者の期待通りのビルド結果を維持す
る．これにより，純粋なビルドスクリプトの検証が可能と
なる．一方アサーションメソッドは，ビルドスクリプトの
作用に特化しファイルの取得やログの抽出などを行う．こ
れにより，ビルドスクリプトの作用を容易に検証できる．
提案手法の有効性を評価するために評価実験及びケース

スタディを実施した．その結果，対象プロジェクトのおよ
そ 8割以上に適用可能であることを確認した．またケース
スタディを通じて，テストによりビルドスクリプトに実在
するバグを検出可能であることを示した．

1 jar {

2 // Main-Class が設定されていない
3 // manifest { attributes("Main-Class": "com.app.Main")}

4 from {

5 configurations.runtimeClasspath.collect {

6 it.isDirectory() ? it : zipTree(it)

7 }

8 }

9 }

(a) JAR実行エントリ未設定のビルドスクリプト

no main manifest attribute, in build/libs/android-app.jar

(b) エントリが存在しないことによる JAR実行時エラー出力
図 1: ビルドスクリプトに含まれるバグの例

2. 準備
2.1 ビルドスクリプトのバグ
ビルドスクリプトのテストにおける検出対象はビルドス

クリプトに存在するバグである．図 1にビルドスクリプト
のバグ事例を示す．図 1(a)は実行可能 JARを生成するた
めのビルドスクリプトである．jarブロックでは JARファ
イル生成タスクの性質を定義しており，fromブロックで
は JARファイルに含める各種クラスファイルを指定する．
この例では fromの宣言自体は正しいが，JARファイルの
実行時エントリを指定する manifestが未指定である．そ
のため，生成される JARを実行すると図 1(b)に示す通り
エントリが見つからず実行時エラーを出力する．この事例
ではビルドプロセス自体は成功してもビルドスクリプト中
の誤りが原因となり，開発者の意図しない成果物が生成さ
れる．本研究では，このようなビルドスクリプト中の誤り
により成果物が期待通り振る舞わなくなる要因を，ビルド
スクリプトのバグと定義する．本研究ではこのようなビル
ドスクリプトのバグの検出を目的としてテストを行う．

2.2 Javaソースコード中のビルド失敗要因
Javaソースコード中にビルド失敗要因が存在する場合，

ビルドスクリプトに限定した検証作業を実施できない．
図 2に Javaソースコードが原因による buildタスク失敗
例を示す．Gradleにおけるビルド工程は複数のタスクか
ら構成され各タスクは依存関係を持つ．そのため図 2のよ
うに，Javaソースコードにランタイムエラー等のビルド
失敗要因が存在した場合に，それに依存する testタスク
が失敗し依存関係を通じ buildタスクも失敗してしまう．
2.1節で述べたようにビルドスクリプトのバグはビルド成
果物に現れる．そのため，図 2のように testタスクが失
敗し一部のビルド成果物が生成されないと，ビルドスクリ
プトのバグが反映されるはずのビルド成果物が生成されず
テストが実施できない．また，ビルド成果物の未生成がビ

c⃝ 2026 Information Processing Society of Japan 2

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

build

check

assemble

test

./gradlew build

開発者 build.gradle
Java

タスク
タスク依存

図 2: Javaソースコードの欠陥により buildタスクが失敗

ルドスクリプトのバグに起因するか，ビルド失敗に起因す
るかが判別できない．したがって，自動テスト実施のため
に Javaソースコードをビルドプロセスから分離しビルド
を成功させる必要がある．

3. 提案手法
本稿では，Gradleのビルドスクリプトに対する自動テ

ストの実現を目的として，ビルドスクリプトの検証に特化
したテストライブラリを提案する*1．このライブラリを用
いてビルドスクリプトに対するテストケースを記述でき，
Javaソースコードに対する自動テストと同時にビルドス
クリプトに対しても自動テストを実施することが可能とな
る．提案ライブラリは，以下の 2点から構成される．
スタブ

Javaソースコードの代替となり，ビルド失敗要因を隠
蔽し開発者の期待するビルド成果物を維持する．

アサーションメソッド
ビルド成果物に特化して検証を行う．

ここで，本研究で対象とするビルド成果物をそれぞれの
成果物の情報源と共に表 1へ示す．ビルド成果物は大き
くファイルとログに分類できる．各ビルド成果物の情報
源について，build/は Gradleにおいてビルド成果物が配
置されるデフォルトのディレクトリであり，Javaのコン
パイル結果であるクラスファイルや JARなどが配置され
る．JUnit の生成するテストレポートは，HTML 形式と
XML形式で異なるディレクトリ（build/test-results/，
build/reports/tests/test/）へと配置されるため，検
証時にはこれらの両ディレクトリが対象となる．また，ロ
グ情報としてはビルド中に実行されたタスクやコンパイル
のターゲット Javaバージョン，リターンコードがある．こ
れらは標準出力やリターンコードに含まれる．

3.1 Javaソースコードのスタブ
Javaソースコードをビルドプロセスから分離しビルドを

成功させるために，Javaソースコードの代替となるスタブ
を提案する．図 3に提案スタブを用いた buildタスクの検
証例を示す．スタブは通常の結合テストにおいて，未完成
や複雑な下位モジュールを擬似的に再現し，上位モジュー
*1 https://central.sonatype.com/artifact/io.github.y-y

abust/BScriptTest/

build

check

assemble

test

./gradlew build

開発者 build.gradle
Java

タスク
タスク依存

スタブ

図 3: スタブにより Javaソースコードの欠陥を隠蔽

ルの検証に焦点を置くために用いられる．提案手法のスタ
ブでは，ビルド工程でタスクの入力となる Javaソースコー
ドを擬似的に再現する．このスタブを入力にとることによ
り図 3の通り，ソースコード中の欠陥を隠蔽しビルドを
成功させる．また他に Javaソースコードをビルドプロセ
スから分離する方法として，ビルドスクリプトにおけるエ
ラーハンドリングや Javaソースコードの削除が考えられ
る．例として testタスクなどの一部のタスクでは，ビル
ドスクリプトのタスク宣言部に ignoreFailures=trueを
追記することにより，testタスクが失敗したとしてもそれ
に依存する buildタスクを強制的に続行できる．しかし，
Javaソースコードへ依存する全てのタスクで利用できる
わけではなく，テスト対象であるビルドスクリプトにビル
ド失敗要因が存在している場合でも失敗せず続行してしま
う．また，クラスファイルやテストレポートなどのビルド
成果物は Javaソースコードの構文要素に基づき生成され
るため，Javaソースコードを削除すると検出対象であるビ
ルド成果物へと影響を及ぼしてしまう．そのためスタブは，
Javaソースコードの代替として機能し，Javaソースコー
ドを完全に分離させるのではなく，直接的にソースコード
中に存在するビルド失敗要因のみを隠蔽しビルドを成功さ
せる．また，スタブを利用する副次的な利点としてビルド
実行時間の短縮が挙げられる．後述するが，スタブは元の
Javaソースコードと比べてビルドスクリプトそのものの検
証に不要な一部の構文要素（メソッドやコンストラクタな
ど）が除去され簡略化される．このような簡略化されたプ
ログラムを用いてビルドを実行することにより，元のプロ
グラム比べてビルド実行時間の短縮が見込まれる [14]．
スタブ作成の方針は，ビルドスクリプトを検証するため

