Towards the Automatic Restructuring of Software
Requirements Specifications to Conform to
Standards Using Large Language Models

Ryu Okamoto

Graduate School of Information Science and Technology
The University of Osaka
Osaka, Japan
r-okamot@ist.osaka-u.ac.jp

Abstract—Software requirements specifications (SRS) are es-
sential to the success of software development. It is widely
recognized that the quality of SRSs affects both the quality of
their product and project results. IEEE 830 and ISO/IEC/IEEE
29148 are the international standards for the requirements
process and SRSs. These standards provide recommended section
structures and content of SRSs. However, a study has shown
that many organizations have not adopted these standards due
to a lack of knowledge or cost constraints. Indeed, there is a
wide variety of SRS structures. This paper explores an approach
for automatically converting SRSs with any structures into the
standard structure. It is considered beneficial to standardize
SRS structures. A key benefit is that it facilitates research on
SRSs. It makes the assumption that SRSs in research follow
the standard structure more realisticc As a matter of fact,
some studies have assumed that sections of a SRS correspond
to those of the standard structure. To achieve SRS structural
standardization, we use a large language model (LLM) that
demonstrates high natural language processing capability. We
designed simple prompts and assessed the feasibility of an LLM.
As a result, standardized SRSs contained about 80% of the
required items in the standard structure, but they could not fully
retain all information from the original SRSs. Observations of the
results suggest that prompts should be designed to consider the
size equivalence before and after standardization and relations
between sections.

Index Terms—requirements engineering, software require-
ments specification, SRS, restructuring, international standards,
ISO/IEC/IEEE 29148, large language models, LLM

I. INTRODUCTION

A software requirements specification (SRS) is a document
that delineates the specifications of its software. SRSs are
essential for successful software development. Studies have
reported that the quality of SRSs impacts both the quality of
their products and project results [1][2]. Many studies on SRSs
have been conducted with natural language processing (NLP)
techniques [3] because SRSs are often written in natural lan-
guage like English. Recently, the number of studies utilizing
large language models (LLM) that achieve high performance
in NLP tasks has been increasing [4].

ISO/IEC/IEEE 29148 [5] and IEEE 830 [6] are the interna-
tional standards for the requirements process and SRSs. They
provide the required quality attributes and recommend section

Shinji Kusumoto
Graduate School of Information Science and Technology
The University of Osaka
Osaka, Japan
kusumoto.shinji.ist@osaka-u.ac.jp

structures for SRSs. Franch et al. surveyed the knowledge and
use of these standards in industry [7]. They have reported that
slightly less than half of requirements engineering practitioners
are unaware of the standards. They also have found that even
those who know the standards do not often use them due to
a lack of knowledge, organizational culture, and cost. Indeed,
even if we limit ourselves to the structure of SRSs, there is a
wide variety in its form.

It is considered beneficial to standardize the structures of
SRSs. Standardized SRSs can support communication among
internal and external stakeholders. Standards provide a com-
mon language and unified way of understanding. In the survey
by Franch et al., it was also mentioned that standards can
facilitate communication with the involved parties. In addition,
SRS structural standardization enables the application of SRS
research findings. In fact, some studies have assumed that
SRSs adhere to the standard structure or that sections of SRSs
can be associated with sections in the standard structure [8][9].
Aoyama and Nakane have proposed a method for analyzing the
quality of SRSs and an automated tool for it [8]. Although their
method accepts structural diversity in SRSs, its application
assumes that each section in target SRSs is mapped to a section
in the standard structure. Chikh and Aldayel have defined a
schema for managing traceability, targeting SRSs that follow
the structure recommended by IEEE 830 [9].

Therefore, in this study, we explore the new task of au-
tomatically restructuring SRSs to conform to the standard
structure. We use an LLM and assess its feasibility. Two key
requirements for standardized SRSs are retaining information
from their original SRSs and being organized appropriately
according to the standard. We applied standardization to actual
SRSs and assessed the results from these two perspectives.
We evaluated the standardized from the first perspective based
on automatic measurement of semantic textual similarity. For
the second perspective, we manually evaluated them using a
checklist of items that should be described in standardized
SRSs. As a result, the simple prompts we designed did not
fully retain information from the original in the standardized.
On the other hand, the checklist coverage rates are about 80%,
indicating that the LLM was able to restructure SRSs faithfully

to the standard. Furthermore, observation of the standardized
suggested the need to design prompts that consider the size
equivalence of the standardized and the original, as well as
relations between sections.

The code used in IV and V, including datasets, prompts,
and evaluation scripts, is available on Zenodo!

II. RELATED WORKS

ISO/IEC/IEEE 29148 [5] and IEEE 830 [6] are the inter-
national standards for SRSs. This study adopts ISO 29148
since IEEE 830 is superseded by it. Figure 1 shows a standard
structure of sections in an SRS provided by ISO 29148. ISO
29148 also describes what should be written in each section
except for section 3.4, Interface Requirements. For example,
section 3.3., Usability Requirements, requires descriptions of
the usability, quality requirements, and objectives while using
the software. In addition, those requirements can include
measurable criteria from perspectives such as effectiveness.

The standard structure can be seen as defining the essential
components that should be included in an SRS. In other
words, it can serve as a reference for evaluating the quality
of an SRS. Thitisathienkul and Prompoon have proposed a
method for assessing the quality of SRSs based on the presence
or absence of topics corresponding to each section in the
IEEE 830’s standard structure [10]. Their approach quantifies
the quality by linking the occurrence of sections to quality
attributes to be satisfied. Similarly, Takoshima and Aoyama
have defined an inspection matrix that associates sections
of the standard structure with quality attributes and assessed
practical SRSs using their framework [11]. To accommodate
structural differences among SRSs, they also introduced a
translation matrix, which maps the sections of a given SRS to
those of the standard structure. However, this matrix must be
manually created for each SRS, making it costly to implement.

