Exploring an Inclusion Relation on Test Cases to
Identify Unit and Integration Tests

Ryu Okamoto, Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
{r-okamot, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract. In software testing, among the various types of tests, two
commonly conducted ones are unit and integration tests. Unit tests ver-
ify individual functionalities, and integration tests verify the combination
of multiple functionalities. If we can identify unit/integration tests and
measure them as ordinal values, such as the degree of integration-ness,
we can utilize them to improve testing efficiency. However, the definitions
of unit/integration are ambiguous, making it difficult to distinguish be-
tween them. To the best of our knowledge, there is currently no method
for detecting this distinction. In this study, aiming to support the test-
ing process, we will consider a measurement method for unit/integration
tests. The key idea is to utilize an inclusion relation, which naturally
exists among test cases. As an application of the inclusion relation, we
propose a method for ordering failed tests to streamline debugging. We
conducted a mutation analysis to evaluate how much our proposal re-
duces debugging effort compared to a naive method. The results showed
that our proposal was effective in 29.7% of cases and confirmed an aver-
age reduction of 20.7% in debugging effort.

Keywords: unit test, integration test, inclusion relation, line coverage

1 Introduction

Software testing is one of the fundamental and essential activities in software de-
velopment [8]. This paper focuses on program-based automated software testing,
which uses some test cases describing validation processes, inputs, and expected
outputs. Henceforth, we will simply refer to test cases as tests.

In testing, individual functionalities are usually verified by unit tests, and
combinations of multiple functionalities are verified by integration tests [3][6].
Unit/integration tests have different roles and aims. Thus, we have to use them
properly, depending on the software functionality that will be tested.

If we can identify unit/integration tests and further determine the degree
of integration-ness, this information is helpful for debugging. One potential ap-
plication is suggesting the order to resolve when multiple failed tests exist. In
such a scenario, priority should be given to resolving unit-leaning tests. This
is because unit-leaning tests focus more narrowly on individual functionalities,

making it easier to identify defective areas. In contrast, integration-leaning tests
span multiple functionalities, making pinpointing defects more difficult.

However, in practice, it is difficult to distinguish whether a test is a unit
or integration test [10]. This is due to the ambiguous definitions of unit/inte-
gration tests. We consider the ambiguity arises from the unclear definition of
“individual functionality”. There are various interpretations of what constitutes
an individual functionality within the software. For example, a single use case
can be considered an individual functionality that directly provides value to end
users [4]. On the other hand, a use case is often implemented by multiple internal
functionalities, such as methods. Although a method can be seen as an atomic
unit of functionality, it is often composed of multiple other methods.

This study examines methods for identifying of unit/integration tests to sup-
port developers in debugging. The key idea is introducing an inclusion relation,
which naturally exists in tests. From the typical unit/integration definitions,
unit tests can be interpreted as being conducted as part of integration tests.
Therefore, when the lines of code executed by one test include those of another,
we consider there to be an inclusion relation between them. Furthermore, we
measure the degree of inclusion to determine the integration-ness of tests.

As an application of the inclusion relation, we propose a method for order-
ing failed tests to resolve efficiently. We conducted mutation analysis with real
projects to evaluate how much debugging effort our proposal can reduce com-
pared to a naive method. The results showed that our proposal was effective in
29.7% of cases. Furthermore, when our proposal was effective, we confirmed that
the average reduction rate of debugging effort was 20.7%.

2 Related Works

The definitions of unit/integration tests vary and are often qualitative. Tradi-
tionally, the portion of product code called “unit” is defined. If a test verifies
only one “unit”, it is considered a unit test; otherwise, an integration test [3][6].
The definition of “unit” can be interpreted variously, such as a method, a class,
or a package. Titus et al. attempt to classify tests, focusing on two attributes
of tests: size and scope [11]. The size represents the resources required during
testing, such as memory and time. The scope is the portion of the product code
intended to be verified by testing. They call tests unit/integration, focusing on
the scope. However, they do not specify any numerical indicator but only classify
them on a small/medium/large qualitative size.

