The Effects of Semantic Information on
LLM-based Program Repair

Shota Hori! Shinsuke Matsumoto! Yoshiki Higo! Shinji Kusumoto! Kazuya
Yasuda? Shinji Ito? Phan Thi Thanh Huyen?

! Graduate School of Information Science and Technology, Osaka University, Japan
2 Hitachi, Ltd., Japan

Abstract. Large Language Model-based Automated Program Repair
(LLM-APR) has recently received significant attention as a debugging
assistance. Our objective is to improve the performance of LLM-APR.
In this study, we focus on semantic information contained in the source
code. Semantic information refers to elements used by the programmer
to understand the source code, which does not contribute to compilation
or execution. We picked out specification, method names and variable
names as semantic information. In the investigation, we prepared eight
prompts, each consisting of all combinations of three types of semantic
information. The experimental results showed that all semantic infor-
mation improves the performance of LLM-APR, and variable names are
particularly significant.

Keywords: Large language model (LLM), automated program repair
(APR), semantic information, prompt engineering, ChatGPT

1 Introduction

Program repair using a large language model (LLM) has recently received sig-
nificant attention as a debugging assistance [6,8,10]. LLM, a language model
trained on a substantial corpus, can be applied to various natural language tasks.
Since several LLMs include source code as training data, they can be applied
to various programming tasks. One of the applications is LLM-based automated
program repair (LLM-APR). Most existing APR studies [2,4] have considered
bug fixation as a search problem based on fault localization and source code
modification. On the other hand, LLM-APR repairs buggy source code through
learning and inference based on massive amounts of data. LLM-APR has strong
advantages of natural language interaction and higher repairing performance
compared to the existing APR techniques [10].

LLM-APR has the possibility of performance improvement because LLM-
APR studies are in the early stages. Sobania et al. have experimentally investi-
gated the reparing performance of LLM-APR with ChatGPT. Their experiments
showed ChatGPT can fix 19 out of 40 bugs [8]. One concern is that their prompt
contains buggy source code and minimal instruction such as “Does this program
have a bug? How to fix it?”. Several studies pointed out that prompt design has

a significant impact on generative Al performance [9]. Therefore, prompt design,
such as instruction sentences and information in the source code, could be an
essential factor for LLM-APR.

This paper focuses on semantic information contained in the source code.
We refer to semantic information as a textual notation that programmers use to
understand the behavior of source code but does not contribute to compilation or
execution. One of the most crucial semantic information is a specification written
as JavaDoc in Java or Docstring in Python. Furthermore, method names can
be regarded as semantic information that helps developers grasp the method’s
brief responsibility. Variable names also tell us the meaning of the data. While
various other types of semantic information are considered, this paper focuses on
these three as semantic information. It is known that this semantic information
significantly helps source code comprehension [7]. Our key question is whether
semantic information also helps LLM to understand source code for program
repair, as it does programmers?

This study aims to improve the program repairing performance of LLM-
APR. To this end, we investigate the effects of semantic information on LLM-
APR. In the experiment, we prepared eight prompt patterns, each consisting of
all combinations of three types of semantic information: specification, method
name, and variable name. We compared the test pass rate of LLM-APR with each
prompt for two types of bugs. The experimental results showed that all semantic
information improves the performance of LLM-APR, and variable names are
particularly significant. These results suggest that LLM may also be able to
understand source code from semantic information, similar to understand source
code by programmers.

2 Related Works

Accompanying the advent of generative Al such as ChatGPT, research is con-
ducted to look into the feasibility of LLM-APR. Sobania et al. investigated the
program repair capability of LLM-APR using ChatGPT [8]. They employed
QuixBugs, a bug dataset obtained from programming contests, and reported
19 successful bug fixes for 40 bugs. For a larger-scale study, Xia et al. investi-
gated the performance of LLM-APR on multiple LLM models and bug datasets
[10]. Consequently, LLM-APR successfully fixed 37 bugs out of 40 in QuixBugs.
According to another study with traditional APR methods without LLM, inte-
grating ten APR methods resulted in 16 successful for QuixBugs. Therefore, the
performance of LLM-APR has already exceeded that of existing APR methods.

In addition, it is known that prompt design has a significant impact on the
performance of LLM [5,6,9]. Parasaram et al. investigated the impact of seven
facts, such as buggy code’s context and GitHub issues, on LLM-APR [6]. They
reported each fact aids the performance of LLM-APR. However, it was also
revealed that LLM-APR prompts are non-monotonic over facts: adding more
facts may degrade the performance of LLM-APR. Therefore, a significant re-
search question in prompt engineering for LLM-APR is: What specific informa-

tion, and in what quantity, should be integrated into the prompt to maximize the
performance of LLM-APR?

