
Impacts of Program Structures
on Code Coverage of Generated Test Suites

Ryoga Watanabe, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
{ryg-wtnb, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract. Unit testing is a part of the process of developing software. In
unit testing, developers verify that programs properly work as developers
intend. Creating a test suite for a unit test is very time-consuming. For
this reason, research is being conducted to generate a test suite for unit
testing automatically, and before now, some test generation tools have
been released. However, test generation tools may not be able to generate
a test suite that fully covers a test target. In our research, we investigate
the causes of this problem by focusing on structures of test targets to
improve test generation tools. As a result, we found four patterns as the
causes of this problem and proposed subsequent research directions for
each pattern to solve this problem.

Keywords: Unit testing · Test generation tool · Code coverage · Program struc-
tures

1 Introduction

In software development, software testing is conducted in order to verify that
programs work properly as developers intend. Software testing is conducted in
several phases, depending on the granularity of the test target. Unit testing is a
process of testing functions or methods, which are the smallest granular units of
the test target. Bugs and problems can be identified early since unit testing is
conducted early in software development. Therefore, unit testing is an essential
part of software development.

Creating a test suite for a unit test is very time-consuming. For this reason,
research is being conducted to generate a test suite for unit testing automati-
cally [8]. Before now, test generation tools such as EvoSuite [2], Randoop [9],
and SUSHI [1] have been released. There are several approaches to generating a
test suite. For example, EvoSuite uses genetic algorithm, Randoop uses random
testing, and SUSHI uses symbolic execution as well as genetic algorithm.

However, test generation tools may not be able to generate a test suite that
fully covers a test target. This problem depends on various factors, such as
algorithms of generation tools, parameter settings during test generation, and
structures of test targets. In our research, we investigate the cause of this problem
by focusing on structures of test targets to improve test generation tools.

1 boolean getBooleanProperty(String prop , boolean defaultValue) {
2 String val = System.getProperty(prop);

3 if (val == null)

4 return defaultValue;

5 if (val.equalsIgnoreCase("true")) {

6 return true ;

7 } else {

8 return false ;

9 }
10 }

Fig. 1: An example of the method whose statements are not executed by a test suite
generated by EvoSuite

We used EvoSuite to generate test suites from 768 Java methods and then
manually picked up the methods whose program statements were not fully cov-
ered by the test suites. For these methods, we identified the non-covered program
statements. We then considered why these program statements are not covered,
and we then classified these methods into patterns that we had created based
on the found causes of this problem. As a result, we found four patterns and
proposed subsequent research directions for each pattern to solve this problem.

2 Motivating Example

Fig. 1 shows a method whose program statements are not covered by a test suite1

generated by EvoSuite shown in Table 1. The highlighting in Fig. 1 indicates that
the false branch of the conditional statement val == null in line 3 and all the
program statements after line 5 are not executed.

We consider the reason why these program statements are not executed by
the test suite generated by EvoSuite. The reason is that the condition of line
3 never becomes false with the generated test cases. Then, focusing on the
val variable in this conditional statement, this variable is the return value

Table 1: An example of the test suite from the method shown in Fig. 1 generated by
EvoSuite

Input Assertion
prop defaultValue

"Hwiz5]f" true returns true

"7G" false returns false

null false returns false

"" false throws IllegalArgumentException

1 In this paper, the statements partially executed by a generated test suite are pre-
sented in yellow . Herein, partially executed means that only a true or false

branch is executed by a generated test suite. The statements never executed by a
generated test suite are presented in orange .

of System.getProperty() in line 2. This means that the condition of line 3
never becomes false because System.getProperty() always returns a null

value. The System.getProperty() method is designed to return the value of
a real system property name (such as "user.dir") if input; otherwise, it re-
turns a null value. Therefore, we can conclude that there are some non-covered
program statements by the generated test cases because EvoSuite cannot gen-
erate any test case that inputs a real system property name because of the
System.getProperty() method.

3 Investigation Settings

3.1 Dataset

We used a dataset [7] consisting of 768 Java methods as the subject of our
investigation. These methods have the following characteristics: (1) they do not
depend on external variables or methods, (2) they have one or more arguments
and a return value, (3) they are described in the Java 8 or earlier specification,
and (4) they use only the java.lang or java.util classes.

3.2 Test Generation Tool

We used EvoSuite to generate test suites for the methods in the dataset. Evo-
Suite generates highly covered JUnit test suites based on genetic algorithm, using
techniques such as the hybrid search [6], the dynamic symbolic execution [4], and
the testability transformation [5]. EvoSuite is unique among the other test gen-
eration tools for Java in its ability to generate test suites with high coverage [11].

EvoSuite has several coverage criteria as coverage targets for generating a
test suite. This means that our investigation results will differ depending on
which criteria we focus on. We selected to focus on line coverage and branch
coverage because they are representative of code coverage and can be measured
and visualized by JaCoCo2.