Trautsch and Grabowski investigated whether unit tests are conducted in
Python OSS according to the classical definitions [10]. They reported that many
of the unit tests intended by the developers did not match the traditional defi-
nitions and that the number of matches varied across definitions. This suggests
that the definitions of unit/integration tests are conceptual, and it is not easy
for actual developers to distinguish between them.

Kanstén defines a numerical indicator called test level, which expresses the
granularity of a test [5]. Tests are arranged on a number line according to the

number of called functions and grouped at regular intervals from 0. Then, the
test level is determined based on which group it belongs to. This method has
the advantage of being quantitative and capable of automatic measurement.
However, since each test is projected onto a one-dimensional number line first,
information about which tests are included by which other tests are abstracted.

There are studies similar to ours that consider and utilize an inclusion rela-
tion. The difference lies in how they define it. We define an inclusion relation
based on the lines executed by tests. On the other hand, Galli et al. focuses on
the functions called by tests [2]. Through experiments, they demonstrated that
failures were more likely to propagate between tests with the inclusion relation
and concluded that the included tests verify more specific functionalities. Marré
and Bertolino proposed test reduction principles using an inclusion relation in
program elements to achieve efficient coverage improvement [7]. They define sets
of program entities using a flow graph. A set of program entities includes another
if the execution of all entities in the set results in the execution of all entities in
the other set.

3 Identifying Unit and Integration Tests

To identify unit/integration tests, we define an inclusion relation among tests
based on the executed lines and quantify the degree of inclusion. We consider a
test that does not include any other as a unit test.

Let T4 and T are tests. We define T4 C T as Stmt(T4) € Stmt(Ts), where
Stmt(T) is a set of lines executed by test T. As an example, the product code of
a user master and its test code are shown in Figure 1. Before registering a user,
the given id and name formats are checked. There are three tests: two to verify
the format checks and the other to verify the registration process. The executed
lines of each test are as follows:

Stmt(test validate id) = {(3},
Stmt(test validate name) = {(5},
Stmt(test register user) = {¢3,¢5,¢8,49,...},

where /z represents line z in Figure 1. From the above, there are the following
inclusions among these tests:

test_validate_ id C test_register user,

test validate name C test register user.

We call a directed graph G = (V, E) an inclusion graph, where V represents a
set of all the tests and E the inclusion relation on V. That is tosay if Ta,Tp € V
and Ty C Tg, then (T, T4) € E. In accordance with the definition of inclusion
relation, inclusion graphs are DAG (Directed Acyclic Graph). We can assign the
height for each node in DAG. Thus, we define the inclusion level of a test as
its height in the inclusion graph. In the example shown in Figure 1, the level of
each test can be calculated as 0, 0, and 1 respectively from the top one.

© W N O ;A W N e

Product

def validate_id(id: str) -> bool:

return bool(re.match(id, r’[a-z][0-9]{3}’))
def validate_name (name: str) -> bool:

return bool(re.match(name, r’[a-z][a-z0-9_1x*’))
class UserMaster:

def register_user(self, id: str, name: str):

if not validate_id(id) or not validate_name (name):
self .user_map[id] = name

Test

def test_validate_id ():
assert that(validate_id (’x0997)).14s_ true()
def test_validate_name():
assert that(validate_name(’alice’)).ds_ true()
def test_register_user ():
master = UserMaster ()
master.register_user (’a001’, ’bob?’)
assert that(master.lookup(’a001’)).4s equal to(’bob’)

Fig. 1. An example of product and test code

Following the established definitions of unit/integration, unit tests can be
interpreted as being executed as part of integration tests. Therefore, a test is
considered a unit test when its execution lines are not a complete subset of
another test’s; otherwise, the test will be an integration test. In other words, a
test with level 0 is considered equivalent to a unit test. Furthermore, the higher
the inclusion level of a test is, the more integration-leaning the test is. Using
the inclusion relation on tests, we can detect unit tests relatively rather than
absolutely, thus avoiding ambiguity in the definition of “unit”.