に，Javaソースコード中のビルド失敗要因を隠蔽し，ビル

表 1: ビルド成果物とその情報源
大分類 小分類 情報源
ファイル クラスファイル build/classes/

JAR 等パッケージファイル build/libs/

テストレポート build/test-results/,

build/reports/tests/test/

公開ファイル ~/.m2/

ログ 実行されたタスクリスト 標準出力
コンパイル Javaバージョン 標準出力
リターンコード リターンコード

c⃝ 2026 Information Processing Society of Japan 3

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

ドを成功させることにある．しかし，ビルドスクリプトの
作用はクラスファイル等の表 1に示すテストにおける検証
対象であるビルド成果物に反映されるため，これに影響を
与えない範囲で隠蔽する必要がある．ここで，スタブの利
用によりスタブを利用しない場合のビルド成果物へ影響を
及ぼしてしまうことをスタブの副作用と定義する．副作用
は大きく 2つに分類できる．1つ目は，スタブの利用によ
りビルドプロセスが失敗しビルド成果物が完全に生成され
ないことである．また 2つ目は，ビルドプロセスは成功す
るが，元のプロジェクトと比べてファイルやログ出力など
のビルド成果物へ差異を生じることである．1つ目の副作
用に関しては，スタブの目的であるビルドの成功を阻害す
るため原則許容できない．一方で 2つ目の副作用に関して
は，ビルド成果物の中でも開発者が通常生成を期待しない
一時ファイルなどに影響する場合は，テストに影響を及ぼ
さないため許容可能である．よって，2つ目の副作用に関
してはこれら全てがテストに悪影響を及ぼすわけではない
が，正確なテストを行うためには最低限に留める必要があ
る．そのため，Java Language Specification（JLS）におけ
る構文記法（Chapter 19. Syntax*2）を参考に，Javaソー
スコード内の成果物に影響する構文要素を保持し，それら
内部の影響のない要素を全て除去した新たな Javaソース
コードをスタブとして作成する．特に，参照不整合による
コンパイルエラーを防ぐため，可能な限りクラスや外部ラ
イブラリの参照を除去し隠蔽する．ここで，この処理によ
りソースコード内に含まれるコンパイルエラーが隠蔽され
検出されない可能性がある．しかしテスト対象はビルドス
クリプトであるため，ソースコードに起因するエラーは検
出対象でない．そのため実行時エラー同様に，ビルド失敗
要因であるコンパイルエラーも隠蔽されて問題はない．こ
の方針に基づき，スタブ作成における主要な構文要素ごと
の処理規則を表 2に示す．これらの処理規則は対象要素
がボディを持つ場合再帰的に適用される．したがって，ク
ラス宣言（class，enum，record）などは，成果物として
クラスファイルを生成するため保持されるが，その内部の
フィールドや初期化ブロック，コンストラクタなどは余計
な参照やエラーの原因となるため一律で除去する．また，
メソッドについては，実行可能 JARのエントリポイント
である mainメソッドと，テストレポート生成に関わるテ
ストケースのみを保持する．
他にスタブのメソッドとして一部構文要素を保持する保
持メソッドと指定したファイルへエラーを注入するエラー
注入メソッドを実装している．各メソッドを表 3へ示す．
保持メソッド（keep系メソッド）の利用によりファイルと
クラス，メソッド，アノテーション，インポート文単位で
元の Javaソースコードの構文要素を一部保持したスタブ
*2 https://docs.oracle.com/javase/specs/jls/se24/html/j

ls-19.html

表 2: スタブ作成における主要な構文要素ごとの処理規則
構文要素 処理
package 保持
import @Test に必要なもののみ保持
クラス宣言 extends・implements を除去し保持
クラスボディ 他構文要素に基づき再帰処理
インターフェース宣言 extends を除去し保持
インターフェースボディ 他構文要素に基づき再帰処理
フィールド 除去
メソッド main とテストケースのみ保持
初期化ブロック 除去
コンストラクタ 除去
コメント 保持
Javadoc 除去
修飾子 annotation，(non-)sealed のみ除去

表 3: スタブが持つ保持メソッドとエラー注入メソッド
メソッド 詳細
keepFile() 指定したファイルを保持
keepClass() 指定したクラスを保持
keepMethod() 指定したメソッドを保持
keepAnnotation() 指定したアノテーションを保持
keepImport() 指定したインポート文を保持
injectCompileError() 指定ファイルへコンパイルエラーを注入
injectRuntimeError() 指定ファイルへ実行時エラーを注入
injectTestFailure() 指定ファイルへアサーションエラーを注入

を生成できる．これにより，テストを実施するにあたり必
要な構文要素を例外的に保持したスタブを生成できる．た
だし，一部構文要素を残すことにより参照不整合などが生
じコンパイルエラーとなる可能性もあるため注意して使用
する必要がある．また，エラー注入メソッド（inject系メ
ソッド）の利用によりコンパイルエラーと実行時エラー，
アサーションエラーを任意のファイルへと注入できる．指
定したファイル内のクラスへそれぞれのエラーを生じるメ
ソッドを配置することでエラーを生じさせている．これに
よりエラーを生じるスタブを生成でき，Javaソースコード
内でエラーが発生した場合のビルドスクリプトのエラーハ
ンドリングが正常に動作しているかなどの異常系テストが
可能となる．

3.2 ビルド成果物を検証するためのアサーションメソッド
ビルドスクリプトの成果物に対する検証を容易にするた

め，それに特化したアサーションメソッドを提案する．ア
サーションメソッドの実現方法は様々だが，本稿では従来
よりも可読性の高い記述を可能とする AssertJ*3を基盤と
して実装する [15]．さらに，本ライブラリでは表 1のファ
イルとログから定義されるビルド成果物を参考に，成果
物を抽象化した BuildArtifactオブジェクトを提供する．
図 4は BuildArtifactが持つ成果物例を示しており，階
*3 https://joel-costigliola.github.io/assertj/

c⃝ 2026 Information Processing Society of Japan 4

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

executedTasks
compilerJdkVersion

returnCode

lib.jar
lib-sources.jar (published)
app.jar

Main.class
log

BuildArtifact

図 4: BuildArtifactが保持する成果物例

層構造で成果物を保持する．そのため，BuildArtifact直
下のファイル群や，ローカルリポジトリへ公開されたコン
テンツ，リターンコードはアサーションメソッドを用いて
直接検証でき，特定の JAR内のファイルや，コンパイル
バージョン，実行されたタスクなどの詳細な情報について
は，BuildArtifactから該当情報を抽出しアサーションメ
ソッドを適用できる．AssertJを基盤としたアサーション
メソッドと成果物を保持する BuildArtifactにより，開
発者はビルド結果の具体的な出力先を意識せず直感的かつ
宣言的にテストを記述できる．
アサーションメソッドの実装にあたり，Stack Over-

flow*4及び Gradle Forums*5を対象とし，検出対象である
ビルドスクリプトに起因するバグ事例の予備調査を行った．
Stack Overflowでは build.gradleと gradleタグ付き投
稿を対象に，Gradle Forumsでは「Help/Discuss」と「Old

Forum Archive/Bugs」カテゴリを対象としてバグを収集
した．その結果，ビルドスクリプトに起因する 23件のバ
グ事例を収集した．これらのバグ事例と収集件数を，表 1

に示すビルド成果物に基づき分類した．分類結果を表 4へ
示す．例えば B2.1の JAR内に必要なファイルが含まれな
い事例としては，jarタスクの設定ミスにより推移的依存
関係を含まない JARが生成される問題などがある．また
B3.2のタスクが実行されない事例としては，doLast記述
漏れにより実行フェーズでタスクが動作しない問題などが
ある．ここで，表 4に示す各バグ事例はアサーションメ
ソッド実装の指針を得るための予備調査結果であり，現時
点でビルドスクリプトのバグを完全に網羅するものではな
い．そのため今後新たなバグ事例の発見に伴い，各バグカ
テゴリ内で事例の追加及びそれに基づく新たなアサーショ
ンメソッドの実装が求められる．
表 4に示したバグカテゴリの各事例の検出を目標に，ア

サーションメソッドの実装を行なった．実装したアサー
ションメソッド一覧を表 5，表 6，表 7に示す．各表は表 4

に示す B1（表 5）と，B2（表 6），B3（表 7）それぞれの
バグカテゴリを主に検出するように対応しており，アサー
ションメソッドとその詳細，そして検出対象とする主な
*4 https://stackoverflow.com/
*5 https://discuss.gradle.org/

