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Abstract—Spectrum-Based Fault Localization (in short,
SBFL) is one of the popular techniques to localize faulty
statements of a given program. SBFL utilizes the information
about which statements are executed in each of the successful
or failed test cases. Even if multiple programs have the same
functionality, the accuracy of SBFL can differ due to their
structural variations. Thus, changing program structures to
be suitable for SBFL may improve the accuracy of fault
localization while maintaining functionality. In previous
research by Sasaki et al., SBFL-Score was proposed to discover
program structures suitable for SBFL. SBFL-Score is one of the
metrics used to evaluate how well a program is suitable for
SBFL. Furthermore, the previous research measured SBFL-
Scores for pairs of programs with different structures but the
same functionality, and obtained a program structure suitable
for SBFL. However, a small number of programs and a
small number of mutation operators used in the experiments
were shortcomings. Thus, in this study, we conducted an
experiment with approximately 36 times more programs and
about 2.5 times more mutation operators than in the previous
research. As a result of this experiment, we identified four
new program structures suitable for SBFL.

Index Terms—Spectrum-based Fault Localization, Mutation
Testing, Software Quality

I. Introduction

In software development, debugging is a highly labor-

intensive and costly task. There is a report suggesting that

debugging accounts for over half of the costs involved in

software development [1], [2]. For this reason, there are

many studies supporting debugging. One area of research

in debugging support is Fault Localization, which aims to

localize faulty statements in a program. In recent years,

Spectrum-Based Fault Localization (SBFL) has been actively

studied [3]. SBFL techniques calculate the likelihood of a fault

(henceforth, suspiciousness) for each program statement in a

given faulty program using test results and the information

about which program statements are executed in each test

case (henceforth, execution paths). The basic idea behind

SBFL is that statements executed in many failed tests are

more likely to be faulty, while statements executed in many

successful tests are less likely to be faulty.

The accuracy of SBFL is influenced by various factors, such

as types of defects [4] and types of tests [5]. In these factors,

the previous research by Sasaki et al. [6] focused on program

structure.

The previous research proposed SBFL-Suitability as a qual-

ity indicator of how well a given program is suitable for

SBFL [6]. Furthermore, the previous research also proposed

SBFL-Score as an evaluation metric for SBFL-Suitability. The
basic idea behind measuring SBFL-Score is to create artificial

defects for a program that passes all test cases intentionally.

By measuring how accurately SBFL can identify these arti-

ficial defects, the SBFL-Suitability of the target program can

be evaluated.

The previous research suggested that the accuracy of SBFL

is affected by the program structures, and it is possible to

improve the accuracy of SBFL by changing the program

structure temporarily before executing SBFL. Building on

this concept, the previous study conducted an experiment

to identify program structures that are suitable for SBFL

by measuring SBFL-Scores using five pairs of programs with

different structures but the same functionality. However, the

number of programs used for measurement was only ten,

and the program structures that are suitable for SBFL were

not sufficiently investigated. Additionally, only 11 types of

mutation operators were used to intentionally create artificial

defects in programs. Due to the small-size experiment, we

considered that the measured SBFL-Scores are inappropriate

as an evaluation metric of SBFL-Suitability.
To address these shortcomings, we utilize a dataset [7]

consisting of a large number of program pairs with different

structures but the same functionality. In this study, we aim

to discover new program structures that are suitable for

SBFL by measuring SBFL-Scores using 365 programs in the

dataset. Additionally, we define 16 new mutation operators

to increase the number of mutants. This allows 27 mutation

operators applicable to the programs.

As a result of adding new mutation operators, the number

of mutants increased in approximately 98.6% of the programs.

Moreover, by measuring the SBFL-Scores of the 365 programs

and visually checking the results, we identified four new

program structures that are suitable for SBFL.

II. BackGround

A. Spectrum-Based Fault Localization (SBFL)
Fault Localization is one of the techniques used to sup-

port debugging, which aims to localize faulty statements in

a program. Spectrum-Based Fault Localization (henceforth,



SBFL) is one of the automated fault localization techniques

that utilize tests. In SBFL, the spectrum is the execution path

information that indicates which statements were executed

by each test case. The basic idea behind SBFL is that state-

ments executed by many failed tests are more likely to be

faulty, while statements executed by many successful tests

are less likely to be faulty.