Source code is highly flexible and can be written in various expressions to
describe the same content, like natural language context. For example, method
names and variable names are elements that strongly depend on the thoughts
and habits of programmers [1]. These identifier names are known to greatly help
in understanding source code [7]. In addition, specification in JavaDoc helps
understand the behavior of a method. However, it is not clear whether specifi-
cation and identifier names also contribute to LLM-APR, or what specification
and identifier names are helpful for understanding the source code of LLM.

3 Experimental Design

3.1 LLM Prompt Patterns

In our experiment, the basic structure of a prompt was a pair of instruction
context and buggy source code. The instruction context included that the source
code contains a bug and that the task is to fix the bug, like “This method contains
a bug. Please fix it.” Therefore, the usage scenario was where the developer is
aware of the existence of a bug but does not know how to fix it.

We prepared eight prompts, which are combinations of the presence or ab-
sence of three types of semantic information. In the following section, these eight
prompts are called prompt patterns and are expressed in the form of P-/-/-.
For example, Ps/m/v represents a prompt with specification, the method name,
and variable names, while Ps/-/v represents a prompt with specification and
variable names but without the method name. It should be noted that the granu-
larity of the source code included in the prompt was a method, and the JavaDoc
for each method was used as specification.

Concrete examples of Ps/m/v and P-/-/- are shown in Fig. 1 and Fig. 2,
respectively. From Fig. 1, it is found that Ps/m/v has the task context, specifi-
cation, and buggy method. We can infer the ideal behavior of the target method
from each semantic information. By contrast, Fig. 2 shows that P-/-/- has
the task context and a buggy method without appropriate method and vari-
able names. This available information does not allow the inference of the ideal
behavior of the target method. Thus, it is found that semantic information con-
tributes to the understanding of source code by programmers. However, it is
unclear whether this also helps LLM understand source code. In a practical pro-
gram repair situation, the source code would never be represented as Fig. 2, but
we prepared this prompt and conducted experiments for our research objective.
Besides, in prompt patterns with masked method or variable names, an instruc-
tion context such as “do not change method name and variable names ...” was
added. This intent is that the identifier names will not be converted when LLM
repairs the program. This is to restore masked identifier names to their origi-
nal project state and execute the test when evaluating the success or failure of
LLM-APR (described below).

<task>

This method follows the next specification.
But the method contains a bug. Please fix it.
</task>

<specification>

Remove an attribute by key. Case sensitive.
@param key attribute key to remove

</specification>

<method>
public void remove(String key) {
int i = index0fKey (key);
if (i == NotFound)
remove (i) ;
}
</method>

Fig. 1. An example of prompt pattern with all semantic information “Ps/m/v”

<task>

This method contains a bug. Please fix it.
In addition, do not change method names and
variable names such as "$1" when fixing it.
</task>

<method>
public void $1(String $2) {
int $3 = index0fKey ($2);
if ($3 == $4)
$1($3);
}
</method>

Fig. 2. An example of prompt pattern without all semantic information “P-/-/-"

3.2 Dataset

Two types of bug datasets were used: a relatively large artificial bug dataset
and a real bug dataset. Artificial bugs can be experimented on a large scale, but
they are different from bugs that actually occur. Therefore, it is necessary to
investigate whether the results of artificial bugs are also applicable to real bugs,
so we prepared two types of datasets.

Artificial bug dataset: Artificial bugs were prepared using Mutanerator®.
Mutanerator is a mutant generation tool for Java programs. In this study, we
applied mutant operators described in Table 1. As targets for the experiment,
we selected two Java projects: Jsoup? and Gson®. Both projects have more than
10,000 stars on GitHub, and their quality is high. Therefore, it is considered that
they are assigned appropriate semantic information. Furthermore, we picked out
methods that have non-zero coverage and have JavaDoc. This is to ensure validity

3 https://github.com/kusumotolab/Mutanerator (accessed April 7, 2024)
* https://github.com/jhy/jsoup (accessed April 20, 2024)
® https://github.com/google/gson (accessed April 26, 2024)

Table 1. Mutation operators

Conversion example

Mutati t
utation operators Bofore Afior

Conditional boundary a<b a<=b
Increments a++ a——
Invert negatives -1 1
Math a+b a—b
Negate conditionals a==b al=b

through the test evaluation (described below) and to use JavaDoc directly as a
method specification. When Mutanerator was applied to methods that met these
requirements, 557 bugs were collected for Jsoup and 383 for Gson.

Real bug dataset: We used Defects4J [3] as real bugs. Defects4J is a dataset
of bugs that occurred during real development process of Java projects. We
selected Math project within Defects4J due to the high number of bugs present.
Furthermore, we picked out bugs whose fixes are within one method, which has
a JavaDoc. This is because the source code in the prompt was a single buggy
method and used JavaDoc directly as a method specification. We collected 52
bugs that met these requirements.

