
The Effects of Soft Assertion
on Spectrum-based Fault Localization

Kouhei Mihara, Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
{k-mihara, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract. This paper investigates the negative effects of soft assertion
on the accuracy of Spectrum-based Fault Localization (SBFL). Soft as-
sertion is a kind of test assertion which continues test case execution even
after an assertion failure occurs. In general, the execution path becomes
longer if the test case fails by a soft assertion. Hence, soft assertion will
decrease the accuracy of SBFL which leverages the execution path of
failed tests. In this study, we call the change of execution path due to
soft assertion as path pollution. Our experimental results show that soft
assertion actually reduces the accuracy of SBFL in 35% of faults.

Keywords: fault localization · spectrum-based fault localization · test
· assertion · soft assertion · hard assertion

1 Introduction

Spectrum-based Fault Localization (SBFL) has been frequently studied as one of
the techniques to support debugging [7] [12] [13]. SBFL automatically identifies
suspicious locations of faults in a source code based on the execution path of test
cases. The fundamental idea of SBFL is that the program elements covered by
many failed test cases are more likely to be faulty, and those covered by many
successful test cases are less likely to be faulty. SBFL has the advantage of high
availability, since it uses only automatically measurable information. SBFL is
expected to be used not only as supplementary information for debugging [5],
but also as pre-processing for automatic debugging [9], and automatic program
repair [4] [8].

The accuracy of SBFL is affected by various factors, such as the number of
faults [14], the structure of test cases [2] [10], and the structure of the source
code [11]. This study focus on soft assertion as one of these factors. In many
test frameworks, a test case is immediately aborted and marked as failed when
an assertion failure occurs. In contrast, with soft assertion, test case execution
continues even if an assertion failure occurs. Therefore, the success or failure
of all assertions can be checked at once in a single test execution. The most
appropriate scenario for soft assertion is when each assertion in a single test
case is independent. In such a scenario, soft assertion enables us to understand
whether only one assertion has failed, or if all the other assertions have also
failed.

It is clear that the use of soft assertion affects the accuracy of SBFL because
soft assertion surely changes execution path of failed tests. More specifically, soft
assertion will have negative effects on the accuracy of SBFL, since failed tests
become to execute more program statements. This paper introduces a concept
path pollution that represents the increase of coverage of failed tests caused by
soft assertion. Basically, a buggy statement is already executed when an assertion
failure occurs. Therefore, the rest of program statements should not be executed
to accurately locate the buggy statements.

In this study, we investigate the effects of soft assertion on the accuracy of
SBFL. As a preliminary investigation, we study on the following two questions.
“RQ1: What libraries support soft assertion?” and “RQ2: How much is soft as-
sertion used?”. It is considered that the decrease in SBFL accuracy occurs in
many projects if soft assertion is frequently used in test code of real projects.
Therefore, how much soft assertion is used in real projects will become impor-
tant information when considering the effects of soft assertion on SBFL. As a
result of the preliminary investigation, we find that soft assertion is supported
by many libraries and frameworks. We also find that 132 out of 1,000 projects
are using one or more soft assertions.

Based on the results of the preliminary investigation, we study on the main
question: “RQ3: Does soft assertion decrease the accuracy?” We compared the
SBFL accuracy using a typical assertion and soft assertion by rewriting assert
statements in the test code of a bug dataset. As a result of the comparison, a
decrease in accuracy is observed in 35% of the faults.

2 Preliminaries

2.1 Spectrum-based Fault Localization

Spectrum-based Fault Localization is one of the automated fault localization
techniques using tests [7] [12] [13]. In SBFL, the statements executed by test
cases are regarded as a spectrum, and the tendency of the spectrum is used to
estimate the fault locations. The fundamental idea of SBFL is that the state-
ments executed by many failed test cases are more likely to be faulty, and those
executed by many successful test cases are less likely to be faulty.

Here, we explain the specific method of identifying fault locations in SBFL.
First, execute all test cases and record the success or failure of each test case and
its execution path (spectrum). Next, use the spectrum to calculate a suspicion
value for each statement. There are several formulas for calculating suspicion
value [3]. Here, we explain the formula called Ochiai [1]. Let totalFails be the
total number of failed test cases, s be a statement, fail(s) be the number of
failed test cases that execute s, and pass(s) be the number of successful test
cases that execute s. Then, the suspicion value is calculated by the following
formula.

susp(s) =
fail(s)√

totalFails× (fail(s) + pass(s))

The susp(s) is calculated for all s, and the higher the value, the more likely
that s is faulty. Therefore, what is important is the relative height of susp(s)
compared to other statements, rather than the absolute value of susp(s) itself.
When discussing the accuracy of SBFL, it is common practice to use a relative
indicator of how the faulty statement is ranked in the list of susp(s).