表 4: バグカテゴリと確認された事例
バグカテゴリ 事例 件数
[B1] ファイルパスの誤り [B1.1] 成果物が生成されない 1

[B1.2] 公開先リポジトリへの配置に失敗 3

[B2] ファイル内容の誤り [B2.1]JAR 内に必要なファイルが含まれ
ない

6

[B2.2]JAR 内マニフェストに実行エント
リが存在しない

1

[B3] ログの誤り [B3.1] 期待通りでないクラスファイル
Java バージョン

1

[B3.2] タスクが実行されない 5

[B3.3] タスクの実行順序が期待と異なる 4

[B3.4] テスト失敗無視（ignoreFailures）
されない

2

表 5: BuildArtifact直下に対するアサーションメソッド
メソッド 検証項目 対象バグ
contains() JAR や WAR などの存在 B1.1,B2.1

containsExecutedTestReport() テストレポートの存在 B3.4

containsPublication() 公開物の存在 B1.2

containsBuildOutcome() ビルド成否 B3.4

containsAnyJars() JAR の生成有無 B1.1

containsAnyWars() WAR の生成有無 B1.1

表 6: 抽出されたファイルに対するアサーションメソッド
メソッド 検証項目 対象バグ
contains() JAR 内のコンテンツ存在 B2.1

runsSuccessfully() JAR 実行のリターンコードが 0 か B2.1,B2.2

isNotEmptyJar() JAR が META-INF 以外を含むか B2.1

targetsJavaVersion() クラスファイルの Java バージョン B3.1

表 7: 抽出されたログに対するアサーションメソッド
メソッド 検証項目 対象バグ
containsExecutedTask() タスクが実行されたか B3.2,B3.3

containsExecutedTasksSequence() タスクの実行順 B3.3

containsTaskOutcome() タスク成否 B3.4

containsCompilerJdkVersion() コンパイラの JDK B3.1

バグ事例を表 4中の IDを用いて示している．図 4におけ
る lib.jarなどの BuildArtifact直下の成果物については，
表 5に示すアサーションメソッドを用いて，生成有無を直
接検証できる．また，図 4における app.jarなどのファイ
ルについては，BuildArtifactから抽出し表 6に示すア
サーションメソッドを用いて，実行成否やMain.classなど
の JAR内ファイルの存在を検証できる．さらにログ情報
についても同様に抽出し，表 7に示すアサーションメソッ
ドを用いてタスクの実行成否や実行順を検証できる．ここ
で表 5，表 6，表 7は基本的には B1，B2，B3へ対応づけ
られるが，複数のビルド成果物へ影響を及ぼすバグも存在
するため，単一のアサーションメソッドがカテゴリを跨い
でバグ事例を検証できる場合がある．例えば，B3.4のテス
トタスクが失敗しても無視されないバグは，ログ中のタス
ク実行へ影響するが同時にテストレポート生成へも影響す
る．そのため，ログの誤りとして B3へ分類されるが，主
に B1へ対応する表 5に属するメソッドでも検証できる．

c⃝ 2026 Information Processing Society of Japan 5

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

1 @Test void test() {

2 StubProject project = StubGenerator.from("android-app")

3 .generate();

4 BuildArtifact artifact = GradleRunner.from(project)

5 .task("build")

6 .run();

7 assertThat(artifact).contains("lib.jar");

8 assertThat(artifact).extractingFile("app.jar")

9 .contains("Main.class");

10 assertThat(artifact).extractingLog()

11 .containsExecutedTask("test");

12 }

図 5: テストケース例

図 5にテストケース例を示す．対象プロジェクトのパス
を指定してスタブを生成し（2-3行目），buildタスクを指
定しビルドを実行する（4-6行目）．GradleRunnerは，ス
タブオブジェクトを用いて Gradleのビルドを実行するた
めに実装したメソッドである．このメソッドでは from()

メソッドの引数に生成したスタブオブジェクトを指定する
ことでスタブを用いたビルドを可能としているが，実プロ
ジェクトのパスを指定することで実プロジェクトを用い
たビルドも可能である．ビルドの結果は BuildArtifact

オブジェクトの artifact が保持する（4 行目）．これを
引数にとりアサーションを記述できる．図 4の階層構造
に従い，BuildArtifact直下の成果物 lib.jarについては，
表 5の contains()で存在を確認できる（7行目）．また，
app.jarの内容については，extractingFile()でファイ
ル情報を抽出し（8行目），表 6の contains()で JAR内
のファイル有無を検証できる（9行目）．さらに，ログ情報
は extractingLog()を用いて抽出し（10行目），表 7の
containsExecutedTask()で，指定した testタスクがビ
ルド工程で実行されているか検証できる（11行目）．
テストケースを記述する際の，これらのアサーションメ

ソッドの選択手順は次の通りである．
(1) テスト対象タスク（ロジック）の決定
(2) 対象タスクが生成するビルド成果物の特定
(3) 各ビルド成果物に対する検証項目の決定
(4) 各ビルド成果物と検証項目に対応するアサーションメ

ソッドの選択
まずテスト対象タスクを決定した後は，そのタスクが生成
するビルド成果物を特定する．次に，ファイルやログなど
検証対象のビルド成果物ごとにファイル生成有無やタスク
成否などの検証項目を設定し，それぞれに対応する適切な
アサーションメソッドを表 5，表 6，表 7から選択する．
ビルドスクリプトのバグは出力であるビルド成果物へと影
響するため，テストではこの出力を検証することによりビ
ルドスクリプトのバグを検出できる．したがって手順に示
す通り，ビルドスクリプトで定義されたタスクの挙動を検
証するためには，それぞれのタスクが生成するビルド成果

物を検証対象とするアサーションメソッドを選択すれば良
い．例として，ビルドスクリプト内で定義された assemble

タスクのテストを考える．このタスクが生成するビルド成
果物としては複数の JAR であり，それぞれの JAR につ
いて生成有無や依存クラスの包含有無，実行成否などの検
証項目が考えられる．そのため，表 5中の contains()を
選択し JAR生成有無を確認し，表 6中の contains()や
runsSuccessfully()などを選択し JAR内のコンテンツ
存在や実行成否の検証を行う．

4. 実験
4.1 実験概要
ビルドスクリプトに対するテストにおける，提案手法の

有効性を確認するために以下の評価実験を行う．
実験 1：適用可能性の検証
実験 2：エラー隠蔽効果の検証
実験 3：ビルド実行時間短縮効果の検証
実験 1では，複数のプロジェクトに対して提案手法が適用
可能であるか検証する．提案手法の適用に必要な最小限の
テストを定義し，それを複数のプロジェクトに対し実行す
ることで，提案手法の適用可能性を評価する．実験 2では，
実験 1で最小限のテストが成功したプロジェクトの一部を
対象に，スタブの利用により Javaソースコードに起因す
るビルド失敗要因が適切に隠蔽され，ビルド工程に影響を
及ぼさないか検証する．実験 3では，実験 1で最小限のテ
ストが成功した全てのプロジェクトを対象に，スタブを利
用する副次的な効果としてビルド実行時間を短縮できたか
検証する．

4.2 実験 1：適用可能性の検証
4.2.1 実験設計
本実験では，複数のプロジェクトに対して提案手法が適

用可能であるか検証する．ここでの適用可能とは，本テス
トライブラリを用いてスタブの副作用を生じることなく
テストを実施できるかどうかを意味する．つまり，テスト
ケースにおいて検証の役割を持つアサーション部が実行さ
れるまでの処理でエラーを生じず，検証対象であるビルド
成果物がスタブを利用しない場合と比べ欠損なく生成され
ている状態を意味する．そのため，異なるプロジェクト間
でも共通してアサーション部を実行するために必要となる
最小限のテストを定義する（以降，最小限テストと呼ぶ）．
最小限テストは，検証対象であるビルド成果物が生成され
るまでの，スタブの作成と指定されたタスクの実行から構
成される（図 5: 2-6行目）．実行するタスクには，ビルド時
の最上位タスクである buildタスクを設定する．テストラ
イブラリの適用にはこの最小限テストが成功し，ビルド成
果物がスタブを用いない場合の成果物に比べて差異がない

c⃝ 2026 Information Processing Society of Japan 6

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

表 8: 最小限テストで確認すべきビルド成果物の差異
差異カテゴリ 詳細
Files build/libs,classes 下のファイル存在
JAR Contents JAR 内コンテンツの存在
JAR Return Code JAR 実行の成否
Task Execution Order 実行したタスクの順番
Class File Version クラスファイルの major version