3.3 LLM Model

We used gpt-3.5-turbo-0125. It is a text input/output model and is capable of
handling both natural language and source code tasks. Although we set the
upper limit of the number of tokens to 4096, this was not a problem because the
upper limit was never exceeded. The temperature parameter of the model sets the
randomness. A lower temperature means the model is likely to select tokens with
higher likelihood, resulting in more similar samples. We employed temperature
of 0 to reduce the randomness of the LLM output and ensure reproducibility.

3.4 Evaluation

To evaluate the LLM-APR performance, we used the number of successful repairs
for each prompt pattern. Generative Al has randomness, such that it will output
differently even for the same prompts [5]. For a countermeasure, Sobania et al.
[8] conducted multiple attempts. Therefore, we also conducted three attempts
at the same prompt. Following the study by Sobania et al. [8], if any one of the
three outputs succeeds in fixing, the bug is regarded as successfully fixed.

We used test results to determine the success or failure of LLM-APR. In
artificial bugs, we regarded the repair as successful if none of the test cases for
each project failed. In real bugs, we regarded the repair as successful if the test
command provided in the Defects4J succeeded. Initially, masked identifier names
in the LLM output were restored to their original project state, This is because
the output had identifier names such as ‘$1’, and the test cannot be run. Next,
we merged them back into the original source code and run the test.

Ps/m/v 12
Ps/m/— 4
Ps/-rv 8
Ps/-/- 5
P_/msv 7
P_/m/- 4
Posry 3
Pyoy-ii2
0 100 200 300 400 500 0 50 100 150 200 250 5 10 15 20
Jsoup (557 bugs) Gson (383 bugs) Defects4J.Math (52 bugs)

Fig. 3. The number of successful fixes for each bug dataset

4 Results

Fig. 3 shows the number of successful fixes of LLM-APR for each bug dataset.
In the following, the number of successes in Ps/m/v is represented by #Ps/m/v.
For example, in Jsoup, we write #Ps/m/v=410.

4.1 Artificial Bugs

Jsoup: First, since #Ps/m/v=410 and #P-/m/v=411, it was found that spec-
ification has few effects on the performance of LLM-APR when appropriate
identifier names are assigned in the source code. On the other hand, other
pairs with and without specification were #Ps/-/v=382, #P-/-/v=359 and
#Ps/m/-=304, #P-/m/-=272. Therefore, specification improves the performance
when appropriate identifier names are not assigned. Next, as #Ps/m/v=410,
#Ps/m/-=304 and, #P-/m/v=411, #P-/m/-=272, it showed that having vari-
able names increased the number of successes by more than 100 in both cases.
Therefore, it can be found that variable names significantly improve the perfor-
mance of LLM-APR. For other pairs about variable names, we could also see a
trend of performance improvement. Finally, since #Ps/m/v=410, #Ps/-/v=382
and #P-/m/v=411, #P-/-/v=359, having the method name increased the num-
ber of successes. However, the difference is smaller than variable names, so we
can consider that the effects on performance are minor compared to variable
names. Additionally, since #Ps/m/-=304, #Ps/-/-=303 and #P-/m/-=272,
#P-/-/-=286, this suggests that method names contribute little to the perfor-
mance when the appropriate variable names do not exist.

Gson: Firstly, since #Ps/m/v=196 and #P-/m/v=189, specification slightly
increased the number of successes. For other pairs about specification, results
also became better with specification. Therefore, as in the case of Jsoup, spec-
ification seems to aid to the performance of LLM-APR. Next, #Ps/m/v=196,
#Ps/m/-=154 and #P-/m/v=189, #P-/m/-=141, so it indicated that variable
names increased the number of successes. Additionally, for other pairs about
variable names, the performance improved. Thus, as Jsoup, variable names sig-
nificantly improve the performance of LLM-APR. Finally, since #Ps/m/v=196,

#Ps/-/v=190 and #P-/m/v=189, #P-/-/v=179, in these two cases, the num-
ber of successes was larger than with the method name. However, other pairs
about method name were #Ps/m/-=154, #Ps/-/-=163 and #P-/m/-=141,
#P-/-/-=154. Therefore, this is also similar to Jsoup, the method name does
not contribute to LLM-APR when the appropriate variable names do not exist.