LLMs like GPT-40? are language models trained with a vast
number of texts. They have demonstrated high capabilities in
NLP tasks such as text generation and translation. Research
integrating LLMs into requirements engineering is on the rise
[4], and some studies relate to specifications. Krishna et al.
have evaluated LLMs’ capability in creating and modifying
SRSs and investigated the effort reduction achieved through
LLM use [12]. They reported that although the generated
SRSs lacked detailed descriptions, they achieved a quality
comparable to those of entry-level software engineers. Based
on these results, they concluded that utilizing LLMs could en-
hance productivity. Norheim and Rebentisch have attempted to
structure requirements written in natural language using LLMs
[13]. Their approach transforms requirements into requirement
template structures like EARS [14] and semi-formal structures
like linear temporal logic. They reported that while traditional
rule-based methods required numerous custom rules, LLMs
could perform the transformation with only a few examples.
From these studies, we can glimpse the potential of applying

Thttps://doi.org/10.5281/zenodo. 15743755
Zhttps://openai.com/index/hello- gpt-40/

1 Introduction
1.1 Purpose
1.2 Scope
1.3 Product overview
1.3.1 Product perspective
1.3.2 Product functions
1.3.3 User characteristics
1.3.4 Limitations
1.4 Definitions
2 References
3 Requirements
3.1 Functions
3.2 Performance requirements
3.3 Usability requirements
3.4 Interface requirements
3.5 Logical database requirements
3.6 Design constraints
3.7 Software system attributes
3.8 Supporting information
4 Verification
(parallel to subsections in Section 3)
5 Appendices
5.1 Assumptions and dependencies
5.2 Acronyms and abbreviations

Fig. 1. The section structure presented in ISO/IEC/IEEE 29148 [5]

LLMs to tasks such as generating requirement specifications
and transforming requirement descriptions. Since the struc-
tural standardization of SRS can be viewed as a task of re-
generating its content in a different structural format, it is also
reasonable to explore the applicability of LLMs to this task.

III. STRUCTURAL STANDARDIZATION OF SRS

This study aims to transform an SRS with any given
structure into the standard structure. A standardized SRS
should satisfy two requirements: it retains all the necessary and
sufficient information from the original, and its information
is appropriately arranged according to the standard. In other
words, the transformation should standardize only the structure
while preserving the original content.

As the first step toward achieving this goal, we leverage an
LLM to standardize SRSs and assess their effectiveness. Based
on the two properties, we define the following two research
questions (RQs) and aim to answer them:

RQ1 To what extent does the SRS restructured using an LLM
retain information from the original SRS?

RQ2 To what extent does the SRS restructured using an LLM
adhere to the standard structure and descriptions?

IV. EXPERIMENTAL DESIGN

Figure 2 shows the flow of our experiment. We give an LLM
a target SRS and ISO 29148 to obtain a standardized SRS. We
repeat it five times to address the probabilistic instability of the

https://doi.org/10.5281/zenodo.15743755
https://openai.com/index/hello-gpt-4o/

=D

E
~ @ @:
ISO 29148 Structure Descriptions
v "
?B > prompt jb
=| 2« = |—j —a—) —
Original SRS @_ @_ LM Standardized SRS
bV

I
g

Necessit
ecessity ﬁ

Standardized SRS x5

Sufficiency
RQ1 Automatic evaluation ‘L§ + oy N
+ + v=
N N 55| |©
Q
j Faithfulness
Top@]1 SRS

RQ2 Manual evaluation

Fig. 2. The overview of our experiment

LLM’s outputs. For each standardized SRS, we automatically
evaluate the necessity and sufficiency of the standardized
using metrics defined later. Afterward, we select the highest
sufficiency and check its faithfulness to the standard with
our checklist. We use gpt—-40-2024-11-203, which is the
latest model in the cost-effective and high-performance GPT-
40 models.

A. Prompts design

What information we should give to the LLM is an original
SRS, the overall of standard structure, and the descriptions
of required content for each section. We should provide the
overall structure to ensure that each section is appropriately
balanced and organized. For example, although section 1.3.2,
Product functions, and section 3.1, Function, in ISO 29148
describe the same concept, functions, each has different gran-
ularity. Section 1.3 is Product overview, while section 3 is
Requirements. In other words, section 1.3.2 is about more
abstract features of functions than section 3.1.

We have designed two types of prompts in this study. One is
the most straightforward prompt, which gives all the informa-
tion and lets the LLM standardize an SRS simultaneously. We
refer to this prompt as P,;;. The other is a prompt that lets the
LLM standardize an SRS for each section. We give an SRS,
the overall standard structure, which section to be generated,
and descriptions of the section. This simple segmentation
reduces the number of tokens required for generation and can
improve the accuracy of the outputs. After all sections are
generated, we merge them into a standardized SRS. We refer
to this prompt strategy as P.,.n. Both prompts contain the
instruction, ‘“Retain necessary and sufficient information from

3https://platform.openai.com/docs/models/gpt-4o

the original SRS”. This is because one of the purposes of this
experiment is to evaluate generated SRSs from the viewpoint
of information retention. Both also contain “Output [N/A]
for any required content missing from the original SRS”. This
instruction aims to determine whether the LLM can recognize
that certain items required in standardized SRSs are absent
in their originals. Additionally, as a postprocessing step for
subsequent evaluation, we insert any required sections the
LLM failed to generate, with their content set to “[NULL]”.
We distinguish items the LLM overlooked from those that
were initially absent and indicated as “[N/A]”.