4 An Application of the Inclusion Relation

As an application of the inclusion relation, we propose a method for ordering
failed tests. When several tests fail, the method suggests in what order program-
mers should resolve the failures for less debugging effort. Its output is an order
of the failed to resolve.

The procedure of our proposal is as follows. First, we run failed tests as input
and collect sets of executed lines. Next, the inclusion graph is constructed, and
the inclusion level for each test is calculated. Finally, the failed tests are sorted
with the level as the first key and the number of covered lines as the second key.

If several tests fail, programmers should prioritize fixing more independent
ones. This is because highly coupled tests broadly verify multiple functionalities,
making it difficult to localize faults. Hence, our proposal sorts tests in ascending

order, with the inclusion level as the first key. When multiple tests with the same
level exist, the number of executed lines is used as the key to sort in ascending
order. It is based on the simple idea that tests with the smallest number of
execution lines should be resolved first.

The executed lines of a failed test are often incomplete due to handling
exceptions or being interrupted. However, in this context, we do not need to
care about it. On the contrary, included tests in such situations focus more on
certain statements, i.e., functionalities, and can help localize faults.

5 Evaluation

To evaluate the effectiveness of our proposal as a debugging support, we con-
ducted an experiment on OSS projects. The goal is to confirm that a suggested
debugging order of failed tests can reduce identifying faults effort.

As targets for the experiment, we selected four projects: commons-lang’,
commons-io?, jsoup?, and gson*. Each project achieves approximately 90% line
coverage, and sufficient tests are prepared. We selected them for two reasons:
their stars on GitHub are more than 1,000 and they use JUnit® as their test
framework. We treat a method annotated with @Test, @ParameterizedTest, or
@RepeatedTest as a test. We used JaCoCo® to collect executed lines.

Regarding the premise of the evaluation experiment, we conducted a prelim-
inary experiment to verify the existence of the inclusion relation in real projects.
Table 1 shows the number of tests at each level. According to the table, the
inclusion relation existed. Furthermore, multi-level inclusions also existed since
there were tests with level 2 or higher. Jsoup had the highest percentage, 90.7%,
of tests with level 0. This means unit testing in jsoup was the most thorough.
On the other hand, commons-lang had the lowest percentage, 53.7%, of level 0
and a relatively more significant number of integration tests.

1 Accessed at 2024/04/12. https://github.com/apache/commons-lang.
2 Accessed at 2024/04/14. https://github.com/apache/commons-io.

3 Accessed at 2024/04/19. https://github.com/jhy /jsoup.

4 Accessed at 2024,/04/19. https://github.com/google/gson.

® Accessed at 2024/05/17. https://junit.org/junit5/.

5 Accessed at 2024/05/17. https://www.jacoco.org/jacoco/.

Table 1. The number of tests at each level

Inclusion level
0 1 2 3 4
commons-lang 2,122 1,129 441 168 79 1
commons-io 1,397 540 157 36 10
jsoup 1,079 93 16 2
gson 1,015 210 86 23 5

o
O O N O|ut

Table 2. The results of the mutant analysis. N is the number of generated mutants.
|F|q, is the 25i percentile of |F|. |F| is the number of failures when mutating. P<;
and Ps; are the percentage of cases where the proposal was effective and not. E is the
average reduction rate of debugging effort in cases where the proposal was effective.