Java Compiler Version javac -source/target のバージョン
Test Reports テストレポートの存在
Published Artifacts Maven ローカルへの公開物の存在

ことが求められる．これは，ビルド成果物に差異が存在す
るとアサーションメソッドによる正確な検証が困難となる
ためである．そのため，評価は以下の 2つの観点から行う．
• 評価 1：最小限テストの成功率
• 評価 2：スタブなしビルド成果物との差異
最小限テストの成功率に関しては，定義した最小限テス

トを複数のプロジェクトに対して実行し，その成否を確認
する．スタブなしビルド成果物との差異については，最小
限テストに成功したプロジェクトのビルド成果物を，スタ
ブを用いずにビルドを実行した場合の成果物と比較する．
比較対象となる差異カテゴリを表 8に示す．各項目はビル
ド成果物に基づき，差異が存在した場合にアサーションメ
ソッドによる検証に影響が出る可能性のあるスタブの副作
用を示している．これら 2つの評価項目によりスタブの副
作用を生じることなくテストを実施できているかという適
用可能性を評価する．
実験題材として，サンプルプロジェクトや独立するサブ

プロジェクト同士から構成されるマルチプロジェクト構造
などのテスト対象のビルドスクリプトが一意に定まらな
いプロジェクト構造を避けるため，以下の選定基準を設け
た．この基準に従う 103プロジェクトを実験対象として選
定した．
• GitHub上で公開
• 主要言語が Java

• star数が 10以上
• OSSのライセンスが存在
• build.gradleまたは build.gradle.ktsが存在
• JDK8,11,17,21のいずれかで./gradlew buildが成功
• テスト対象のビルドスクリプトが一意に定まる構造

4.2.2 評価 1：結果と考察
最小限テストの成功率は，103プロジェクト中 84プロ

ジェクトの 81%であった．テストに失敗した 19プロジェ
クトの失敗原因を表 9に示す．これらはすべてスタブの
副作用によるものである．特に，Groovyなど他言語ファ
イルからの参照先の喪失や，タスク実行に伴い必要となる
Javaソースコードへの依存の欠如が存在した．また，静的
コード解析ルールの違反などフォーマット規約が原因によ

表 9: 最小限テスト失敗原因の分類
大分類 小分類 件数
依存欠如 他言語ファイルの参照 8

構成ファイルからの参照 1

タスクが生成する Java コードからの参照 1

タスクからの参照 2

静的解析違反 - 5

動作期待未達 テストカバレッジ閾値未達 2

るテスト失敗も存在した．
結果より，基本的には 8割以上と多くのプロジェクトへ

適用可能であった．しかし，現時点のスタブ作成方針では
適用できないプロジェクトも一部存在した．タスクや他
ファイルからの参照に関しては，現時点では Javaソース
コードのみをスタブの対象にしているため隠蔽できない．
これらの Javaソースコード外からの参照はプロジェクトご
とで定められ一般化できないため，全てに対応するのは困
難である．また，テストカバレッジなどの実行時パフォー
マンスに関しては，メソッド内のロジックを隠蔽するため
スタブでは再現できない．実際に，失敗原因となった高い
テストカバレッジを維持するにはテストケース内のロジッ
クを隠蔽すべきでないが，ほとんどのテストケースは他ク
ラスのメソッドに依存するため，可能な限り参照を隠蔽す
るスタブ方針と矛盾してしまう．ただし，失敗プロジェク
ト数自体が少ないことから，現行のスタブ作成方針を変更
する必要性は低い．そして，フォーマット規約によるビル
ド失敗に関しては，フォーマット規則が各プロジェクトで
固有に設定可能である以上，全てに対応することは不可能
である．
4.2.3 評価 2：結果と考察
評価 1における最小限テストが成功した 84プロジェク

トに対して，表 8に示したカテゴリごとに，スタブを用い
ないビルド成果物との差異を調査した．84プロジェクト
の内，39プロジェクトでは各カテゴリで差異が存在せず，
残りの 45プロジェクトではいずれかのカテゴリで差異が
存在した．各カテゴリごとの差異の原因と件数を表 10に
示す．ここで，Filesカテゴリにカウントされた差異が影
響し，他カテゴリでカウントされてしまう副次的な差異
が存在した．観測された副次的な差異としては，元のプ
ロジェクトで JARに含めるように指定されていたクラス
ファイルが，スタブの利用により生成されない（30件），
または別名で生成されてしまうことで（1件），中身が異
なる JARを生成し JAR Contentsカテゴリへと影響を及
ぼした（31件）．加えて，同様の Filesの差異によりクラ
スファイルのバージョン比較が行えず Class File Version

カテゴリへと影響を及ぼした（31件）．これらの副次的な
差異は，JAR Contents と Class File Version カテゴリか
らは除外し，各カテゴリごとの独立した差異のみを集計し

c⃝ 2026 Information Processing Society of Japan 7

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

た．表 10より，Files，JAR Contents，JAR Return Code，
Task Excecution Order，Test Reportsの 5つのカテゴリ
で差異が確認された．しかし，3.1節でも記載した通り，こ
れら全ての差異がスタブの副作用として許容できないわけ
ではない．ここで許容可能な差異とは，ビルド成果物の中
でも開発者が通常生成を期待しない一時ファイルなどに影
響するような，テストへ影響しない差異である．表 10の
許容可能かの列へそれぞれの差異が副作用として許容でき
るかを示す．これに基づき，これらの差異がアサーション
メソッド実行時にどのような影響を及ぼし，どの程度まで
なら副作用として許容できるかを以下で示す．
Files

許容可能な差異としては以下が挙げられる．
• 匿名クラス未生成
• ローカルクラス未生成
• 異なるファイル名
まず匿名クラスやローカルクラス未生成に関して，これら
の内部クラスが生成されない差異が多く確認され，特に匿
名クラスによるものが大部分を占める．通常，スタブ生成
のための処理規則ではクラス内に宣言された内部クラスに
関しても再帰的に保持されるが，匿名クラスやローカルク
ラスのような一時的な内部処理のために宣言される補助的
なクラスに関しては，スタブ生成時にクラス宣言として認
識できないため保持されずクラスファイルも生成されない．
しかし，これらの補助的なクラスのクラスファイルは開発
者が明示的に参照・操作する対象ではない．これらのクラ
スファイルは通常 OuterClass$1のように連番付きで生成
され，ビルド結果の検証や公開の際に個別に認識されない．
そのため，スタブの利用によりこれらのクラスファイルが
欠落しても，開発者が期待するであろうビルドスクリプト
が本来生成すべき主要なクラスファイルには影響しない．
したがって，この差異はスタブの副作用として許容可能で
ある．次に，jgitverプラグイン適用により異なるファイル
名の生成に関しては，スタブ作成過程で未コミット状態の
ファイルが生じるため避けられないが，このプラグインを
利用するプロジェクト自体が少数であるため許容可能であ
る．一方で，許容できない差異としては以下が挙げられる．
• Builder.class未生成
• マッピングファイル未生成
• package-info.class未生成
これら全ての差異は共通して依存関係先のアノテーショ
ンの隠蔽に起因している．またこれらのファイルは，ビル
ドスクリプトで定義したタスクにより自動生成される．そ
のため，これらのファイルの生成をテストで検証する際に
ファイルが未生成だと，ビルドスクリプト内のタスク定義
が正しいにも関わらずテストに失敗し，タスクが正常に動
作していないと開発者に誤解を与える可能性がある．した