We explain the process of identifying faulty statements

using SBFL. First, we execute all test cases and the success or

failure of each test case and the execution path information

is recorded. Next, using this information, suspiciousness is

calculated for each statement. There are various techniques

to calculate suspiciousness. Abreu et al. evaluated the effec-

tiveness of calculation formulas used in SBFL and concluded

that Ochiai’s [8] is the most effective [9].

Formula (1) shows how suspiciousness susp(s) is calcu-

lated in Ochiai. Here, fail(s) represents the number of failed

tests executing statement s, pass(s) represents the number

of successful tests executing statement s, and totalFail
represents the total number of failed tests.

susp(s) =
fail(s)√

totalFail × (fail(s) + pass(s))
(1)

The suspiciousness is calculated for all statements s; the
higher the value, the more likely it to be faulty.

In calculating suspiciousness, the execution path informa-

tion of failed tests is the most important factor. That is

because which statements were executed and which were

not in failed tests are major clues to localizing the faulty

statement. This is why the numerator of Ochiai’s formula is

fail(s), emphasizing the importance of the execution path

information of failed tests.

B. SBFL-Suitability

SBFL-Suitability was proposed in the previous research [6].

SBFL-Suitability is one of the quality characteristics of a

program, indicating how well a given program is suitable

for SBFL. Even if two programs have the same functionality

and test suite, differences in program structure can lead to

variations in the accuracy of fault localization using SBFL.

We explain how changes in SBFL-Suitability occur due to

differences in program structure with an example. Programs

(a) and (b) shown in Figure 1 have the same functionality but

different structures. When SBFL is applied to both programs

using the test (c) shown in Figure 1, suspiciousness is

calculated for each statement.

In program (a), there are four statements with the same

suspiciousness as the faulty statement. On the other hand,

in program (b), there is only one statement with the same

suspiciousness as the faulty statement. The fewer statements

with the same suspiciousness as the location of the defect,

the fewer statements need to be checked. This means higher

accuracy in fault localization using SBFL. Therefore, program

(b) has higher SBFL-Suitability than program (a).

program susp t 1 (1,1) t 2 (1,0) t 3 (0,1) t 4 (0,0)
s 1: boolean result = false; 0.50 ✓ ✓ ✓ ✓
s 2: if (0 < a) 0.50 ✓ ✓ ✓ ✓
s 3:   result = true; 0.00 ✓ ✓

! s 4: if (0 <= b) //correct: 0 < b 0.50 ✓ ✓ ✓ ✓
s 5:   result = true; 0.50 ✓ ✓ ✓ ✓
s 6: return result; 0.50 ✓ ✓ ✓ ✓
s' 2: if (0 < a) 0.50 ✓ ✓ ✓ ✓
s' 3:   return true; 0.00 ✓ ✓

! s' 4: if (0 <= b) //correct: 0 < b 0.71 ✓ ✓
s' 5:   return true; 0.71 ✓ ✓
s' 6: return false; -

test results: P P P F
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Fig. 1: SBFL results compared with different program struc-

tures
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Fig. 2: Calculation process of the SBFL-Score

C. SBFL-Score
In addition to SBFL-Suitability, we explain the SBFL-Score

proposed in the previous research [6]. The SBFL-Score is

one of the evaluation metrics for SBFL-Suitability. Figure 2

shows the calculation process of SBFL-Score. The basic idea

behind measuring the SBFL-Score is to utilize mutation testing

techniques [10] to intentionally change a given program and

create artificial defects as many as possible. Intentionally

changed programs are called mutants. By measuring how

accurately SBFL can identify these artificial defects, we can

assess how well the entire program is suitable for SBFL.

D. Experiment in the Previous Research
The previous research conducted an experiment to investi-

gate how SBFL-Scores vary due to the differences in program

structures [6].