B. Dataset

We use some SRSs in PURE dataset [15] for this exper-
iment. Table I shows the SRSs with the number of words
and sentences after a preprocessing explained later. These
statistics were generated using the word_tokenize and
sent_tokenize from NLTK*. There are three criteria for
selecting the subjects. The first is that it declares itself as
SRS. Since PURE includes specifications that declare them-
selves as FRS (Functional Requirements Specification) or
SyRS (System Requirements Specification), we exclude them.
The second is that it does not contain any figures. In this
experiment, we target SRSs that consist of text only. (10)
contains a figure, but it is only displayed on the title page
without a caption. The figure does not provide any additional
information to readers. Therefore, we include (10). The third
is that it does not contain tables other than revision histories.
Unlike sentences, tables are read without a fixed direction.
The automatic evaluation process involves segmenting texts.
Tables are unsuitable for this evaluation because they lack
unique segmentation. However, revision histories are essential
content and cannot be excluded. They are typically represented
as tables with dates and version numbers as primary keys.
Thus, they can be converted into bullet lists.

As mentioned earlier, we preprocessed all the target SRSs.
First, we excluded the cover page, table of contents, footers,
and headers. This information is unnecessary for the LLM
to regenerate SRSs. Next, we punctuated all bullet items to
segment them into sentences for the automatic evaluation. If
an item was a complete sentence, we placed a period at the end
of the line; otherwise, we placed a comma. The last item was
followed by a period regardless of its content. This punctuation
was applied recursively in the case of nested.

“https://www.nltk.org/

TABLE I
SRS SUBJECTS IN PURE DATASET [15]

Name (abbr.) #words #sents
2001 - libra (01) 5,235 206
2003 - gheadache (03) 2,321 170
2007 - get real 0.2 (07g) 2,564 112
2007 - puget sound (07p) 4,064 187
2008 - vub (08) 8,353 417
2009 - library (09) 4,389 158
2010 - home 1.3 (10) 4,528 158

https://platform.openai.com/docs/models/gpt-4o
https://www.nltk.org/

C. Evaluation for RQI

We define the metrics necessity and sufficiency to quantita-
tively assess the extent to which standardized SRSs retain the
semantic information of the original. Let Sg;q and So,i, be the
sets of sentences from a standardized and an original SRSs,
respectively. The necessity, nec(Ssd, Sorig), and sufficiency,
suff (Sstd; Sorig), are formulated as follows:

nec(Sstd, Sorig) = mean max similarity(s, s'),
Slesorig SESstd

SuH(Sstda Sorig) = neC(Soriga Sstd)-

Intuitively, nec(Ssd, Sorig) captures the degree to which the
content of Sgig is semantically preserved in Sgq. A higher
value indicates that more information from So.s is present
in Sseq. Conversely, suff(Ssta, Sorig) measures the extent to
which the content of Syq is supported by So.is. These metrics
can be regarded as a sentence-level extension of BERTScore
[16]. By considering Sorig as the reference and Sgq as the
candidate, nec(Sstd, Sorig) and suff (Ssed, Sorig) correspond to
recall and precision, respectively.

We implement similarity(s,s’) as the cosine similar-
ity between sentence embeddings generated by SBERT
[17]. To obtain these embeddings, we use the pre-trained
all-MiniLM-L12-v23 model. As a preprocessing step, we
remove lines containing [N/A] or [NULL], and sections con-
sisting solely of such lines. This is because items judged to be
“not present” are often not explicitly stated in original SRSs.
For example, a document without references will typically not
include a statement such as “There are no references”. Con-
sequently, even when the LLM correctly identifies an absent
item by outputting [N/A], a direct comparison may lead to
an unfairly low evaluation score. After this preprocessing, we
segment SRSs into sentences using sent_tokenize.

There is no direct numerical interpretation of the cosine
similarity with SBERT. Therefore, we construct a simple map-
ping between values and interpretations using STSB (Semantic
Textual Similarity Benchmark) dataset®. STSB dataset was
initially created by Cer et al. It consists of pairs of English
sentences labeled on a six-point scale from 0 to 5 based
on their semantic relatedness [18]. For example, a sentence
pair labeled as 4 is judged as “The two sentences are mostly
equivalent, but some unimportant details differ”, 3 as “The
two sentences are roughly equivalent, but some important
information differs/missing”, and 2 as “ The two sentences are
not equivalent, but share some details”. We compute the cosine
similarity for each pair in the dataset and fit a linear regression
model to predict the normalized label. The left plot in Figure 3
shows the scatter plot of the cosine similarity and normalized
label for each pair of sentences. The right shows the residual
plot. As a result of fitting, the regression coefficient was about
0.9655, and the intercept was about —0.08175. The coefficient
of determination, i.e., R-squared, was approximately 0.721.
We interpret the necessity and sufficiency values based on the

Shttps://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
Shttps://huggingface.co/datasets/sentence- transformers/stsb

1.0 a sentence pair ;, ° 0.6

0.8 = 0.4
2
=0.6 02 =
3 :
N 0.0 2
T:a 0.4 ' &f’j
5 -0.2
2021

—0.4
- ®re
0.0 == =—oe —0.6

0.0 0.5 1.0 0.0 0.5 1.0
Cosine similarity Cosine similarity

Fig. 3. Linear regression using STSB dataset®. The left figure shows the
scatter plot of the cosine similarity and normalized label, including the
regression line. The right figure shows the residual plot.

estimated labels. In detail, the necessity label is calculated
as Ynee = D - (—0.08175 4 0.9655 - nec(Sstd, Sorig)). The
sufficiency label, ys,.f, is calculated in a similar manner.

D. Evaluation for RQ2

We check whether generated SRSs contain items that should
be described. We make a checklist about which items should
be written in standardized SRSs, referring to a formulation by
Boyarchuk et al. [19]. They formulated items required for each
standard section as sets. For example, about S_12 correspond-
ing to section 3.3, Usability, S_12 = {ubr, mec, mefc, msc}.
Each element is an item that is simplified descriptions from
ISO 29148, such as “ubr: usability requirements” and “mec:
measurable criteria of effectiveness in specific use contexts”.