がってこれらの差異は許容できない副作用である．
JAR Contents

許容可能な差異として匿名クラス未生成が挙げられる．
これは Filesの場合と同様にスタブの副作用として許容可
能である．一方で，許容できない差異としては以下が挙げ
られる．
• Javadoc関連ファイル未生成
• Mixin等設定ファイル未生成
• 未使用依存関係除外
まず，Javadoc関連の HTMLファイルやMixin等の設定
ファイルの未生成などは，Javadoc コメントや Mod アノ
テーション等の隠蔽に起因している．これらのファイルは，
Filesでの許容できない差異と同様にビルドスクリプトで定
義したタスクにより自動生成される．よってこれらのファ
イルが生成されないと，開発者へタスクが正常に動作して
いないと誤解を与える可能性があるため，これらの差異は
許容できない副作用である．また未使用依存関係除外につ
いては，ビルドスクリプト内で使用される minimize()に
より，スタブ中で使用されていない依存関係が JARから
除外されることで差異を生じる．スタブでは可能な限り参
照を隠蔽するため，利用する依存関係はテストケースに関
するもののみであり大部分のクラスファイルが JAR内か
ら削除されてしまう．よってビルドスクリプトで定義した
JARに含めるクラスパスが誤っていると開発者に誤解を
与える可能性があるため，この差異は許容できない副作用
である．
Jar Return Code

許容できない差異として成功する実行可能 JAR生成が
挙げられる．スタブにより，JARに含まれる mainメソッ
ド内のロジックが隠蔽されるため，生成された実行可能
JARが必ず正常終了する．これにより，JARの依存関係
などのビルドスクリプトの記述にバグが存在した場合に，
本来異常終了する JARが正常終了してしまいバグを検出
できなくなるため，この差異は許容できない副作用である．
Task Execution Order

許容可能な差異として，タスクの実行数減少・早期終了
が挙げられる．スタブにより，一部のアノテーションやク
ラス定義が隠蔽されるため，タスクの実行数が減少したり，
特定のタスクが早期終了する．これにより，ログ上でタス
ク実行順序に変化が生じる例も見られた．しかし，Gradle

ではタスクの実行順は原則として dependsOnなどの依存
関係によって制御され，その他の依存関係を持たないタス
ク同士の実行順序は保証されない．そのため，これらの実
行順序の変化は開発者の意図に反するものではなく，許容
可能な副作用である．
Test Reports

許容できない差異として継承テスト消失が挙げられる．

c⃝ 2026 Information Processing Society of Japan 8

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

表 10: 差異カテゴリごとに確認されたビルド成果物の差異の原因分類
カテゴリ 原因 詳細 件数 許容可能
Files 匿名クラス未生成 匿名クラスが隠蔽され生成されない 34 ○

Builder.class 未生成 Lombok の@Builder が隠蔽され生成されない 4 ×
ローカルクラス未生成 メソッド隠蔽によりローカルクラスも隠蔽され生成されない 1 ○
マッピングファイル未生成 Mixin の@Mixi が隠蔽され生成されない 1 ×
異なるファイル名 jgitver により未コミット状態のファイル名に dirty 付与される 1 ○
package-info.class 未生成 RUNTIME アノテーションが隠蔽されコンパイル対象外となる 1 ×

JAR Contents Javadoc 関連ファイル未生成 Javadoc 文が隠蔽され HTML 成果物が生成されない 5 ×
Mixin 等設定ファイル未生成 Mixin の@Mod 等が隠蔽され生成されない 4 ×
匿名クラス未生成（JAR 内） 匿名クラスが隠蔽され生成されない 2 ○
未使用依存関係除外 minimize() 使用により未使用外部ライブラリが除外される 1 ×

JAR Return Code 成功する実行可能 JAR 生成 Javaソースコードの参照やロジック隠蔽されるため必ず正常終了する 9 ×
Task Execution Order 実行数減少・早期完了 不要な処理が隠蔽され実行されず順序が変化する 4 ○
Test Reports 継承テスト消失 クラス継承でオーバーライドされないテストケースが隠蔽される 1 ×

スタブにより，他テストクラス継承時にオーバライドされ
ないテストケースが隠蔽され testタスクで実行されず，
それらのテストケースに対応するテストレポートが生成さ
れない差異が生じた．テストレポートは，Filesでの許容で
きない差異と同様にビルドスクリプトで定義した testタ
スクにより自動生成される．よってテストレポートが生成
されないと，開発者へ testタスクが正常に動作していな
いと誤解を与える可能性があるため，これらの差異は許容
できない副作用である．
4.2.4 スタブ副作用への対策
評価 1と評価 2で現れたビルドプロセスの失敗及びビル

ド成果物への差異といったスタブの副作用の内容を基に，
スタブ作成方針を示す．
ビルドプロセスの失敗
評価 1にて観測されたスタブの副作用は表 9に示す通り

であり，各失敗原因ごとに対策を考える．まず他言語ファ
イルや構成ファイル，タスクからの参照先がスタブで存在
しないような依存欠如によるビルド失敗に関しては，スタ
ブの保持メソッドの利用が考えられる．参照される構文要
素を保持するスタブを生成することで，ソースコード中の
ビルド失敗要因を隠蔽しながら参照によるビルド失敗も
防ぐことができる．ただし，保持メソッドを用いたとして
も依存が多く失敗してしまう場合に関しては，実プロジェ
クトを用いたビルド実行が考えられる．3.2節でも示すよ
うにビルド実行を行う GradleRunnerで元のプロジェクト
を指定することで，スタブを用いずにビルドを実行し副作
用を防ぐことができる．ただしスタブを利用しないため，
Javaソースコード内に実行時エラー等のビルド失敗要因が
含まれる場合，それらは隠蔽されずビルドが失敗する可能
性がある．そのため，スタブ対象外のファイルからの参照
を事前に把握しており，かつ参照先の構文要素の依存が少
ない場合には，保持メソッドを用いて参照先の構文要素を
保持したスタブの作成を推奨する．また，参照を事前に把
握できない場合には一度スタブを用いて実行し，ビルド失

敗時に参照先を把握し，保持メソッドで対応可能な構文要
素であれば参照先を保持したスタブの作成を推奨する．ま
た，保持メソッドで対応できない場合にはスタブを用いず
元のプロジェクトを用いたビルドの実行を推奨する．
次に静的解析違反や動作期待未達によるビルド失敗に関

しては，GradleRunnerで元のプロジェクトを用いたビル
ドが考えられる．4.2.2節にも記載する通り，フォーマット
規則は全てのプロジェクトで固有に設定可能であるため，
スタブが固有の規則に対応できず違反する可能性が高い．
またテストカバレッジ等の動作期待を設けている場合，こ
れを達成するためには該当するメソッド等の全ロジックを
保持する必要があるが，テストケース等のロジックは基本
的には別クラスのメソッドなどに依存するため保持メソッ
ドによる対応は困難となる．そのためこれらのタスクを実
行するビルドスクリプトでは，元のプロジェクトを用いた
ビルドの実行を推奨する．
ビルド成果物への差異
評価 2で観測されたスタブの副作用のうち，アサーショ

ンメソッドの検証に影響しない許容可能な差異について
は，テスト結果に影響を与えないため特段の対応は不要で
ある．そのためスタブ作成方針を検討すべき対象は，表 10

に示す許容可能列で許容できないとされた，検証に影響を
及ぼす差異に限られる．これらの差異を防ぐための対策を
以下に示す．
まず Builder.class やマッピングファイル未生成，設定