N |Flo, [Fle, [Fles P<1 Psi E

org.apache.commons.lang.text 184 6 11 24 174 0.0 40.6
org.apache.commons.lang.function 350 2 3 4 7.7 0.0 15.5
org.apache.commons.io.input 237 5 8 29 20.7 9.7 26.6
org.apache.commons.io.file 236 15 31 57 46.2 9.3 15.7
org.jsoup.nodes 298 13 19 38 26.8 0.0 18.6
org.jsoup.parser 371 21 39 310 32.3 0.3 15.1
com.google.gson.internal.bind 294 21 50 71 524 03 232
com.google.gson.stream 46 59 156 266 58.7 0.0 28.3
All packages 2,016 5 19 49 29.7 2.3 20.7

Method. First, we generate mutants with two or three mutations, using muta-
tion operators introduced by Sasaki et al. [9]. At this time, we make sure that
two or more tests fail. Next, we determine an order to resolve by applying our
proposal sorting and ascending sorting by the number of executed lines. We will
refer to the results of the former as suggested orders and the latter as naive
orders. Finally, we calculate an evaluation metric, which is defined later. We
evaluate the proposal by repeating the above steps multiple times.

We define the debugging effort value for a given resolution order of failures
F = (F,F,,...,F,). Suppose it is not until programmers check execution parts
from F} to F} that all mutation lines are detected. We calculate the debugging
effort value effort(F) = Zle 3.20[Stmt(F;)|1-%5. Let R be the ratio of the debug-
ging effort value of a suggested order to that of a naive. Moreover, if R < 1, i.e.,
if the suggested order is superior to the naive, then calculate the debugging effort
reduction rate £ = 100(1 — R). The formula 3.20|Stmt(F};)|*% is based on the
definition of the nominal development effort in software estimation [1]. Its unit
is man-months. The reason for weighting the executed size is that the relation
between the effort required to identify faults and the number of lines of product
code to check is not linear. The effort required is expected to increase due to the
increase not only in the code volume but also in its structural complexity.

Result. Table 2 shows the results of the experiment. For each target package,
the results are shown when two or three mutations are introduced. Two target
packages were randomly selected from each project, with 85% or more line cover-
age and 5 or more classes. N column is the number of generated mutants. |F|q,
column shows the 25i percentile of |F|. | F| is the number of failures when mutat-
ing. P~y column indicates the percentage of generated mutants whose evaluation
value R is less than 1, and similarly for P~;. E column represents the average
debugging effort reduction rate.

Based on the total of all packages, for 29.7% of all generated mutants, the
suggested order had an average debugging effort value of 20.7% smaller than

the naive. In particular, good evaluation values were obtained in the majority
of cases, 52.4% for gson.internal.bind and 58.7% for gson.stream. Additionally,
cases where the evaluation value is poor, i.e., R > 1, account for 2.3% across all
packages, with less than 0.5% in many packages, indicating their rarity. There-
fore, we can confirm that our proposal effectively reduces the debugging effort
compared to the naive method.

However, in 2.3% of the cases, the debugging effort value was more significant
for our proposal than for the naive method. This was especially noticeable in
the case of commons-io, and there were some cases, in about 9%, where the
evaluation values were inferior. One possible cause is that the inclusion level of
tests is calculated too high due to excessive inclusion detection. Resolving a test
executing a mutation line is put off if the test includes other failed tests. The
leading cause of excessive inclusion is error handling using the ternary operator.
At this time, the difference in the execution paths of normal and abnormal tests
disappears, making it easier for one to include the other. When the evaluation
value was poor, we observed the lines executed by failed tests. We found many
error handlings using the ternary operator.

6 Discussion

In this section, we discuss the advantages and limitations of the inclusion relation
based on four respects: universality, versatility, sensitivity, and prerequisite.

Universality. The defined inclusion relation can be detected independently
in a specific language, testing framework, or scene. We interpret a test as a set
of executed lines and use the natural concept of set inclusion to define the test
inclusion. The executed lines can be easily collected with coverage measurement
tools. Coverage is a widely used metric in practice, and many measurement tools
have been implemented.