However, we made two modifications when creating the
checklist. First, we added several items. The formulation by
Boyarchuk et al. does not include sections 1.4, 2, and 5.2 of
the standard structure. Therefore, based on ISO 29148, we
formulated new items as 1.4 = {dbd}, 2 = {Ird, tndo, srof},
and 5.2 = {aa}, where “dbd: definitions for any words or
phrases that have meaning beyond dictionaries”, “Ird: list of
referred documents”, “tndo: document title, report number,
date and publishing organization”, “srof: sources which the
references can be obtained from”, and “aa: acronyms and
abbreviations used in the documents”. Second, we organize
the items hierarchically. Some items have an inclusion relation
with each other. For example, about ubr and mec in S_12, ubr
can include mec. In other words, mec may be described as a
specific instance of ubr. Figure 4 shows the trees representing
hierarchical relations among some items. Since both eso and
ras can be included simultaneously in faapi and fapgo, we
splitted eso and ras and place under faapi and fapgo accord-
ingly. The suffixes “_i”” and “_o” indicate items related to input
and output. Items not included in Figure 4 are independent.

Among the five standardized SRSs, we select one with
the highest sufficiency for check. This check assumes that
information in standardized SRSs is included in their original.
Even when standardized SRSs include descriptions of specific
items, they may not be present in or may differ from their

https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/datasets/sentence-transformers/stsb

prq gciu Ird

_— \ | faapi : “basic actions that must take place in the
snr dnr geigu ubr tndo faapi software when receiving and processing inputs”
/7 I\ / / \\ VLN AN fapgo : “basic actions that must occur in the software
nts nssu athi nota not adnw adpw mec mefc msc vci eso_i ras_i when processing and generating outputs”
/ B e fapgo eso : “exact sequence of operations”
/| \\ // | \\ / \ ras : “responses to abnormal situations”
pehdc pchd uppl wupcls upos cct slhd csa dicv dp €es0 0 ras o

Fig. 4. Trees representing hierarchical relations among items formulated by Boyarchuk et al. [19] and us. All items not shown are independent.

original. To reduce the risk of such cases, i.e., hallucination,
we select the SRS with the highest sufficiency for the check.
However, we note that hallucinations cannot be completely
ruled out in this way.

This check will be conducted independently by two authors.
The final score is the proportion of TRUE in the checklist.
We determine the truth value of an item by the logical OR of
its check and the truth values of its sub-items. For example,
if a check is made for mec, mec is TRUE. Then, its parent
item, ubr, is also considered TRUE, regardless of whether it is
checked. Items marked with [N/A] are checked and treated as
TRUE, whereas items marked with [NULL] are not checked.

V. EXPERIMENT
A. An example of standardization

Figure 5 presents an example of a standardization appli-
cation. The target SRS to be standardized was (01). From
the standardized SRSs, section 3.3, Usability requirements, are
extracted and shown. The original SRS did not contain a sec-
tion explicitly labeled as “Usability requirements”. Therefore,
fragments considered to be related to standard section 3.3 are
extracted and shown from the original SRS.

The standardized with P_;; is concise. Its content does not
contradict the original SRS. However, it lacks details and does
not contain descriptions that could be interpreted as usability
requirements, such as response time. Additionally, the required
content for standardized SRSs described in ISO 29148 is not
fully covered. On the other hand, the standardized with Py,
is described in more detail than that with P ;. Furthermore, it
includes bullet points for each required item described in ISO
29148, making it more faithful to the standard. However, it
also contains descriptions not explicitly stated in the original.
For example, statements like “The interface should provide
clear feedback on job status and scheduling decisions” go
beyond mere functional descriptions and were not found in
the original. Based on these characteristics, P51 and Peacn
are expected to exhibit opposite properties in terms of the
evaluation criteria of this study.

B. Results for RQ1

Table II shows the results for each original SRS and prompt.
UYnec and ysug are the necessity and sufficiency label for a
standardized SRS. Ypec/ysur column represents the pair of
Ynec and yYsug When yno. was the highest among the five
standardized. Conversely, ynec/Ysut column represents the

pair when yg.g was the highest. yne. and ys g are the means
of Ynec and ysus, respectively.

As an overall trend, P.,.;, shows the higher necessity but
the lower sufficiency compared to P,;;. This trend indicates
that standardized SRSs generated by P...; contained more
information from the originals than those generated by P,;1,
whereas the content produced by P.;; was more frequently
included in the originals. It may be partly attributed to the
size of standardized SRSs. The standardized by P,;; consisted
of about 1,000 words on average, whereas those by Pe.cn
consisted of about 5,000 words, making it roughly five times
longer. Since P,;; produced shorter standardized SRSs than
their originals, it inevitably functioned as summaries, resulting
in lower necessity but higher sufficiency. Conversely, Pe,cn
exhibited the opposite trend. The excessive length allowed the
standardized SRSs to include information from the originals,
but it also introduced redundant descriptions, resulting in a
higher necessity but lower sufficiency. These observations
suggest that the size of a standardized SRS relative to its
original impacts the necessity and sufficiency. It also highlights
the importance of prompts in appropriately balancing the size
of the generated SRSs.

From an absolute perspective, the results cannot be con-
sidered entirely satisfactory. Across all SRSs and prompts,
the necessity label had a maximum average of approximately
3.35, and the sufficiency label had about 3.25. These scores
suggest that while one set of information was mainly present

TABLE II
THE NECESSITY AND SUFFICIENCY LABEL FOR EACH SRS AND PROMPT.
Ynec/Ysuff COLUMN SHOWS THE PAIR OF Ynec AND Ysuf WHEN Ynec WAS
AT ITS MAXIMUM. Ynec/Ysuf DOES THE SAME FOR Ysuff- Unec AND Ysust
SHOW THEIR MEAN VALUES.