4.2 Real Bugs

Defects4J.Math: First, since #Ps/m/v=12 and #P-/m/v=7, this indicated
that specification improved the performance of LLM-APR. For the other pairs
about specification, #Ps/-/v=8, #P-/-/v=3 and #Ps/-/-=5, #P-/-/-=2,
we could see that the performance improvement. Considering that the total
number of bugs is 52, the performance improvement due to specification is more
pronounced than in the case of artificial bugs. Next, #Ps/m/v=12, #Ps/m/-=
and #P-/m/v=7, #P-/m/-=4, so variable names increased the number of suc-
cesses. For the other pairs about variable names, we could also see the same
trend. In terms of the rate of successful repairs, the performance improvement
due to variable nemes is also more pronounced than artificial bugs. Finally, as
#Ps/m/v=12, #Ps/-/v=8 and #P-/m/v=7, #P-/-/v=3, method name also
contributed performance improvement. However, the pair of #Ps/m/-=4 and
#Ps/-/-=5 showed that did not aid performance. This trend is also observed
in artificial bugs, and the investigation of this cause is a subject for future work.
Our experimental results indicated that in real bugs, semantic information
contributes more to the performance of LLM-APR than artificial bugs. One
possible reason is that LLM can easily infer artificial bugs from the structural
characteristics of the source code. For example, assume a part of the artificial bug
source code such as “for(int i=0; i<m; i--){...}”.In this case, regardless of
whether variable names are present or not, it can be inferred that there is a high
possibility of a bug in either “i<n” or “i--". This is because this conditional
expression would likely lead to an infinite loop. By contrast, it is difficult to
infer real bugs from the structural characteristics of the source code. Most of the
bug fixes in Defects4J.Math involved adding new conditional branches, calling
methods defined outside of the target method, changing calculations, and so
on. It is challenging for even developers to speculate on how to fix those bugs
without knowing the ideal behavior of the method. This is also true for LLM,
and it is difficult to repair real bugs without relying on semantic information.

5 Threats to Validity

Various prompting strategies, such as Chain of Thought, might affect the results.
We conducted the experiment in the simplest method, but this is a future re-
search topic. In addition, the training data for gpt-3.5-turbo-0125 is not public,
so Jsoup and Gson might be included in the training data. This data leakage
might lead to overestimating the accuracy of LLM-APR. However, even with
Ps/m/v, Jsoup and Gson respectively failed to repair about 27% and 49%. This
means that not all of the results of this paper are due to the data leakage.

6 Conclusion and Future Work

In this study, we investigated the effects of semantic information on LLM-APR.
We selected specification, method names, and variable names as semantic infor-
mation. The experimental results showed that all semantic information improves
the performance of LLM-APR, and variable names are particularly significant.

As future work, we consider to investigate what identifier name is effective
to LLM-APR performance. Schankin et al. investigated the characteristics of
identifier names that help developers better understand source code [7]. They
reported that developers understand source code more quickly with long identi-
fier names that have more explanation than with short identifier names. We will
check which identifier names are valid for LLM-APR performance. This future
work will provide more practically useful results for LLM-APR.

Acknowledgements This research was partially supported by JSPS KAKENHI Japan
(JP24H00692, JP21H04877, JP21K18302, JP23K24823, JP22K11985, 21K11829)

References

1. Alsuhaibani, R.S., Newman, C.D., Decker, M.J., Collard, M.L., Maletic, J.I.: On
the naming of methods: A survey of professional developers. In: Proceedings of
International Conference on Software Engineering. pp. 587-599 (2021)

2. Higo, Y., Matsumoto, S., Arima, R., Tanikado, A., Naitou, K., Matsumoto, J.,
Tomida, Y., Kusumoto, S.: kGenProg: A high-performance, high-extensibility and
high-portability apr system. In: Proceedings of Asia-Pacific Software Engineering
Conference. pp. 697-698 (2018)

3. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to en-
able controlled testing studies for java programs. In: Proceedings of International
Symposium on Software Testing and Analysis. pp. 437-440 (2014)

4. Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBar: Revisiting template-based
automated program repair. In: Proceedings of International Symposium on Soft-
ware Testing and Analysis. pp. 31-42 (2019)

5. OuYang, S., Zhang, J., Harman, M., Wang, M.: LLM is like a box of chocolates: the
non-determinism of chatgpt in code generation. ArXiv p. arXiv:2308.02828 (2023)

6. Parasaram, N., Yan, H., Yang, B., Flahy, Z., Qudsi, A., Ziaber, D., Barr, E.,
Mechtaev, S.: The fact selection problem in llm-based program repair. ArXiv p.
arXiv:2404.05520 (2024)

7. Schankin, A., Berger, A., Holt, D.V., Hofmeister, J.C., Riedel, T., Beigl, M.: De-
scriptive compound identifier names improve source code comprehension. In: Pro-
ceedings of Conference on Program Comprehension. pp. 31-40 (2018)

8. Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of automatic bug fixing
performance of chatgpt. In: Proceedings of International Workshop on Automated
Program Repair. pp. 23-30 (2023)

9. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A.,
Spencer-Smith, J., Schmidt, D.C.: A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv p. arXiv:2302.11382 (2023)

10. Xia, C.S., Wei, Y., Zhang, L.: Automated program repair in the era of large pre-
trained language models. In: Proceedings of International Conference on Software
Engineering. pp. 1482-1494 (2023)