1) Overview of Experiment: The previous research con-

ducted an experiment to measure SBFL-Scores for five pro-

gram pairs by using an SBFL-Score measurement tool. Two

programs in each program pair have the same functionality

but different program structures. They compared the SBFL-
Scores of the two programs in each pair and assumed that

a program having a higher SBFL-Score is more suitable for

SBFL than the other program in each pair. By inspecting

the executing path of each program, they considered the

reason why SBFL-Scores differ from the difference in program

structure.

2) Experimental Targets and Test Suites: In the previous

research, the experimental target was five method pairs and

test suites. The five method pairs were created based on

refactoring patterns by Sasaki et al. The refactoring patterns



selected for this experiment were from the category of ‘Sim-
plifying Conditional Expression’ as classified by Fowler [11].

The test suite for each method was created by Sasaki et

al. to satisfy the following three criteria:

• each test suite in a method pair has the same test cases,

• each mutant fails in any test case, and

• condition coverage reaches 100 %.

3) SBFL-Score measurement tool: In the previous research

by Sasaki et al., they developed an SBFL-Score measurement

tool. It consists of a mutant generator and an SBFL executer.

They implemented 11 types of mutation operators listed

in Table I in the mutant generator. These operators were

selected from the default mutation operators provided by

PIT [12], an open-source mutation testing tool. PIT is widely

used in mutation testing for generating mutants [13].

Their tool has a functionality to execute SBFL for mutants

generated by the mutant generator. Their tool uses Ochiai’s

formula (Formula (1)) to calculate the suspiciousness value

of each line in a mutant. Their tool also has a functionality

to save the logs of SBFL such as execution path information

of each mutant and SBFL-Score.

4) Result: The previous research revealed that the fewer

statements exist at the same nesting level, the higher SBFL-
Suitability tends to be.

They also got two transformation ways of program struc-

ture to improve SBFL-Suitability below:

• Using return statement to terminate method early.

• Reduce the number of statements in the same nesting

level.

III. Experimental Setup

A. Chenges from previous research

In this research, we conduct an experiment similar to the

previous research by Sasaki et al. [6].

To reveal new program structures that are suitable for

SBFL, we made some changes to the experimental setup of

previous research.

1) Definition of Program Structure: In the previous research

by Sasaki et al., they did not define the precise meaning of

program structure. In this research, we define the program

structure of the method as the execution paths for the

same test suite. Even if methods are written differently, if

the execution paths of the two methods are the same, the

program structures of the two methods are regarded as the

same.

TABLE I: Mutation operators used in the previous research

Mutation Operator Previous Later

Conditional Boundary a<b a<=b
Increments n++ n--
Invert Negatives -n n
Math a+b a-b
Negate Conditionals a==b a!=b
Void Method Calls method(); ;
Primitive Returns return 5; return 0;
Empty Returns return "str"; return "";
False Returns return true; return false;
True Returns return false; return true;
Null Returns return object; return null;

Program (Input: a) t1 t2 t3

s1 if (a == 0) ✓ ✓ ✓
s2 return 0; ✓
s3 else if (a > 0) ✓ ✓
s4 return 1; ✓
s5 return -1; ✓ ✓

(a)

Program (Input: a) t1 t2 t3

s′1 if (a > 0) ✓ ✓ ✓
s′2 return 1; ✓
s′3 else if (a < 0) ✓ ✓
s′4 return -1; ✓
s′5 return 0; ✓

(b)

Fig. 3: A method pair with different execution paths

Program (Input: a) t1 t2 t3

s1 if (a>0) ✓ ✓ ✓

s2 return 1; ✓

s3 if (b<0&&a!=0) ✓ ✓

s4 return -1; ✓

s5 return 0; ✓

(a)

Program (Input: a) t1 t2 t3

s′1 if (a>0) ✓ ✓ ✓

s′2 return 1; ✓

s′3 else if (a<0&&b<0) ✓ ✓

s′4 return -1; ✓

else

s′5 return 0; ✓

(b)

Fig. 4: A method pair with same execution paths

The term "same execution paths" refers to two methods

satisfying the following three conditions, where si represents
the i-th statement in the first method, and s′i represents the
i-th statement in the second method.

• The number of all statements in the two methods is the

same.

• The number of statements executed in the same test case

(m) is the same in the two methods.