ファイル未生成，Javadoc関連ファイル未生成，継承テスト
消失といったアノテーションや Javadocコメント，テスト
ケースなどの特定の構文要素がスタブで隠蔽されることで
ビルド成果物に差異を生じる場合は，スタブの保持メソッ
ドの利用が考えられる．保持メソッドによりこれらの構文
要素を保持するスタブを生成することで，正常にビルド成
果物を生成できる．ただし，これらの構文要素を保持する
ことにより参照不整合が生じてしまう場合には，ビルドプ
ロセスが失敗する副作用への対策と同様に GradleRunner

c⃝ 2026 Information Processing Society of Japan 9

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

で元のプロジェクトを用いてビルドを実行することでビル
ド成果物を生成できる．そのため，検証したいファイルの
生成に必要な構文要素がスタブにより隠蔽されることを把
握しており，かつ保持することで参照不整合を生じない場
合には，保持メソッドを用いてこれらの構文要素を保持し
たスタブの作成を推奨する．また把握できない場合には，
一度通常のスタブを用いて未生成のファイルを検証するテ
ストを実施する．そのテストが失敗した際には，Javaソー
スコード内に該当する構文要素が存在しないことを確認
し，保持メソッドで対応可能な構文要素であればそれらを
保持したスタブの作成を推奨する．また，保持したい構文
要素の依存先が多いなど保持メソッドでは対応できない場
合には，スタブを用いず元のプロジェクトを用いたビルド
の実行を推奨する．
次に，JAR内の未使用依存関係の除外や常に正常終了す

る JARが生成されてしまう差異については，GradleRunner
で元のプロジェクトを用いたビルドが考えられる．4.2.3節
にも記載する通り，これらは依存の多い mainメソッドや
テストケースなどのロジックを保持する必要があり，保持
メソッドでの対応は困難となる．そのため，JARの実行検
証などの依存の多いロジックを保持したままビルドを実行
する必要があるテストケースの場合は，元のプロジェクト
を用いたビルドの実行を推奨する．

4.3 実験 2：エラー隠蔽効果の検証
4.3.1 実験設計
本実験では，スタブを用いることで Javaソースコード

に存在するビルド失敗要因を隠蔽できているか検証する．
巨大なシステムを開発する際に，システムをより細かな部
品に分解して開発を進めるという考え方は広く受け入れら
れており [16]，この部品化の考えは Javaソースコードと
ビルドスクリプトにも適用できる．これによりシステムの
本質的なロジックとは独立に，システムのビルド方法も開
発を進めることができる．このときに，ソースコードとは
切り離されたビルドスクリプトのテストを用意しておくこ
とで，ソースコードの影響を可能な限り軽減し，ビルドス
クリプトそのものの正しさを自動検証できる．そのため本
実験では，Javaソースコード側に欠陥が含まれていると
いう状況下において，スタブによりその欠陥を隠蔽しビル
ドスクリプトに記述されたロジックそのものを適切に検証
できるかを評価する．検証では，実験 1で最小限テストが
成功したプロジェクトの一部を対象にビルド失敗要因を注
入し，実験 1同様に最小限テストを実行する．注入するビ
ルド失敗要因は，ランタイムエラーとアサーションエラー
である．確実にこれらのエラーを発生させるために，プロ
ジェクト内のテストクラスを 1つ選択し各エラーに対応す
るテストケースを配置する．これにより，testタスクで確

実に注入したエラーが発生する．スタブにより Javaソー
スコードのビルド失敗要因が隠蔽できビルド成果物への影
響がないか評価するため，最小限テストの成功率と，実験
1で評価した「スタブなしビルド成果物との差異」と比べ
て新たに生じた差異の有無を確かめる．
実験対象として，実験 1で最小限テストに成功したプロ

ジェクトの中から，以下条件を満たすものを star数の多い
順で 3プロジェクト選択する．
• buildディレクトリ下に classes及び libsが存在し，ファ
イルが 1つ以上生成されている

• testタスクが実行されている
1つ目の条件は，実験 1から新たに成果物に生じた差異を
確かめる上で，ある程度の成果物が存在していることが望
ましいためである．2つ目の条件は，注入したビルド失敗
要因が確実に実行されるためである．
4.3.2 結果と考察
結果として，いずれのプロジェクトでも最小限テストが

成功した．さらに，実験 1で確認された「スタブなしビル
ド成果物との差異」と比べて新たな差異も生じなかった．
一方で，ビルド失敗要因注入後のプロジェクトに対してス
タブを用いずに./gradlew buildを実行すると，各プロ
ジェクトは注入した 2つのテストケースが原因で testタ
スクでビルドが失敗した．これはすなわち，スタブによっ
て欠陥の隠蔽に成功しているといえる．

4.4 実験 3：ビルド実行時間短縮効果の検証
4.4.1 実験設計
本実験では，スタブを用いることでビルド実行時間を

短縮できているか検証する．本来のスタブの実装目的は，
Javaソースコード側に存在し得る欠陥を隠蔽することに
あるが，3.1節で示す通りスタブでは元の Javaソースコー
ドから検証対象であるビルド成果物に影響しない構文要
素が除外される．そのため，スタブを利用する副次的な効
果としてビルド成果物生成に不要な処理が実行されず，ビ
ルド実行時間の短縮が期待できる．検証では，実験 1で最
小限テストが成功した 84プロジェクトを対象に最小限テ
スト内のスタブ生成時間及びビルド時間を計測する．また
比較対象として同プロジェクトに対し，スタブを用いない
buildタスクの実行時間を計測する．スタブの利用有無に
限らずビルドは同一環境で計 5回実行されその平均値を計
測時間とする．また，各ビルド環境を統一するため増分ビ
ルドキャッシュは用いずにビルドを実行する．これらのス
タブを用いたビルドと用いないビルドでの実行時間の比較
により評価を行う．
4.4.2 結果と考察
結果として，スタブの利用により全てのプロジェクトで

ビルド時間の短縮が確認できた．対象プロジェクトにおけ

c⃝ 2026 Information Processing Society of Japan 10

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

表 11: ビルド時間とスタブ生成時間に関する平均値
nostub(sec) stub(sec) speedup(×)

Build Gen Build Total Build Total

average 18.0 0.40 9.02 9.42 2.65 1.91

る計測結果の平均値を表 11に示す．スタブを利用しない
ビルド時間が 18.0秒であるのに対し，スタブを用いたビ
ルド時間は 9.02秒であり全体で 2.65倍高速化できている．
また，提案手法のオーバーヘッドとなるスタブ生成時間は
0.40秒とビルド時間に比べて十分小さく，スタブ生成時間
を含めたビルド時間に関しても 9.42秒とスタブを用いない
ビルドと比べ全体で 1.91倍高速化できている．そのため，
スタブの利用によりビルド時間は短縮できビルドスクリプ
トのテストにおける時間的コストを削減可能だといえる．

5. ケーススタディ
提案手法の有効性を確認するため，提案手法を用いて実

在するバグを検出できるか検証する．検証対象として 3.2

節で収集したバグ事例に基づき，以下に示すバグを再現す
る 2つのプロジェクトを作成した．各プロジェクトが対応
する表 4のカテゴリの IDを併記している．
• プロジェクト 1：期待通りでない JAR（B2.1）
• プロジェクト 2：ビルド続行阻止（B3.4）
これらのプロジェクトに対して，バグを含むビルドスク
リプトと，バグによる出力，バグを検出するためのテスト
ケース，バグ検出時の出力をそれぞれ示す．

5.1 期待通りでない JAR

ここでは，開発者の期待通りでない JARを生成するプロ
ジェクトについて提案手法を適用する．前提として，開発者
はビルドにより正常終了する実行可能 JARの生成を期待し
ている．まずは，JAR生成に関してバグを含むビルドスクリ
プトとバグによる出力を図 6に示す．図 6(a)のビルドスク
リプトでは，JARに含める依存関係に compileClasspath

を指定している（8行目）．そのため，コンパイル時の依
存関係のみが JARへ含まれ実行時に必要な推移的依存関
係は含まれない．しかし，このプロジェクトは utilsプロ
ジェクトへ依存しているため（3行目），生成された JARを
実行すると図 6(b)の通り，utilsプロジェクトが依存する
com/google/common/base/Stringsが JARへ含まれず実
行時エラーを出力する．
このバグを検出するためのテストケースと検出時の出力

を図 7に示す．図 7(a)はテストケースであり，スタブの
作成とビルド実行は図 5に示すものと同様であるため省略
する．例えば推移的依存関係を含んでいるかは，検出対象
の app.jarを抽出し，contains()で推移的依存と思われ
るライブラリのクラスファイルを 1つ指定することで検証
できる（3-4行目）．図 7(a)のテストケースによるバグ検

1 ...