Note that in the calculation of suspicion values, the spectrum of failed test
cases is the most important element. This is because the spectrum of failed tests
provides strong clues to the fault location, by showing which statements the
failed tests executed and which they did not.

2.2 Soft Assertion

The test case is immediately aborted if a single assertion fails in almost all test
frameworks, such as JUnit for Java and unittest for Python. In contrast, a soft
assertion continues executing a test case even if an assertion fails. In this paper
we call the normal assertion as hard assertion, as opposed to soft assertion.

One advantage of soft assertion is that all assertion results can be displayed in
a single test execution. Soft assertion is suitable when there are no dependencies
between assertion statements, such as checking all fields of a simple Bean class.
With hard assertion, it is impossible to distinguish whether only one assertion
has failed or whether all the other assertions have also failed. With soft assertion,
however, the results of all the assertions can be checked at once.

Soft assertion has a strong meaning for failed test cases, similar to SBFL
as mentioned in Section 2.1. The behavior is the same for both hard and soft
assertion when a test case succeeds, and only when a test case fails, the execution
path changes. Therefore, soft assertion is considered to alter SBFL results.

3 Motivating Example

The use of soft assertion may decrease the accuracy of Spectrum-based Fault
Localization. This is because the coverage of failed tests increases with soft
assertion. When the coverage of failed tests increases, many statements unrelated
to the fault are included in the execution path. We call the inclusion as path
pollution in this paper.

Fig. 1 shows an code example where SBFL accuracy decreases due to soft
assertion. The example consists of a User class (Fig. 1a) representing a single
user and an unit test (Fig. 1b) for the User class. The User class has functions
for registering with user information and logging in. The unit test checks the
registration function for user information up to line 4 and the login function
at lines 5-6. The User class has a fault in the password setter (line 6 in Fig.
1a), where it assigns the password to the this.name property instead of the
this.pwd property. As a result, the assertion statement at line 4 fails in Fig. 1b.

The fault is in the password setter of the User class, while the login func-
tion checked at lines 5-6 is unrelated to the fault. However, since soft assertion
continue to execute the test even after an assertion failure, lines 5-6 are also

1 public class User {
2 public void setName(String name) {
3 this.name = name;
4 }
5 public void setPwd(String pwd) {
6 this.name = pwd;
7 }
8 public void login() {
9 if(isLoggedin()) {

...

(a) User class

@Test
1 public void testUser() {
2 User u = new User("mihara", "qwerty123");
3 Soft.assert(u.getName()).isEqualTo("mihara");
4 Soft.assert(u.getPwd()).isEqualTo("qwerty123");

5 u.login();
6 Soft.assert(u.isLoggedin()).isTrue();

...
7 }

(b) Unit test with soft assertion

Fig. 1: Code example where SBFL accuracy decreases due to soft assertion

executed. Therefore, login method in Fig. 1a is also included in the execution
path of the test. Thus, using soft assertion results in more statements unrelated
to faults being executed in failed tests, leading to the pollution of the execution
path of failed tests.

When path pollution occurs, the suspicion values of statements unrelated to
the fault may increase, and the rank of the suspicion value of faulty statement
may decrease. Thus, using soft assertion causes path pollution and decreases the
accuracy of SBFL.

4 Research Questions

In this study, we investigate the effects of soft assertion on the accuracy of
SBFL. As a preliminary investigation, we study on the actual usage of soft
assertion. If soft assertion is frequently used in test code of real projects, SBFL
accuracy decreases in many projects. Therefore, understanding actual usage of
soft assertion is important to consider its effects on SBFL.

We set RQ1 and RQ2 for preliminary investigation and set RQ3 for the main
topic of this research, the effects of soft assertion on SBFL.
RQ1: What libraries support soft assertion?

As one aspect of the actual usage of soft assertion, we investigate what li-
braries or frameworks support soft assertion. We investigate several libraries and
frameworks for their support of soft assertion in various languages.
RQ2: How much is soft assertion used?

Continuing from RQ1, we investigate how much soft assertion is used in
real projects. In this investigation, we measure the usage rate of libraries and
frameworks that support soft assertion, as discovered in RQ1.
RQ3: Does soft assertion decrease the accuracy?