• For all test cases in the test suite, for range in 1 ≤ i ≤ m,

when statement si is executed, s
′
i is also executed.

Figure 3 shows an example of a method pair with different

execution paths, while Figure 4 shows an example of a

method pair with the same execution paths. For the method

pairs with the same execution paths, applied mutation oper-

ators are only the factors that affect SBFL-Scores. We consid-

ered such method pairs inappropriate for the experiment in

this research.

2) Experimental target and test suite: The previous research
used a dataset consisting of only ten methods that were cre-

ated manually, which were part of five method pairs. In short,

the size of the dataset is small. Thus, the generalizability of

the research result is low. The previous research also has not

thoroughly investigated program structures contributing to

higher SBFL-Scores.
To address this shortcoming, we utilize a dataset [7] that

includes methods with the same functionality implemented

in Java. The dataset consists of 728 methods and test suites.

Each method in this dataset was collected from open-source

software. The methods in the dataset are categorized into

276 groups based on their functionality, with each group

containing two to twelve methods. The test suite for each

method was automatically generated using Evosuite [14].

We set four conditions for the experimental target.

Cond. 1: The methods within the same group share the same

functionality.

Cond. 2: The test suite attached to the method reaches 100%

of the instruction and condition coverages for the methods.



Cond. 3: The test suite attached to the method does not

contain Flaky Test[15].

Cond. 4: The program structures in the same group are

different from one another.

The Reasons for setting Cond. 2 to 4 are as follows:

Regarding Cond. 2: Ensuring 100% instruction coverage

is necessary to calculate suspiciousness values from all the

statements. Ensuring 100% condition coverage is necessary

to attach different suspiciousness to different program state-

ments as much as possible.

Regarding Cond. 3: A Flaky Test is a test case that exhibits

both a passing and a failing result with the same code. If

Flaky Tests exist in a test suite, SBFL-Score of a given method

may vary every time we execute the test suite.

Regarding Cond. 4: The purpose of this research is to

reveal what kind of program structures are more suitable for

SBFL, which means that it is not necessary to treat multiple

methods that have the same structure.

The procedure for obtaining methods satisfying all the

conditions is as follows:

Step 1: Add some test cases manually.
The test suite for each method was automatically gen-

erated using Evosuite [14]. However, there are some cases

where the automatically generated test suites do not achieve

100% instruction and condition coverage. Therefore, we man-

ually add the test cases to ensure 100% instruction coverage

and condition coverage.

Step 2: Exclude methods that do not meet the condi-
tions.

We execute the test suite to investigate whether each target

method satisfies Cond. 1 to Cond. 4. As a result, 363 methods

within 145 groups were excluded from the experimental

target. We use 365 methods within 131 groups that satisfy

the four conditions as the experimental target.

3) Mutant generator: The previous research used 11 types

of mutation operators. They implemented the ten target

programs so that these mutation operators could be applied

in many parts of the code, resulting in a sufficient number

of mutants generated from a method. However, it may not

be possible to generate a sufficient number of mutants when

using other programs. In such cases, SBFL-Score values are

less reliable.

To address this shortcoming, we visually inspected the

experimental target and extracted locations where existing

mutation operators cannot be applied. We defined additional

mutation operators shown in Table II to mutate to the

locations we described above. The reasons for selecting those

mutation operators are below.

• Applicable to multiple methods.

• Not necessary to record identifiers to implement a

mutation operator.

Newly defined mutation operators may generate the same

mutants as existing ones. For example, if there is a state-

ment return false; in a program, both the Change
Boolean Literal and True Return operators can

generate the same mutant. Thus, we modified the mutant

generator to ensure the same mutant is not duplicately

generated.

To evaluate that the SBFL-Score values become more re-

liable, we measure the number of mutants generated by

additional mutation operators for each method in the ex-

perimental target. It is necessary to consider the size of the

method because as the size of the method increases, the

number of mutants tends to increase. To evaluate the increase

in mutants compared to the method size, we calculate the

AMPL (the number of Additional Mutants Per LOC) metric

for each method. Equation (2) is the definition of AMPL. The
term "Logical LOC" in Equation (2) refers to the number of

lines in the method excluding empty lines, comment lines,

and lines containing only brackets. A higher value of AMPL
indicates improved accuracy of SBFL-Scores.