3.3 Process Steps

We have taken the following steps to prepare for the investigation.
Step.1: for each method from the dataset, we made class definitions that

include the method itself. To ensure that all class definition files are compilable,
we inserted the import statement import java.util.*; at the beginning of
each file.

Step.2: for each class made in Step.1, we generated a test suite using EvoSuite
and measured the coverage of the test suite using JaCoCo.

Step.3: we manually picked up the methods whose line or branch coverage
is less than 1.0. Out of 768 methods in the dataset, we picked up 73 methods,
which is 9.5% of all the methods. In the steps, we excluded the methods from
2
https://www.eclemma.org/jacoco/

1 Float parseFloat(String value , float defaultValue) {
2 try {

3 return Float.parseFloat(value) ;

4 } catch (NumberFormatException e) {
5 ...
6 }
7 }

Fig. 2: An example of the method that is classified into “Method parameters require
specific values”

which EvoSuite cannot generate tests that fail or are incorrectly evaluated as
not covered due to the bug in JaCoCo.

Step.4: for the methods we picked up in Step.3, we identified the non-covered
program statements by referring to the report generated by JaCoCo. We then
classified those methods into patterns that we had created based on the found
causes.

4 Investigation Results

As the reasons why the program statements were not covered, we found four
patterns:

– “Method parameters require specific values”
– “Method parameters require specific types”
– “Methods include infeasible program statements”
– “Methods include multithreaded program statements”

4.1 “Method parameters require specific values”

In this pattern, parameters that satisfy some conditions are required in order
to cover the non-covered program statements. Fifty-eight out of 73 methods
are classified into this pattern. Fig. 2 shows an example of the method that
is classified into this pattern. This method converts any string representing a
float type value (e.g., "10.0f") to an actual float type value. In this method,
the normal process of Float.parseFloat() is not covered by the generated test
suite. In order to cover this process, a test case is required to input any string
representing a float type value into this method.

4.2 “Method parameters require specific types”

In this pattern, parameters of derived classes of the class in the parameter def-
inition are required in order to cover the non-covered program statements. Six
out of 73 methods are classified into this pattern. Fig. 3 shows an example of
the method that is classified into this pattern. This method casts the parameter
of Object type to int type and returns its value. In this method, the false

branch of the condition in line 2 and the statement in line 4 are not covered.

1 int uncheckedIntCast(Object x) {

2 if (x instanceof Number)

3 return ((Number) x).intValue ();

4 return ((Character) x).charValue() ;

5 }

Fig. 3: An example of the method that is classified into “Method parameters require
specific types”

1 List <String > splitToList0(String str , char ch) {
2 List <String > result = new ArrayList <>();
3 int ix = 0, len = str.length ();
4 for (int i = 0; i < len; i++) {
5 if (str.charAt(i) == ch) {
6 result.add(str.substring(ix , i));
7 ix = i + 1;
8 }
9 }

10 if (ix >= 0) {

11 result.add(str.substring(ix));
12 }
13 return result;
14 }

Fig. 4: An example of the method that is classified into “Methods include infeasible
program statements”

The branch in line 3 evaluates whether or not the parameter type is Number. In
order to cover them, a test case is required to input a variable other than Number

type.

4.3 “Methods include infeasible program statements”

In this pattern, methods have the program statements that are never executed,
no matter what parameters are given. Six out of 73 methods are classified into
this pattern. Fig. 4 shows an example of the method that is classified into this
pattern. This method splits the str string by the ch character and returns the
result as a list of strings. The variable ix is initialized with the value 0 in line 3,
and there is no program statement to decrease ix below 0, even in the program
statement of line 4 to 9, where the value of ix may change. Therefore, the
false branch of the if statement in line 10 is never executed, no matter what
parameters are given.

4.4 “Methods include multithreaded program statements”

In this pattern, a test case using multithreading is required to cover the non-
covered program statements. Three out of 73 methods are classified into this
pattern. Fig. 5 shows an example of the method that is classified into this pattern.
This method puts the currently running thread to sleep. In this method, the
checked exception InterruptedException in line 4, thrown by Thread.sleep()

in line 3, is not caught by the generated test suite. InterruptedException is

1 Integer apply(Integer i) {
2 try {
3 Thread.sleep (1);

4 } catch (InterruptedException e) {

5 e.printStackTrace() ;

6 }
7 return i;
8 }

Fig. 5: An example of the method that is classified into “Methods include multi-
threaded program statements”

an exception thrown when a thread is in waiting, sleeping, or occupied and the
thread is interrupted. In order to catch this exception, a test case is required to
throw InterruptedException intentionally using multithreading.