SRS PrOmpt Ynec /ysuff ynec/}’suﬁ Ynec Ysuff
o1) Pa11 2.70 / 3.36 2.70/ 3.36 2.57 3.25
Peach 3.37 / 3.10 3.35/ 3.18 3.35 3.13
03) Pa11 2.28 / 3.01 224/ 3.11 2.17 3.04
Peach 3.07 / 3.07 3.07/ 3.07 3.05 3.02
(07g) Pa11 243 / 2.83 243/ 2.87 2.38 2.78
Peach 2.63 / 2.46 2.60/ 2.46 2.62 2.46
07p) Pa11 247 / 3.32 247/ 3.32 2.42 3.25
Peach 3.07 / 2.82 3.03/ 2.84 3.00 2.77
08) Pa11 2.03 / 3.14 1.99/ 3.26 2.00 3.18
Peach 2.67 / 3.05 2.65/ 3.05 2.66 3.02
(09) Pan1 1.83 / 2.71 1.78/7 2.74 1.79 2.70
Peach 2.74 / 292 273/ 2.94 2.66 2.85
(10) Pa11 241 / 3.10 241/ 3.10 2.37 3.02
Peach 3.12 / 2.91 3.12/ 2.91 3.08 2.83

AN

2.6 Apportionment of requirements

... Furthermore, at present, only a command line Linux interface or the interface of the
Sun Grid Engine cluster management system will be used as the user and administrator
interface. A GUI might be added once the basic functionality is implemented. ...

3.3 Performance Requirements
3.3.1 Response time
The maximum response time for the submission of a job will be 1 minute.

3.8 Interfaces
3.8.1 User Interfaces ...
3.8.1.1 Cluster User Interface

The minimal requirements are that the cluster user would be able to interact with the
system through the Linux command prompt, or through the interface provided by the
Sun Grid Engine cluster management system. ...

_Q_I_l

§
N

3.3 Usability requirements

« The system will provide a command-line interface for both users and administrators.

* A GUI may be added in future versions.

Section 3.3 of standardized SRS with P,;;
+
» N

3.3 Usability requirements
The usability requirements for the Libra Scheduler are as follows:

.

Effectiveness: The system must ensure that users can successfully submit, monitor,

and manage jobs with minimal errors. The interface should provide clear feedback

Descriptions in (01) considered related to the standard section 3.3

Usability requirements

Define usability and quality in use requirements and objectives for the software system
that can include measurable effectiveness, efficiency, satisfaction criteria and avoidance
of harm that could arise from use in specific contexts of use.

NOTE Additional guidance on usability requirements can be found in ISO/IEC TR 25060.

on job status and scheduling decisions.

Efficiency: The maximum response time for job submission is set to 1 minute,
ensuring timely interaction with the system. The system should allow users to
perform tasks such as job submission, monitoring, and cancellation with minimal
steps.

Satisfaction: The system should provide a user-friendly interface, either through the
Linux command prompt or the Sun Grid Engine interface. A graphical user interface
(GUI) may be added in future versions to enhance user satisfaction. ...

@

The descriptions of section 3.3 in ISO 29148

Fig. 5. An example of a s

in the other, some important content was missing. In particular,
the necessity label for P,;; was low; for (09), the maximum
was only 1.83. It indicates that the standardized SRSs did not
semantically include much of the original content except for
shared topics and details. These findings suggest that while
LLM-standardized SRSs retain some information in their
originals, important parts may be lost. Moreover, the relatively
low sufficiency scores imply that information not present in the
original SRSs may have been introduced. Standardized SRSs
generated by the LLM can not be ready for use without further
review or correction.

An answer to RQ1: In P, information in standard-
ized SRSs tends to be contained within their original
SRSs, whereas in Py, the opposite is true. However,
in both prompts, it cannot be said that standardized
SRSs sufficiently and necessarily retain information
from their original SRSs.

\

C.

Results for RQ2

Table IIT shows the check rates for the standardized SRSs
with the highest sufficiency in each SRS and prompt. The
checks were performed by two authors. The table presents
each result along with their average and Cohen’s x.

Pcacn had almost double the check rate of P_i;. In P,q1,
the check rate was approximately 40%, whereas in P.,cn,
it exceeded 80%. Therefore, P.,.n Was more successful in
faithfully standardizing SRSs according to the descriptions of
the standard and the standard structure.

However, we found several errors even in the standardized
SRSs generated by P.,.n. For example, section 1.1, Purpose,
should describe the purpose of the software according to the
descriptions of the standard, section 1.1. However, in several

Section 3.3 of standardized SRS with P,

each

tandardization application.

cases, the purpose of the SRS was described instead of that
of the software. When checking the original SRS, we found a
section titled “Purpose”, which contained the SRS’s purpose.
This suggests that the section’s naming in original SRSs led
to describing content that differed from what should have
been written. Additionally, we found inconsistencies between
section 3.1, Function, and the corresponding section 4. The
information items in section 4 are recommended to be given
for corresponding to those in section 3. Even though, in section
3.1, item “ras: responses to abnormal situations” was marked
as [N/A], there were descriptions of verification about ras
in section 4. These issues highlight the need for prompts that
correctly guide the recognition of what should be described
and consider the dependencies between the sections.

An answer to RQ2: Standardized SRSs generated by
Peacn covered about 80% of the items that should
be included in the standard structure. However, while
the items were covered, the content often differed
from the intended description, and inconsistencies were
observed between sections.

VI. DISCUSSION
Evaluation for RQ1

We defined and measured the necessity and sufficiency to
quantify how standardized SRSs retain the semantic informa-
tion of their originals well. We also built a regression model to
map these values to human interpretations, thereby addressing
RQ1. However, there are three major issues with this approach.
In this section, we discuss these issues and potential solutions.