AMPL =
The number of additional mutants

Logical LOC of a method

(2)

We implemented the 11 mutation operators mentioned

in Section II-D and the additional 16 mutation operators

mentioned in Section III-A3 within the mutant generator. To

measure the AMPL value of each target program, we also

implemented the functionality to switch mutation operators

used. It allows us to record the difference in the number of

mutants before and after adding new operators.

B. The procedure of experiment

We evaluate the increase in mutants and find factors

contributing to higher SBFL-Scores in the following steps:

Step A: Measure SBFL-Scores and AMPLs of the target
methods.
For all the target methods, we measure the SBFL-Scores

and AMPLs using a measurement tool that we developed.

To obtain the execution path information necessary for

calculating SBFL-Scores, we utilized kGenProg [16], an APR

tool. As mentioned in II-D3, the execution path information

of running SBFL for each mutant is saved to files. It allows

us to analyze the factors contributing to higher SBFL-Scores
in Step C.

TABLE II: Additional mutation operators we implemented. If

code exists in the "Later" column separated by commas, it

means the mutation operator in this row generates multiple

mutants.

Mutation Operator Previous Later Times

Change String Literal "String" "String1" 96

Change Instanceof a instanceof A a instanceof B 192

Nonvoid Method Calls a=method() a=null 26

Constructor Calls a=new A() a=null 446

Compound Operator a+=1 a-=1 90

Change Numeric Literal if(x<0) if(x<1) 988

Change Boolean Literal true false 225

Change Unary Operator !ismethod() ismethod() 13

Add Not Operator if(b) if(!b) 54

More Specific If a&&b a,b,a||b 222

Less Specific If a||b a,b,a&&b 180

Break and Continue break; continue; 74

Null Assignment Object x=y; Object x=null; 83

Empty Assignment s=a.toString(); s=""; 91

Primitive Assignment int a=b; int a=0; 232

Change Throw Statement throw new A; throw new B; 132
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Fig. 5: Histogram of AMPL values of the experimental target

Step B: Exclude groups where no differences in SBFL-
Scores from the subject of consideration.
There are some groups that have methods with the

same SBFL-Scores, even though the program structures differ

within the groups. Those groups are not necessary to analyze

factors contributing to higher SBFL-Scores. We exclude those

groups from Step C.

Step C: Classify factors contributing to higher SBFL-
Scores and analyze the reasons.
We visually inspect all methods in each group and record

the differences in program structure. Then, we classify

the differences in program structure into several structure

groups. Next, we check the significance of the difference in

SBFL-Scores for each classified structure group by using a

statistical approach. We use Wilcoxon’s signed-rank test [17]

because SBFL-Scores do not follow a normal distribution.

Finally, we visually inspect the execution path information

for each mutant. By comparing the SBFL-Scores and execution
path information among the methods, we analyze the reasons

why the factors contribute to higher SBFL-Scores.

IV. Results

A. The increase in mutants

Fig. 5 shows the Histogram of AMPL values of the exper-

imental target. Out of the 365 methods, 359 methods have

AMPL values greater than 0. The "Times" column in Table II

shows the number of times each additional mutant is applied.

According to these results, it is considered that the number

of mutants increased overall because of additional mutation

operators.

B. Factors contributing to higher SBFL-Scores

Out of the 131 groups, 119 groups have differences in SBFL-
Scores in the same group.

There are 12 groups that have no differences in SBFL-
Scores. The reasons are as follows:

• There are no conditional expressions in any methods in

the group.

• Only the difference between the methods in the same

group is that multiple conditions of if statements

appear in a different order.

By inspecting the 119 method pairs manually, we revealed

the following four new factors contributing to higher SBFL-
Scores:

Factor 1: Using control statements instead of ternary oper-

ators or lambda expressions.

Factor 2: Using additional if statement for applying Early
Return [18].

Factor 3: Using multiple if statements instead of an if
statement with a logical operator.

Factor 4: No possibility that exceptions occur in the first

statement.