We investigate whether the accuracy of SBFL actually decreases when soft
assertion is used instead of hard assertion in test cases.

5 Methodologies and Results

RQ1: What libraries support soft assertion?

Methodology: We investigate several assertion libraries and testing frame-
works to understand how soft assertion is supported. We manually inspect the
documentation of each library and framework to determine whether soft asser-
tion is supported. Although the primary language of investigation is Java, we
also investigate Kotlin, JavaScript, Python, and C#.

Result: Table 1 shows the result of the investigation. Soft assertion is imple-
mented in two classes in JUnit, the most widely used Java testing framework.
Soft assertion is also implemented in other Java test frameworks, such as TestNG
and Spock, and assertion libraries such as AssertJ. In addition, many frameworks
and libraries implement soft assertion in each of the other languages we investi-
gated. This result suggests that there is a demand for soft assertion in various
languages.

RQ2: How much is soft assertion used?

Methodology: To investigate RQ2, we measured the usage rate of soft assertion
on GitHub projects. This investigation targets the top 1,000 Java projects in
terms of stars. In RQ2, we first search for soft assertion-related keywords in the
source code of each project and count the number of projects in which the search
hits. The search keywords are the class and method names that are discovered
to implement soft assertion in RQ1, specifically “ErrorCollector”, “assertAll”,
“SoftAssert”, and “verifyAll”. Next, the usage rate of soft assertion is calculated
using the formula 1. In the formula, hit is the number of projects where the
keyword is found and total is the total number of projects (1,000).

Table 1: Libraries and frameworks that implement soft assertion
Language Library name Type Class/method name
Java JUnit Framework ErrorCollector, Assertions

TestNG Framework SoftAssert
Spock Framework Specification
AssertJ Library SoftAssertions, JUnitSoftAssertions

Kotlin Kotest Framework assertSoftly
Strikt Library expect
assertk Library assertAll

JavaScript Jasmine Framework expect
soft-assert Library jsonAssertion

Python softest Framework soft_assert
assertpy Library soft_assertions

C# Fluent Assertions Framework AssertionScope
NUnit Framework Assert.Multiple

Usage rate =
hit

total
× 100% (1)

Result: Table 2 shows the usage rate of soft assertion. The column labelled “Hit
count” indicates the number of projects in which soft assertion-related keywords
are found. When the usage rate is measured for the libraries as a whole, it is
found that 13.2% 1 of projects use soft assertion. This means that more than
one in ten projects use soft assertion.

RQ3: Does soft assertion decrease the accuracy?

Methodology: To investigate the effects of soft assertion on the accuracy of
SBFL, we conducted an accuracy comparison experiment with soft and hard
assertion. The experiment targets 66 faults in the Defects4J [6] dataset, which
contains real bugs. The specific experimental procedures are as follows:

Step1: Apply SBFL and calculate the accuracy.
Step2: Rewrite all assertions in failed test cases to soft assertions.
Step3: Apply SBFL again and calculate the accuracy.

We use rank as the evaluation metric for the accuracy of SBFL. The rank is
the rank of the faulty statement when the statements are ranked in descending
order of the suspicion values calculated by SBFL. The lower the value of rank,
the higher the accuracy of SBFL.

Result: The distribution of rank scores using hard and soft assertion is shown
in Fig. 2. According to the figure, it is observed that there is no significant
difference in the distribution between the two assertions. In this analysis, the
effects of soft assertion on the accuracy of SBFL is not observed.

For a more detailed analysis, we investigate the proportion of faults as accu-
racy changes. The result is Fig. 3. The figure shows that about 35% (23 cases)
of the faults show a decrease in accuracy, while about 64% (42 cases) show no
change in accuracy. In conclusion, although the decrease in accuracy for each
fault is small, a significant number of faults showed a decrease in accuracy.
1 The total sum of the individual usage rates is 19.4%. However, since some projects
use multiple libraries, the percentage of unique projects using soft assertion is 13.2%.

Table 2: Usage rate of soft assertion
Keywords Library Hit count Usage rate(%)
ErrorCollector JUnit 27 2.7
AssertAll JUnit 96 9.6
SoftAssert AssertJ, TestNG 21 2.1
verifyAll Spock 50 5.0

800

600

400

1

200

ra
n
k

Hard assert

Soft assert

Fig. 2: The distribution of the
SBFL accuracy

23 42 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

decrease not change increase

Fig. 3: The proportion of faults that change
in SBFL accuracy

Next, we consider the reason for the changes or lack of changes in the ac-
curacy. In the fault where the accuracy decreases the most, rank decreases by
354. The reason for the decreased accuracy in this fault is that the execution
path of the failed test case is strongly polluted. In the failed test case of this
fault, there are multiple invocations of statements unrelated to the fault after
the failed assert. When all the assert statements are replaced with soft assertion,
all these statements are executed, and the execution path of the test is polluted.
As a result, the rank of the suspicion value of unrelated statements increases,
and the rank of the fault statement relatively decreases.