The first issue concerns the sentence-level evaluation. For
example, when calculating the necessity, we select the best-
matching sentence in a standardized SRS for each sentence in

A.

the original. However, the meaning of a sentence is not always
fully conveyed in isolation; its surrounding context is often
necessary for accurate interpretation. Our metric can be viewed
as an extension of BERTScore [16] from the token level to the
sentence level. In BERTScore, tokens are not treated indepen-
dently, as they are encoded with awareness of other tokens
in the sentence via the attention mechanism [20]. As a result,
BERTScore incorporates intra-sentence context even though it
performs matching at the token embedding level. In contrast,
SBERT encodes each sentence independently [17], and there-
fore, our implementation does not account for inter-sentence
context. To address this issue, sentence decontextualization,
as proposed by Choi et al. [21], offers a promising solution.
This technique enables individual sentences to be interpreted
independently while preserving their original meaning and
context. By applying it, sentence-based computations can
effectively incorporate contextual information.

The second issue lies in the similarity-based evaluation.
These metrics rely on the existence of semantically equivalent
sentences, which can lead to an underestimation of the degree
of information preserved from one to the other. From the
perspective of the necessity and sufficiency, we can accept
not only semantic similarity but also asymmetric entailment
relations. For example, in the calculation of the sufficiency, it
should be acceptable if a sentence in a standardized SRS is an
abstraction of a sentence in the original. Any omitted content
in such cases can be identified through the calculation of
the necessity, which evaluates the reverse direction. Capturing
asymmetric entailment relations between sentences aligns with
tasks such as Natural Language Inference (NLI) and Fact
Verification. Large-scale datasets such as SNLI [22], MNLI
[23], and FEVER [24] have been released, and numerous
high-performing methods have been proposed [25][26]. The
usefulness of NLI in requirements analysis has also been
demonstrated [27]. By leveraging these techniques, we can
more accurately assess the extent to which information is
retained in each direction.

The third issue concerns the difficulty of interpreting the
metrics. We applied linear regression using STSB dataset to
interpret the metric values. However, the effectiveness of this

TABLE III
THE CHECK RATES AND COHEN’S kK FOR EACH SRS AND PROMPT
SRS Prompt | Author A Author B Mean K
1) Pa11 43.0 % 53.8% 48.4% | .660
Peach 78.5 % 84.9% 81.7% | .500
(03) Pai1 37.6 % 495% 435 % | .677
Peach 65.6 % 74.2% 699 % | .696
(079) Pann 35.5 % 44.1% 39.8% | .688
Peach 79.6 % 86.0% 82.8% | .775
(07p) Pa11 46.2 % 50.5% 48.4% | .656
Peach 75.3 % 84.9% 80.1% | .701
(08) Pann 59.1 % 64.5% 61.8% | .750
Peach 84.9 % 89.2% 87.1% | .524
(09) Pan1 35.5 % 484 % 41.9% | .609
Peach 73.1 % 86.0% 79.6 % | .420
(10) Pa11 40.9 % 419% 414 % | .756
Peach 82.8 % 86.0% 84.4% | .715

approach is limited. The right panel of Figure 3 shows the
residual plot. Since the labels are originally discrete values
on a six-point scale, the residuals exhibit a downward trend.
The coefficient of determination is 0.72, indicating that the
regression does not fully capture the underlying relationship.
In addition, because the labels are on an ordinal scale, inter-
preting the regression outputs remains challenging. To enhance
interpretability, the metric should be derived from surface-
level syntactic information rather than latent semantic features.
For example, a statement such as “80% of the sentences
in the standardized SRS can be inferred from the original
SRS” would provide a more intuitive and easily interpretable
measure of information retention.

Addressing these issues is crucial for accurately evaluating
the results of structural standardization. Furthermore, our eval-
uation strategy may also be helpful for quality assessment in
other tasks, such as generating SRS documents from unstruc-
tured requirements like user stories using LLMs. By imple-
menting and refining the metrics and clarifying their practical
impact, this work is expected to contribute to establishing a
more reliable and objective evaluation framework.

B. Evaluation for RQ2

We evaluated the faithfulness of standardized SRSs to the
standard using the checklist to verify the presence or absence
of the required items. Howeyver, this evaluation did not consider
the relationship between standardized SRSs and their originals,
which may lead to an overestimation in RQ2. LLMs may
enhance conformity to the standard, potentially resulting in un-
desirable outputs. One such issue is hallucination, where con-
tent not present in the original SRS is generated. Conversely,
LLMs may excessively abstract the original content, leading
to a failure to fully reproduce the intended requirements.
Therefore, to properly assess the structural standardization
capability of LLMs, the evaluation must consider not only
the standardized SRSs but also their original counterparts.

Additionally, we need to check for inconsistencies between
sections within a standardized SRS. Some of the standard-
ized SRSs exhibited contradictions across different sections.
However, this issue was not considered in the evaluation
of RQ2, which may have led to an overestimation of the
results. Inconsistencies among requirements are a well-known
challenge in requirements engineering, and many studies have
addressed this issue [27][28][29]. Such inconsistencies must
also be taken into account when evaluating the structural stan-
dardization of SRSs. Incorporating inter-sectional consistency
checks into future evaluation frameworks is essential for a
more accurate assessment of the quality of standardized SRSs.

The evaluations in this experiment were conducted solely
by the two authors, raising concerns about potential subjective
bias. While Cohen’s x exceeded 0.6 for 11 items, it fell below
0.6 for three items and was as low as 0.42 for (09) Peach-
According to the criteria proposed by Landis and Koch [30],
although most items demonstrated substantial agreement, some
cannot be regarded as having been evaluated consistently.
Moreover, since the evaluators were the authors themselves,

there is a risk that unconscious bias may have influenced the
results. To ensure the reliability of the evaluation, it is essential
to incorporate assessments by multiple independent third-party
evaluators.

C. Generalizability

In this study, we utilized GPT-40 and SRSs from PURE
dataset. Different experimental results may be obtained when
using other LLMs or SRSs. In particular, the prompts em-
ployed in this experiment are tailored to the current exper-
imental setup. LLMs have limitations on token length. For
instance, GPT-40 has a context window of 128,000 tokens
and a maximum output length of 16,384 tokens®. The SRSs
used in this study are relatively short, up to approximately
8,500 words, and thus easily fit within these limits. However,
real-world SRSs can be significantly longer, and in such cases,
the prompts used in this study, P11 and P.scn, may not be
effective.