There are some groups that satisfy the factor discovered

in the previous research, which is having a low number of

statements in the same nesting level.

The factors contributing to higher SBFL-Scores and the

number of groups that satisfy the factors are listed in

Table III.

C. Significance of the difference in SBFL-Scores

Figure 6 (a)-(f) shows box-and-whisker plots with indi-

vidual data points showing the differences in SBFL-Scores
between the presence and the absence of each of the five

factors, including the four newly discovered factors and one

factor discovered in the previous research. Lines between

points indicate the difference of SBFL-Scores in the same

group. To check the significance of the differences in SBFL-
Score, we used Wilcoxon’s signed-rank test and calculated p-

values. As can be seen from Figure 6, for factors other than

Factor 4, which has a small number of samples, the difference

in SBFL-Scores between the presence and the absence of the

factor was significant (p < 0.05).

D. Factors contributing to higher SBFL-Scores

We explain why each factor contributes to higher SBFL-
Scores with examples below.

Factor 1: Using control statements instead of ternary
operators or lambda expressions.
There are several ways to write conditionals and loops.

For example, in Figure 7, method (b) includes an if
statement. As a result, there are differences in the execution

paths when running a test suite, leading to a non-zero SBFL-
Score. On the other hand, method (a) contains a ternary

operator and does not contain any control statements. In such

cases, there are no variations in the suspiciousness of each

statement. Consequently, it leads SBFL-Score of 0. Therefore,

by using control statements instead of ternary operators or

lambda expressions, SBFL-Scores are improved.

Factor 2: Using additional if statement for applying
Early Return.

TABLE III: The number of groups classified as each factor

Factor Number of Groups

Factor 1 20

Factor 2 8

Factor 3 11

Factor 4 4

Factor discovered in the previous research 63

Unknown 13
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Fig. 6: Distribution of the differences in SBFL-Scores between the presence and the absence of each factor

1 return a > b ? 1 : 0;

(a)

1 if(a > b)
2 return 1;
3 else
4 return 0;

(b)

Fig. 7: A method pair indicating the difference between the

presence and absence of control statement

1 int s = 0;
2 for (int i = 0; i < L; i++)
3 s += p[i];
4 return s;

(a)

1 if (L < 1)
2 return 0;
3 int s = 0;
4 for (int i = 0; i < L; i++)
5 s += p[i];
6 return s;

(b)

Fig. 8: A method pair indicating the difference between the

presence and absence of Early Return

In some cases, the return value of a method can be deter-

mined based on the input before executing all the program

statements in the method.

For example, in Figure 8, method (a) contains a for loop to

process the contents of an array. On the other hand, method

(b) also contains an if statement to return 0 if the array

length is 0.
By using if statement to apply Early Return, some test

cases execute the newly added if statement and do not

reach for loop. Therefore, if a faulty statement exists in

for loop, the number of successful tests that execute faulty

statement decreases. This leads to an increase in the rScore
and an increase in the SBFL-Score (Figure 9(b)). Therefore, by
using if statement to apply Early Return, SBFL-Scores are

improved.

Factor 3: Using multiple if statements instead of an
if statement with a logical operator.

There are two ways to write a conditional branch with

multiple conditional expressions: connecting conditional ex-

pressions with the logical operator or dividing conditional

expressions into separate if statements.

For example, in Figure 10, method (a) contains a single

if statement with two conditional expressions connected by

the logical OR operator (||). On the other hand, method

(b) contains two if statements with a single condition

Program (Input: p) t1 t2 t3 susp rScore

s1 int s = 0; ✓ ✓ ✓ 1.00 0.33

s2 for (int i=0; i<L; i++) ✓ ✓ ✓ 1.00 0.33

s3 s -= p[i]; //bug here ✓ ✓ 0.58 0.00

s4 return 0; ✓ ✓ ✓ 1.00 0.00

(a)

Program (Input: p) t1 t2 t3 susp rScore

s1 int s = 0; ✓ ✓ ✓ 0.82 0.20

s2 if (L < 1) ✓ ✓ ✓ 0.82 0.20

s3 return 0; ✓ 0.00 0.00

s4 for (int i=0; i<L; i++) ✓ ✓ 1.00 0.60

s5 s -= p[i]; //bug here ✓ ✓ 1.00 0.60

s6 return s; ✓ ✓ 1.00 0.60

(b)

Fig. 9: Example of differences in execution path between the

presence and absence of Factor 2.