2 dependencies {

3 implementation project(":utils")

4 }

5 jar {

6 from {

7 // BUG: compileClasspath では推移的依存が含まれない
8 configurations.compileClasspath.filter{it.exists()}

9 .collect{it.isDirectory() ? it : zipTree(it)}

10 }

11 }

(a) 期待通りでない JARを生成するビルドスクリプト

Exception in thread "main" java.lang.NoClassDefFoundError:

com/google/common/base/Strings at ...

(b) 依存関係の欠如による JAR実行時エラー出力
図 6: バグを含むビルドスクリプトと JAR実行時出力

1 @Test void testJar() {

2 ... // スタブ生成とビルド実行は省略
3 assertThat(artifact).extractingFile("app.jar")

4 .contains("com/google/common/base/Strings.class");

5 }

(a) 依存関係の欠如を検出するテストケース例

BscriptTest > testJar() FAILED

java.lang.AssertionError:

Expected file <com/google/common/base/Strings.class>

to be in JAR <app.jar>, but it was not found.

(b) バグ（依存関係の欠如）検出時の出力
図 7: JARに関するテストケースと検出時の出力

出時の出力を図 7(b)に示す．図 7(b)は，contains()実
行時のアサーションエラーである．出力から，指定した推
移的依存関係が JARに含まれていないことがわかり，バ
グを検出できる．

5.2 ビルド続行阻止
ここでは，ビルドの続行を阻止するプロジェクトについ

て提案手法を適用する．前提として，開発者は testタス
クでテストが失敗した場合でも，その後に続くレポート出
力やソースコードのフォーマットチェックのため，ビルド
を続行したいと考えている．まずは，ビルド続行において
バグを含むビルドスクリプトとバグによる出力を図 8に示
す．図 8(a)のビルドスクリプトでは，ignoreFailuresを
trueとしてテストが失敗しても，testタスクを成功とみ
なしビルドを続行するよう設定されている（4行目）．しか
し，テスト失敗時の後処理としてログ出力をしており（5-12

行目），その際に result.failuresリストの存在しない要
素を参照している（9行目）．これにより，testタスクで
テストが失敗した際にビルドスクリプトで参照エラーとな
り，図 8(b)の通り意図せず実行時エラーが出力されビル

c⃝ 2026 Information Processing Society of Japan 11

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

1 ...

2 test {

3 useJUnitPlatform()

4 ignoreFailures = true // テストに失敗してもビルド継続
5 afterSuite { desc, result -> // テスト失敗時にログ出力
6 if (!desc.parent) {

7 if (result.failedTestCount > 0) {

8 // BUG: 参照によるランタイムエラー
9 println "${result.failures[6].message}"

10 }

11 }

12 }

13 }

(a) ビルドが続行できないビルドスクリプト

4 tests completed, 3 failed

> Task :test

FAILURE: Build failed with an exception.

(b) 実行時エラーによる buildタスク中断時の出力
図 8: バグを含むビルドスクリプトとビルド実行時出力

ドが中断してしまう．また，全てのテストケースが成功し
た場合にはこのバグは顕在化せず，バグが見逃される可能
性もある．
このバグを検出するためのテストケースと検出時の出力

を図 9に示す．図 9(a)はテストケースであり，ビルド実
行は図 5に示すものと同様であるため省略する．ここで検
証すべきは，テスト失敗時にビルドが続行できているかで
ある．しかし，通常のスタブではテストケース内のロジッ
クは全て隠蔽されテストは失敗しない．そのため，指定し
たファイルでテスト失敗を誘発するスタブのエラー注入メ
ソッド injectTestFailure()を実行している（3行目）．
これにより，テストが必ず失敗するスタブが作成され理想
の検証環境を構築できる．テスト失敗時にビルドが続行さ
れているかどうかは，testタスクの実行成否を検証すれば
よいため，testタスクに対して containsTaskOutcome()

を実行することで検証している（7行目）．図 9(a)のテスト
ケースによるバグ検出の出力を図 9(b)に示す．図 9(b)は，
containsTaskOutcome()実行時のアサーションエラーで
ある．出力から，testタスクが失敗しておりテストが失
敗する場合にビルドを続行できていないことがわかり，バ
グを検出できる．

6. 関連研究
ビルド失敗に関する原因を調査した研究として，Louら

は [17]，Stack Overflowのビルド関連質問 1,080件を解析
し，ビルドエラーの原因を 50のカテゴリに分類した．エ
ラー症状として，ビルドスクリプトが起因となる依存関係
エラー（19.6%）や構文エラー（15.5%）などが特に多く，大
半は依存関係の追加などのビルドスクリプトの修正によっ
て解決可能であると示した．また Rauschらは [18]，14の

1 @Test void testBuildExecutableWithError() {

2 StubProject project = StubGenerator.from("android-app")

3 .injectTestFailure("TestUtils.java")

4 .generate();

5 ... // ビルド実行は省略
6 assertThat(artifact).extractingLog()

7 .containsTaskOutcome("test", "SUCCESS");

8 }

(a) testタスク失敗を検出するテストケース例

BscriptTest > testBuildExecutableWithError() FAILED

java.lang.AssertionError:

Expected task <test> to have outcome <SUCCESS>,

but actual outcome was <FAILED> at ...

(b) バグ（ビルド中断）検出時の出力
図 9: ビルド続行に関するテストケースと検出時の出力

OSS Javaプロジェクトの CIログを調査し，分類した 14

の失敗原因においてビルドスクリプトが起因となるビルド
失敗が 4番目に多いことを示した．
ビルド工程に存在する欠陥を検出する研究として，

Sotiropoulos らは [19]，増分ビルド及び並列ビルドを実
行する上でのビルドスクリプトの欠陥の自動検出ツールを
提案した．提案手法は，ビルドスクリプトの記述内容とビ
ルドツールによる実際のファイル操作を比較することに
より，ビルドスクリプトの入出力や依存に関する宣言誤り
を検出できる．これを用いて，47の OSSプロジェクトに
存在する 247件の欠陥を報告した．また Hassanらは [20]，
ビルドスクリプトに存在する欠陥の自動修正ツールを提案
した．提案手法は，Gradleビルドスクリプトに対する修正
履歴から修正パターンを解析し，新たなビルド失敗に対し
ても類似する修正パターンを適用することで自動修正を可
能にする．これを用いて，24件の再現可能なビルド失敗の
うち 11件（45%）を自動修正できた．
これらの既存研究では，ビルドスクリプトに起因するビ

ルド工程の欠陥の分類や検出が行われている．しかし，こ
れらは増分・並列ビルド特有の欠陥や明示的なビルドエ
ラーの検出を目的としており，ビルドスクリプトの作用が
開発者の期待通りでない欠陥は検出できない．Gradleの
ビルドスクリプトはソースコードであるため，ソースコー
ドの動作が開発者の期待通りであるか検証するためには，
開発者自身が検証項目を定義したテストを行うべきであ
る [12]．そのため，本研究ではビルドスクリプトの検証に
特化したテストライブラリを提案し自動テストを可能に
する．