D. Restructuring of SRS

The structural standardization of SRSs presents several
potential issues in itself. One such issue is that not all
information in original SRSs can necessarily be fully mapped
onto the standardized structure. This study assumes that each
statement in an original SRS can be mapped to one of the
sections in a standardized SRS. However, given the diver-
sity of SRS formats, this assumption does not always hold.
Standardization may inevitably lead to the loss of certain
information, potentially resulting in incomplete requirement
definitions. Moreover, transforming original SRSs may have
adverse effects on related artifacts. A typical example is
traceability links. If links have already been established based
on original SRSs, structural standardization may render them
invalid. The loss of traceability can hinder change management
and impact analysis, thereby compromising maintainability.

These issues can cause significant problems in software de-
velopment and, therefore, require mitigation. Although manual
evaluation is currently the only practical option, there are ways
to reduce the associated effort. For example, the evaluation
strategy based on the necessity and sufficiency, as used in RQ1,
can be leveraged. This strategy constructs mappings between
two SRSs by measuring the semantic similarity between
individual sentences. By utilizing this information, it becomes
possible to identify information lost during standardization,
i.e., descriptions unique to an original SRS. Furthermore,
since the mapping reveals which sentences in a standardized
SRS correspond to those in the original, it can also support
the referencing and restoration of traceability links that were
initially established in the original. Other techniques, such as
NLI, can also be effective for aligning information between
pre- and post-standardization SRSs.

VII. FUTURE WORKS

We have three main future challenges: expanding the anal-
ysis of the experimental results, engineering prompts, and
extending modalities. From an analytical perspective, it is

necessary to focus on the influence of the original SRSs’
structure and their domains. In this study, we used seven
different SRSs as experimental subjects, but the impact of their
individual characteristics has not been considered. Analyzing
this aspect is significant because it supports one of the key
advantages of SRS standardization: the ability to uniformly
utilize SRSs with different structures.

It is also necessary to design prompts that incorporate both
prompt techniques and characteristics of this task. In this
study, we designed straightforward prompts, P51; and Pegcp.
However, various prompt techniques have been proposed to
improve the generation accuracy of LLMs, such as few-
shot learning [31][32], Chain of Thought [33], and Retrieval-
Augmented Generation [34]. In systems utilizing LLMs, ap-
plying these techniques is now a prerequisite and essential
for achieving practical performance. In addition, approaches
specific to SRS standardization should also be considered. An
approach is to ensure an appropriate length for standardized
SRSs. SRS standardization is not a general summarization
task and should not abstract or omit information from orig-
inal SRSs. As one of its necessary conditions, standardized
SRSs are expected to have a physical length equal to or
greater than their originals. Another approach is to account
for dependencies between sections. Some standardized SRSs
generated using P..., were inconsistencies between section
3.1, Functions and section 4, Verification. Such inconsistencies
within a standardized SRS can be addressed by designing
recursive prompts based on section dependencies.

In this study, we focused on SRSs composed solely of
texts. However, in actual SRSs, it is common to use figures
and tables to aid readers in understanding. It is valuable to
design prompts and methods that can handle SRSs containing
figures and tables and evaluate their effectiveness to assess the
applicability of LLM-based standardization to a broader range
of SRS types. Recent LLM models like GPT-40 can accept not
only text but also images®. Therefore, it would be important
to investigate the applicability of the simple prompts designed
in this study to SRSs that include images.

VIII. CONCLUSION

In this study, we attempted to transform the section structure
of any SRS into the section structure recommended by the in-
ternational standard ISO/IEC/IEEE 29148. As an approach to
restructuring, we utilized an LLM with strong NLP capabilities
and evaluated the standardization ability using simple prompts.
Although the method in this study does not ensure that
information in original SRSs is fully preserved, standardized
SRSs cover approximately 80% of the items that should be
present in the standard structure and can be considered to have
been faithfully transformed.

Acknowledgment

This work was partly supported by JSPS KAKENHI Grant
Number 25K15056.

[1]
[2]

[3]

[4

=

[5

=

[6

=

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

C. Denger and T. Olsson, Quality Assurance in Requirements Engineer-
ing. Springer, 2005, pp. 163-185.

T. Tamai and M. I. Kamata, “Impact of Requirements Quality on Project
Success or Failure,” in Design Requirements Engineering: A Ten-Year
Perspective. Springer, 2009, pp. 258-275.

L. Zhao, W. Alhoshan, A. Ferrari, K. Letsholo, M. Ajagbe, E.-V.
Chioasca, and R. Batista-Navarro, “Natural Language Processing for
Requirements Engineering: A Systematic Mapping Study,” Trans. Com-
puting Surveys, vol. 54, no. 3, pp. 1-41, 2021.

H. Cheng, J. Husen, Y. Lu, T. Racharak, N. Yoshioka, N. Ubayashi,
and H. Washizaki, “Generative Al for Requirements Engineering:
A Systematic Literature Review,” 2025, arXiv preprint. [Online].
Available: https://arxiv.org/abs/2409.06741

“ISO/IEC/IEEE International Standard - Systems and Software En-
gineering — Life Cycle Processes — Requirements Engineering,”
ISO/IEC/IEEE 29148:2018(E), pp. 1-104, 2018.

“IEEE Recommended Practice for Software Requirements Specifica-
tions,” IEEE Std 830-1998, pp. 1-40, 1998.

X. Franch, M. Glinz, D. Mendez, and N. Seyff, “A Study About
the Knowledge and Use of Requirements Engineering Standards in
Industry,” Trans. Software Engineering, vol. 48, no. 9, pp. 3310-3325,
2022.