1 if (i < s || i > e)
2 return -1;
3 return 0;

(a)

1 if (i < s)
2 return -1;
3 else if (i > e)
4 return -1;
5 return 0;

(b)

Fig. 10: A method pair indicating the difference between the

presence and absence of a logical OR operator

expression.

Even if there is a fault in the right side of conditional

expressions connected by the logical OR operator, a test case

that checks the left side of conditional expression becomes

a successful test if the left side of conditional expression

is correct. Thus, the statement is executed frequently in

successful tests. As a result, the suspiciousness of the faulty

statement decreases, leading to an increase in the ranking of

suspiciousness for other statements that are not faulty (Figure

11(a)). This leads to a decrease in rScore and a decrease in

the SBFL-Score. Therefore, by separating condition expres-

sions instead of connecting them using logical operators,

SBFL-Scores are improved (Figure 11(b)).

Factor 4: No possibility that exceptions occur in the
first statement.
There are test cases that expect the occurrence of an

exception [19]. These test cases may be used to execute

SBFL. The SBFL-Score measurement tool used in this study



Program (Input: s,e) t1 t2 t3 t4 susp rScore

s1 int i = 0; ✓ ✓ ✓ ✓ 0.71 0.66

s2 if (i < s || i <= e) // bug here ✓ ✓ ✓ ✓ 0.71 0.66

s3 return -1; ✓ ✓ ✓ 0.47 0.00

s4 return 0; ✓ 0.50 0.33

(a)

Program (Input: s,e) t1 t2 t3 t4 susp rScore

s1 int i = 0; ✓ ✓ ✓ ✓ 0.71 0.60

s2 if (i < s) ✓ ✓ ✓ ✓ 0.71 0.60

s3 return -1; ✓ ✓ 0.00 0.00

s4 else if (i <= e) // bug here ✓ ✓ 1.00 1.00

s5 return -1; ✓ 0.50 0.20

s6 return 0; ✓ 0.50 0.20

(b)

Fig. 11: Example of differences in execution path between the

presence and absence of Factor 3.

1 String t(String s, Object... args) {
2 StringBuilder b = new StringBuilder(s.length() + 16 * args.length

);//Exception occurs when s=null
3 ...
4 }

(a)

1 String t(String s, Object... args) {
2 s = String.valueOf(s);
3 StringBuilder b = new StringBuilder(s.length() + 16 * args.length

);//Exception occurs when s=null
4 ...
5 }

(b)

Fig. 12: A method pair indicating the difference of the

location of statements where the exception occurs

Program (Input: s,t) t1 t2 t3 susp rScore

s1 StringBuilder b = new StringBuilder( ✓ ✓ 1.00 0.00

s.length() + 16 * args.length);
s2 int templateStart = 1; //bug here ✓ ✓ 1.00 0.00

... ... ... ... ... ...

s7 return b.toString(); ✓ ✓ 1.00 0.00

(a)

Program (Input: s,t) t1 t2 t3 susp rScore

s1 s = String.valueOf(s); ✓ ✓ ✓ 0.87 0.00

s2 StringBuilder b = new StringBuilder( ✓ ✓ 1.00 0.14

s.length() + 16 * args.length);
s3 int templateStart = 1; //bug here ✓ ✓ 1.00 0.14

... ... ... ... ... ...

s8 return b.toString(); ✓ ✓ 1.00 0.14

(b)

Fig. 13: Example of differences in execution path between the

presence and absence of Factor 4.

determines that when an exception occurs, the statement

where the exception occurs is treated as unexecuted. Thus,

this specification affects SBFL-Scores.
For example, assume the case of the two methods shown in

Figure 12. In Method (a), if the input is s=null, an exception

occurs in line 2. Thus, when running test cases that expect

an exception, it is determined that none of the statements

in the method are executed. On the other hand, in method

(b), if the input is s=null, an exception occurs in line 3.