5 Discussion

We propose subsequent research directions to increase coverage for the four pat-
terns we found in our investigation.

5.1 “Method parameters require specific values” and “Method
parameters require specific types”

The reason why EvoSuite cannot cover program statements classified into the
patterns “Method parameters require specific values” or “Method parameters
require specific types” is that EvoSuite cannot generate a test case that inputs
any string (i.e., any value of java.lang.String) to satisfy some conditions to
cover them.

EvoSuite uses constants of primitive or String type statically embedded
in Java bytecode when EvoSuite evolves a test suite in genetic algorithm [2].
Applying this feature, modifying EvoSuite to externally provide the constants
and types the user wants EvoSuite to treat while evolving a test suite would
improve coverage.

As a simple exploration to demonstrate the effectiveness of this direction,
consider inserting a fake branch to the test target. A fake branch is an if state-
ment that does not affect the original method’s functionality containing values
or types to execute non-covered program statements. For example, suppose the
test suite is generated again using EvoSuite for the method shown in Fig. 2 with
a fake branch inserted, as shown in Fig. 6. In that case, the non-covered program
statements (i.e., line 3 in Fig. 2) will be executed because EvoSuite can refer to
the value embedded by the fake branch (i.e., "10.0f").

5.2 “Methods include infeasible program statements”

Infeasible program statements can never be executed, regardless of the given pa-
rameters. Therefore, it is impossible to solve by adding or modifying test cases.

1 Float parseFloat(String value , float defaultValue) {
2 + if (value == "10.0f") {}
3 try {
4 return Float.parseFloat(value);
5 } catch (NumberFormatException e) {
6 ...
7 }
8 }

Fig. 6: An example of inserting the fake branch

Instead, excluding the infeasible program statements from coverage goals or lower
the coverage priority when generating test suites would improve coverage. Evo-
Suite uses an approach that optimizes the coverage criteria as a whole rather
than each coverage goal of the coverage criteria. This results in a lower coverage
priority for infeasible program statements. Integrated development environment
features can detect some infeasible program statements. If programmers use this
feature to remove infeasible program statements before generating the test suite,
these statements can be excluded from the coverage goals. For example, in the
method shown in Fig. 4, this corresponds to removing the if statement in line
10.

5.3 “Methods include multithreaded program statements”

EvoSuite is not compatible with the generation of test suites that use multi-
threading [3]. Therefore, from the point of improving program structures, it is
impossible to solve this problem. On the other hand, the research [10] has been
conducted to develop EvoSuite to generate test suites that support multithreaded
processing.

6 Conclusion and Future Work

Our research investigated how program structures affect code coverage of gener-
ated test suites. As a result, we found four patterns as the reasons the program
statements are not covered. We considered whether a technique exists to solve
why program statements are not covered for those patterns and proposed sub-
sequent research directions for each pattern.

Our investigation is conducted in the settings explained in Section 3. There-
fore, different results may be obtained if another investigation is conducted in
different settings. In future work, we will verify what results can be obtained by
conducting the same investigation on a different dataset or actual Java projects
and on different criteria or test generation tools.

Acknowledgments

This research was supported by JSPS KAKENHI Japan (JP20H04166, JP21K18302,
JP21K11829, JP21H04877, JP22H03567, JP22K11985)

References

1. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: SUSHI: A test generator for
programs with complex structured inputs. In: Proc. International Conference on
Software Engineering. pp. 21–24 (2018)

2. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Proc. European Conference on Foundations of Software Engineering.
pp. 416–419 (2011)

3. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering pp. 276–291 (2013)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random test-
ing. In: Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 213 ‒ 223 (2005)

5. Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Transactions on Software Engineering pp.
3–16 (2004)

6. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: Local, global, and hybrid search. IEEE Transactions on Software Engineering
pp. 226–247 (2010)

7. Higo, Y., Matsumoto, S., Kusumoto, S., Yasuda, K.: Constructing dataset of func-
tionally equivalent java methods. In: Proc. International Conference on Mining
Software Repositories. pp. 682–686 (2022)

8. McMinn, P.: Search-based software test data generation: a survey. Software Testing,
Verification and Reliability pp. 105–156 (2004)

9. Pacheco, C., Ernst, M.: Randoop: feedback-directed random testing for Java. In:
Proc. Object-Oriented Programming, Systems, Languages and Applications. pp.
815–816 (2007)

10. Steenbuck, S., Fraser, G.: Generating unit tests for concurrent classes. In: Proc.
International Conference on Software Testing, Verification and Validation. pp. 144–
153 (2013)

11. Vogl, S., Schweikl, S., Fraser, G., Arcuri, A., Campos, J., Panichella, A.: Evosuite at
the sbst 2021 tool competition. In: Proc. International Workshop on Search-Based
Software Testing. pp. 28–29 (2021)