M. Aoyama and T. Nakane, “ReqQA: A Software Requirements Spec-
ifications Quality Analyzer and Its Application,” Trans. Information
Processing Society of Japan, vol. 57, no. 2, pp. 694-706, 2016, (in
Japanese).

A. Chikh and M. Aldayel, “A New Traceable Software Requirements
Specification Based on IEEE 830,” in Proc. International Conference on
Computer Systems and Industrial Informatics (ICCSII), 2012, pp. 1-6.
P. Thitisathienkul and N. Prompoon, “Quality Assessment Method for
Software Requirements Specifications Based on Document Characteris-
tics and Its Structure,” in Proc. International Conference on Trustworthy
Systems and Their Applications (TSA), 2015, pp. 51-60.

A. Takoshima and M. Aoyama, “A Two-Stage Inspection Method for
Automotive Software Systems and Its Practical Applications,” in Proc.
International Requirements Engineering Conference (RE), 2016, pp.
313-322.

M. Krishna, B. Gaur, A. Verma, and P. Jalote, “Using LLMs in
Software Requirements Specifications: An Empirical Evaluation,” in
Proc. International Requirements Engineering Conference (RE), 2024,
pp. 475-483.

J. Norheim and E. Rebentisch, “Structuring Natural Language Require-
ments with Large Language Models,” in Proc. International Require-
ments Engineering Conference Workshops (REW), 2024, pp. 68-71.

A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy Approach
to Requirements Syntax (EARS),” in Proc. International Requirements
Engineering Conference (RE), 2009, pp. 317-322.

A. Ferrari, G. Spagnolo, and S. Gnesi, “PURE: A Dataset of Public
Requirements Documents,” in Proc. International Requirements Engi-
neering Conference (RE), 2017, pp. 502-505.

T. Zhang, V. Kishore, F. Wu, K. Weinberger, and Y. Artzi, “BERTScore:
Evaluating Text Generation with BERT,” in Proc. International Confer-
ence on Learning Representations (ICLR), 2020.

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” in Proc. Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019, pp. 3982—
3992.

D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-
2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation,” in Proc. International Workshop on Semantic
Evaluation (SemEval), 2017, pp. 1-14.

A. Boyarchuk, O. Pavlova, M. Bodnar, and I. Lopatto, “Approach to
the Analysis of Software Requirements Specification on Its Structure
Correctness,” in Proc. International Workshop on Intelligent Information
Technologies & Systems of Information Security (IntellTSIS), 2020, pp.
85-95.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. ukasz Kaiser, and L. Polosukhin, “Attention is All you Need,” in Proc.
Conference on Neural Information Processing Systems (NeurIPS), 2017.
E. Choi, J. Palomaki, M. Lamm, T. Kwiatkowski, D. Das, and
M. Collins, “Decontextualization: Making Sentences Stand-Alone,”

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

Trans. Association for Computational Linguistics, vol. 9, pp. 447461,
2021.

S. Bowman, G. Angeli, C. Potts, and C. Manning, “A Large Annotated
Corpus for Learning Natural Language Inference,” in Proc. Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2015,
pp. 632-642.

A. Williams, N. Nangia, and S. Bowman, “A Broad-Coverage Chal-
lenge Corpus for Sentence Understanding through Inference,” in Proc.
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-
HLT), 2018, pp. 1112-1122.

J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal, “FEVER:
A Large-scale Dataset for Fact Extraction and VERification,” in Proc.
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-
HLT), 2018, pp. 809-819.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” 2019, arXiv preprint. [Online]. Available:
https://arxiv.org/abs/1907.11692

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. Le,
“XLNet: Generalized Autoregressive Pretraining for Language Under-
standing,” in Proc. International Conference on Neural Information
Processing Systems (NeurIPS), 2019, pp. 5753-5763.

M. Fazelnia, V. Koscinski, S. Herzog, and M. Mirakhorli, “Lessons
from the Use of Natural Language Inference (NLI) in Requirements
Engineering Tasks,” in Proc. International Requirements Engineering
Conference (RE), 2024, pp. 103-115.

V. Bertram, H. Kausch, E. Kusmenko, H. Ngiri, B. Rumpe, and
C. Venhoff, “Leveraging Natural Language Processing for a Consistency
Checking Toolchain of Automotive Requirements,” in Proc. Interna-
tional Requirements Engineering Conference (RE), 2023, pp. 212-222.
M. Fazelnia, M. Mirakhorli, and H. Bagheri, “Translation Titans, Rea-
soning Challenges: Satisfiability-Aided Language Models for Detecting
Conflicting Requirements,” in Proc. International Conference on Auto-
mated Software Engineering (ASE), 2024, pp. 2294—-2298.

R. Landis and G. Koch, “The Measurement of Observer Agreement for
Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977.
Brown, T. et al., “Language Models Are Few-Shot Learners,” in Proc.
Conference on Neural Information Processing Systems (NeurIPS), 2020,
pp. 1877-1901.

T. Kojima, S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language
Models Are Zero-Shot Reasoners,” in Proc. Conference on Neural
Information Processing Systems (NeurIPS), 2022, pp. 22 199-22213.
J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” in Proc. Conference on Neural Information
Processing Systems (NeurIPS), 2022, pp. 24 824-24 837.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang, and H. Wang, “Retrieval-Augmented Generation for Large
Language Models: A Survey,” 2024, arXiv preprint. [Online]. Available:
https://arxiv.org/abs/2312.10997

https://arxiv.org/abs/2409.06741
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2312.10997

	Introduction
	Related works
	Structural standardization of SRS
	Experimental design
	Prompts design
	Dataset
	Evaluation for RQ1
	Evaluation for RQ2

	Experiment
	An example of standardization
	Results for RQ1
	Results for RQ2

	Discussion
	Evaluation for RQ1
	Evaluation for RQ2
	Generalizability
	Restructuring of SRS

	Future works
	Conclusion
	References