7. おわりに
本研究では，ビルドスクリプトに対するテストを目的と

して，Gradleのビルドスクリプトの検証に特化したテス
トライブラリを提案した．テストライブラリはスタブとア

c⃝ 2026 Information Processing Society of Japan 12

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

サーションメソッドから構成され，有効性の評価のために
評価実験とケーススタディを実施した．その結果，対象プ
ロジェクトの 8割以上へ提案手法が適用可能であり，実在
するバグの検出も可能であることを確認した．また，スタ
ブの副次的な効果としてビルド実行時間を短縮することも
確認した．
今後の課題として，バグ事例の調査及びアサーションメ

ソッドの実装が挙げられる．現時点でのアサーションメ
ソッドは，表 4に示すバグ事例の検出を目的として実装し
ている．しかし，これらが現時点でビルドスクリプトのバ
グの一部を示すことから，より多くのバグへ対応するには
バグ事例の追加調査及びそれに基づく新たなアサーション
メソッドの実装が求められる．
また今後の拡張として，他ビルドツールへの適用が考え

られる．提案手法ではビルドスクリプトに対する静的解析
などを必要とせず，ビルドによって生成されたビルド成果
物を検証することでビルドスクリプトのバグを検出してい
る．そのため，この手法は特有のビルドツールへと依存せ
ず Javaソースコードを対象とした他のビルドツールへと適
用可能な汎用性を持つ．他の主要な Java用のビルドツー
ルとしてはMavenなどが存在するが，Mavenにおいても
ビルド実行により Gradle同様に決められたフォルダへビ
ルド成果物を配置する．そのため，アサーションメソッド
によるビルド成果物への検証をMavenなどのビルド成果
物に対しても拡張できれば，他ビルドツールへの適用も可
能だと考える．
謝辞 本研究の一部は，JSPS 科研費（JP25K15056,

JP25K03102, JP24H00692）による助成を受けた．

参考文献
[1] Misu, M. R. H., Achar, R. and Lopes, C. V.: Sourcer-

erJBF: A java build framework for large-scale com-
pilation, Transactions on Software Engineering and
Methodology, Vol. 33, No. 3, pp. 1–35 (2024).

[2] Fan, G., Wang, C., Wu, R., Xiao, X., Shi, Q. and Zhang,
C.: Escaping dependency hell: finding build dependency
errors with the unified dependency graph, Proceedings
of International Symposium on Software Testing and
Analysis, pp. 463–474 (2020).

[3] Liu, P., Li, L., Liu, K., McIntosh, S. and Grundy, J.:
Understanding the quality and evolution of Android app
build systems, Journal of Software: Evolution and Pro-
cess, Vol. 36, No. 5, p. e2602 (2024).

[4] Spall, S., Mitchell, N. and Tobin-Hochstadt, S.: Build
scripts with perfect dependencies, In Proceedings of the
ACM on Programming Languages, Vol. 4, No. OOP-
SLA, pp. 1–28 (2020).

[5] Hassan, F., Mostafa, S., Lam, E. S. and Wang, X.: Au-
tomatic building of java projects in software repositories:
A study on feasibility and challenges, In Proceedings of
International Symposium on Empirical Software Engi-
neering and Measurement, pp. 38–47 (2017).

[6] Zhang, C., Chen, B., Hu, J., Peng, X. and Zhao,
W.: BuildSonic: Detecting and repairing performance-

related configuration smells for continuous integration
builds, In Proceedings of International Conference on
Automated Software Engineering, pp. 1–13 (2022).

[7] Kerzazi, N., Khomh, F. and Adams, B.: Why do auto-
mated builds break? an empirical study, In Proceedings
of International Conference on Software Maintenance
and Evolution, pp. 41–50 (2014).

[8] Lyu, J., Li, S., Zhang, H., Zhang, Y., Rong, G. and Rig-
ger, M.: Detecting build dependency errors in incremen-
tal builds, In Proceedings of International Symposium
on Software Testing and Analysis, pp. 1–12 (2024).

[9] Lyu, J., Li, S., Liu, B., Zhang, H., Rong, G., Zhong, C.
and Liu, X.: Detecting Build Dependency Errors by Dy-
namic Analysis of Build Execution Against Declaration,
Transactions on Software Engineering, Vol. 51, No. 6,
pp. 1745–1761 (2025).

[10] Nejati, M., Alfadel, M. and McIntosh, S.: Understanding
the implications of changes to build systems, In Proceed-
ings of International Conference on Automated Soft-
ware Engineering, pp. 1421–1433 (2024).

[11] Nejati, M., Alfadel, M. and McIntosh, S.: Code review
of build system specifications: Prevalence, purposes,
patterns, and perceptions, In Proceedings of Interna-
tional Conference on Software Engineering, pp. 1213–
1224 (2023).

[12] Spadini, D., Palomba, F., Baum, T., Hanenberg, S.,
Bruntink, M. and Bacchelli, A.: Test-driven code review:
an empirical study, In Proceedings of international con-
ference on software engineering, pp. 1061–1072 (2019).

[13] Xiong, J., Shi, Y., Chen, B., Cogo, F. R. and Jiang,
Z. M.: Towards build verifiability for java-based sys-
tems, In Proceedings of International Conference on
Software Engineering: Software Engineering in Prac-
tice, pp. 297–306 (2022).

[14] Wu, R., Chen, M., Wang, C., Fan, G., Qiu, J. and
Zhang, C.: Accelerating build dependency error detec-
tion via virtual build, In Proceedings of International
Conference on Automated Software Engineering, pp. 1–
12 (2022).

[15] Leotta, M., Cerioli, M., Olianas, D. and Ricca, F.: Flu-
ent vs basic assertions in Java: an empirical study, In
Proceedings of International conference on the qual-
ity of information and communications technology, pp.
184–192 (2018).

[16] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Maz-
zara, M., Montesi, F., Mustafin, R. and Safina, L.: Mi-
croservices: yesterday, today, and tomorrow, Journal of
Present and ulterior software engineering, pp. 195–216
(2017).

[17] Lou, Y., Chen, Z., Cao, Y., Hao, D. and Zhang, L.: Un-
derstanding build issue resolution in practice: symptoms
and fix patterns, In Proceedings of Joint Meeting on
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 617–628
(2020).

[18] Rausch, T., Hummer, W., Leitner, P. and Schulte, S.: An
empirical analysis of build failures in the continuous in-
tegration workflows of java-based open-source software,
In Proceedings of International Conference on Mining
Software Repositories, pp. 345–355 (2017).

[19] Sotiropoulos, T., Chaliasos, S., Mitropoulos, D. and
Spinellis, D.: A model for detecting faults in build spec-
ifications, In Proceedings of the ACM on Programming
Languages, Vol. 4, No. OOPSLA, pp. 1–30 (2020).

[20] Hassan, F. and Wang, X.: HireBuild: an automatic ap-

c⃝ 2026 Information Processing Society of Japan 13

情報処理学会論文誌 Vol.67 No.4 1–14 (Apr. 2026)

proach to history-driven repair of build scripts, In Pro-
ceedings of the International Conference on Software
Engineering, pp. 1078–1089 (2018).

藪下 友
2024年大阪大学基礎工学部情報科学
科卒業．同年より同大学大学院情報科
学研究科コンピュータサイエンス専攻
博士前期課程在学中．ソフトウェアテ
ストに関する研究に従事．

柗本 真佑 （正会員）

2010年奈良先端科学技術大学院大学
博士後期課程修了．同年神戸大学大
学院システム情報学研究科特命助教．
2016年大阪大学大学院情報科学研究
科助教．2024 年同准教授．博士（工
学）．エンピリカルソフトウェア工学

の研究に従事．

楠本 真二 （正会員）

1988 年大阪大学基礎工学部卒業．
1991 年同大学大学院博士課程中退．
同年同大学基礎工学部助手．1996年
同講師．1999年同助教授．2002年同
大学大学院情報科学研究科助教授．
2005年同教授．博士（工学）．ソフト

ウェアの生産性や品質の定量的評価に関する研究に従事．
情報処理学会，IEEE，JSSST, IEICE, SPM，MCIS, SEA

各会員．

c⃝ 2026 Information Processing Society of Japan 14