We also consider the reason why the accuracy does not change. In the tests
of faults where the accuracy did not change, the failed assert is at the end or
near the end of the test case, and there are few subsequent invocations of new
statements. Therefore, even when the assert statements are replaced by soft
assertion, the execution path of the test case remains almost the same, and the
accuracy of SBFL remains unchanged.

We expected that the use of soft assertion would lead to either a decrease or
no change in the accuracy of SBFL. However, an improvement in accuracy oc-
curred in one fault. The cause of the improved accuracy for this fault is currently
unknown, and investigation of this cause is one of the future tasks.

6 Conclusion and Future Work

We study on the effects of soft assertion on the accuracy of Spectrum-based
Fault Localization. As a preliminary investigation, we study on the actual usage
of soft assertion. The investigation results revealed the existence of libraries that
support soft assertion in several languages. It also showed that 137 of the 1,000
Java projects use soft assertion. Next, we compare the accuracy of SBFL between
using hard assertion and soft assertion in test cases. As a result, we confirmed a
decrease in accuracy due to soft assertion in 35% of faults.

In future work, we will experiment with a larger number of faults. In this
study, only 66 faults of the Defects4J were targeted. Experiments with a larger
number of faults are needed.

Acknowledgments

This research was partially supported by JSPS KAKENHI Japan (Grant Num-
ber: JP21H04877, JP20H04166, JP21K18302, and JP21K11829).

References

1. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.: A practical evaluation of
spectrum-based fault localization. Journal of Systems and Software 82(11), 1780–
1792 (2009)

2. Ali, S., Andrews, J.H., Dhandapani, T., Wang, W.: Evaluating the accuracy of
fault localization techniques. In: Proceedings of the International Conference on
Automated Software Engineering. pp. 76–87 (2009)

3. Bagheri, B., Rezaalipour, M., Vahidi-Asl, M.: An approach to generate effective
fault localization methods for programs. In: Proceedings of the International Con-
ference on Fundamentals of Software Engineering. pp. 244–259 (2019)

4. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: A survey. IEEE
Transactions on Software Engineering 45(1), 34–67 (2019)

5. Jones, J., Harrold, M., Stasko, J.: Visualization of test information to assist fault
localization. In: Proceedings of the International Conference on Software Engineer-
ing. pp. 467–477 (2002)

6. Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the International
Symposium on Software Testing and Analysis. pp. 437–440 (2014)

7. Keller, F., Grunske, L., Heiden, S., Filieri, A., van Hoorn, A., Lo, D.: A critical
evaluation of spectrum-based fault localization techniques on a large-scale soft-
ware system. In: Proceedings of the International Conference on Software Quality,
Reliability and Security. pp. 114–125 (2017)

8. Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A.,
Scott, A.: SapFix: Automated end-to-end repair at scale. In: Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering in Practice.
pp. 269–278 (2019)

9. Parnin, C., Orso, A.: Are automated debugging techniques actually helping pro-
grammers? In: Proceedings of the International Symposium on Software Testing
and Analysis. pp. 199–209 (2011)

10. Qin, Y., Wang, S., Liu, K., Mao, X., Bissyandé, T.F.: On the impact of flaky tests
in automated program repair. In: Proceedings of the International Conference on
Software Analysis, Evolution and Reengineering. pp. 295–306 (2021)

11. Sasaki, Y., Higo, Y., Matsumoto, S., Kusumoto, S.: SBFL-suitability: A software
characteristic for fault localization. In: Proceedings of the International Conference
on Software Maintenance and Evolution. pp. 702–706 (2020)

12. de Souza, H.A., Chaim, M.L., Kon, F.: Spectrum-based Software Fault Local-
ization: A Survey of Techniques, Advances, and Challenges. arXiv e-prints p.
arXiv:1607.04347 (2016)

13. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Transactions on Software Engineering 42(8), 707–740 (2016)

14. Xiaobo, Y., Liu, B., Shihai, W.: An analysis on the negative effect of multiple-
faults for spectrum-based fault localization. Journal on IEEE Access 7, 2327–2347
(2019)