Versatility. The idea of the inclusion relation is so natural that it has scope for
use in various testing supports. For example, it can be used to extend coverage
measurement. In conventional measurement, only whether each product code line
has been executed by any test is measured. It is not measured whether the tests
lean towards unit or integration tests. Therefore, by using the inclusion relation,
integration-leaning tests are identified, and the portions executed only by those
tests are reported. The existence of such parts may suggest inadequacy in unit
testing. Integration testing verifies the combination of several functionalities and
is not responsible for verifying the behavior of each functionality. Functionalities
only verified by integration tests ought to be validated by unit tests for those
functionalities as possible.

Sensitivity. Intuitively, the magnitude of the inclusion level represents the
integration-ness, but several counterexamples exist to this notion. For instance,
consider tests for insertion sort where sorted data and randomly ordered data
are provided as inputs. According to the conventional understanding of unit/in-
tegration testing, both tests verify a single functionality, sorting, and thus would
be equivalent to unit tests. However, in many implementations of insertion sort,

the execution portion for randomly ordered data encompasses that for sorted.
As a result, there is a possibility of finer unit/integration tests distinctions than
expected or even the occurrence of the opposite.

Prerequisite. The inclusion relation is a relative concept. Thus, it presupposes
that tests are sufficiently prepared. If tests are insufficient, some traditionally
identified as integration tests may be assigned inclusion level 0.

7 Conclusion

In this study, we introduced the coverage-based inclusion relation on test cases
to identify unit/integration tests. We also proposed the specific application and
confirmed that it effectively reduces debugging effort. However, we have not yet
validated whether our defined inclusion relation matches the generally recognized
unit/integration relations. Thus, in future work, we have to verify the validity
of the identification results through human inspection.

Acknowledgments. This research was partially supported by JSPS KAKENHI Japan
(Grant Number: JP24H00692, JP21H04877, and JP21K18302).

References

1. Boehm, B.: Software Engineering Economics. Trans. Software Engineering SE-
10(1), 4-21 (1984)

2. Géalli, M., Lanza, M., Nierstrasz, O., Wuyts, R.: Ordering Broken Unit Tests for
Focused Debugging. In: Proc. International Conference on Software Maintenance
(ICSM). pp. 114-123. IEEE (2004)

3. IEEE: ISO/IEC/IEEE International Standard - Systems and Software Engineering
— Vocabulary. ISO/IEC/IEEE 24765:2010(E) pp. 1-418 (2010)

4. Jacobson, I., Spence, 1., Kerr, B.: Use-case 2.0. Trans. Communications of the ACM
59(5), 61-69 (2016)

5. Kanstrén, T.: Towards a Deeper Understanding of Test Coverage. Trans. Software
Maintenance and Evolution: Research and Practice 20(1), 59-76 (2008)

6. Khorikov, V.: Unit Testing Principles, Practices, and Patterns: Effective Testing
Styles, Patterns, and Reliable Automation for Unit Testing, Mocking, and Integra-
tion Testing with Examples in C#. Manning Publications (2021)

7. Marré, M., Bertolino, A.: Using Spanning Sets for Coverage Testing. Trans. Soft-
ware Engineering 29(11), 974-984 (2003)

8. Myers, G., Badgett, T., Sandler, C.: The Art of Software Testing. John Wiley &
Sons, Ltd (2012)

9. Sasaki, Y., Higo, Y., Matsumoto, S., Kusumoto, S.: SBFL-Suitability: a Software
Characteristic for Fault Localization. In: Proc. International Conference on Soft-
ware Maintenance and Evolution (ICSME). pp. 702-706 (2020)

10. Trautsch, F., Grabowski, J.: Are There Any Unit Tests? An Empirical Study on
Unit Testing in Open Source Python Projects. In: Proc. International Conference
on Software Testing, Verification and Validation (ICST). pp. 207-218. IEEE (2017)

11. Winter, T., Manshreck, T., Wright, H.: Software Engineering at Google: Lessons
Learned from Programming over Time. Oreilly & Associates Inc (2020)