Thus, when running test cases that expect an exception, it is

determined that line 2 is executed.

If there is a fault after line 3, the test case providing

s=null always results in an exception occurring on line

3. In this case, test cases expecting an exception become

successful tests. As a result, the number of successful tests

executing a faulty statement decreases (Figure 13(b)). This

leads to an increase in rScore and an increase in SBFL-Score.

V. Threat to Validity

A. Internal threats

There are some kinds of granularities, such as statements

and code blocks, used in SBFL [20]. In this study, we

used statements as a granularity of SBFL. However, if we

use another granularity, there is a possibility of producing

different results.

Measurement results of SBFL-Scores are influenced by the

choice of test suites and a mutant generator. Thus, using

different test suites and a mutant generator can lead to

variations in SBFL-Scores and produce different results.

The code coverage tool used in this study determines

that when an exception occurs, the statement where the

exception occurs is treated as unexecuted. If a different tool is

used for collecting code coverage information, the statement

where the exception occurs might be treated as unexecuted,

potentially negating the experimental results, in particular

Factor 4 in Section IV-B.

B. External threats

In this research, we used a dataset created by Higo et

al. [7]. This dataset includes small programs containing

a single method. If we use programs that have different

characteristics from the ones used in this study, such as large

programs containing multiple methods, there is a possibility

of producing different results.

As described in Section III-A, we set four conditions for

the experimental target and excluded programs that did not

meet these conditions. As a result, approximately half of the

programs were excluded from the experimental targets. Thus,

there is a lack of generalizability in the experimental results.

VI. Related Work

SBFL is one of the most popular techniques in fault

localization and it has been actively studied in recent years

[20], [21].

In this Research, we revealed four program structures to

improve the accuracy of SBFL. There is some research about

the quality including the accuracy of SBFL. Abrew et al.

researched some influences on the accuracy of SBFL [22].

They showed that Ochiai’s formula consistently outperforms

the other formulas. Furthermore, they showed that a limited

number of failing tests is optimal, and additional failing test

cases do not affect the accuracy of SBFL. Golagha et al.

introduced a technique of predicting the quality of SBFL

by using 70 static, dynamic, test suite, and fault-related

metrics [23]. Their study showed that it is not necessary to



execute all test cases before applying SBFL. However, they

also found that applying SBFL right after the first failed test

is less effective than applying it after executing all tests for

multi-location bugs, which is contrary to the single-location

bug study.

There is also some research about improving the accuracy

of SBFL. Zhang et al. introduced a technique of improving the

accuracy of SBFL by using the PageRank algorithm [24]. The

experimental results of this research demonstrate that their

technique can outperform state-of-the-art SBFL techniques

significantly. Hongdou He et al. introduced a technique for

improving the accuracy of SBFL by using Fault Influence

Propagation [25]. They conducted an experiment on the real-

world fault dataset Defects4J [26] with 33 raw spectrum-

based fault locators, which proves that the proposed approach

improves the baseline 14.9% average at the top-5 position.

VII. Conclusions and Future Work

In this study, we addressed the shortcomings of previous

research [6], namely the small number of programs inves-

tigated and the small types of mutation operators. We con-

ducted experiments to measure SBFL-Scores and investigated

program structures that are suitable for SBFL. As a result of

the investigation, we identified four new program structures

that are suitable for SBFL.

There are two future challenges below:

Development of an Automated Program Transforma-
tion Tool

Both the previous research [6] and our study have identi-

fied program structures with high SBFL-Suitability. Thus, it
is possible to develop a tool that automatically transforms

programs to improve their SBFL-Suitability. Furthermore,

by using the developed tool, it is possible to conduct an

experiment to determine if the accuracy of fault localization

improves when applying the transformations to programs

with existing defects.

Investigation of the Relationship between SBFL-
Suitability and Other Quality Characteristics
While improved SBFL-Suitability, there may be a decrease

in maintainability. Actually, the program in Figure 11(b)

that is suitable for SBFL contains code clones (Line 2 and

Line 4). Therefore, it is a significant challenge to investigate

a relationship between SBFL-Suitability and other quality

characteristics, such as maintainability.
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