
Automatic Fixation of Decompilation Quirks
Using Pre-Trained Language Model

Ryunosuke Kaichi, Shinsuke Matsumoto, Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan

Abstract. Decompiler is a system for recovering the original code from
bytecode. A critical challenge in decompilers is that the decompiled code
contains differences from the original code. These differences not only re-
duce the readability of the source code but may also change the program’s
behavior. In this study, we propose a deep learning-based quirk fixation
method that adopts grammatical error correction. One advantage of the
proposed method is that it can be applied to any decompiler and pro-
gramming language. Our experimental results show that the proposed
method removes 55% of identifier quirks and 91% of structural quirks.
In some cases, however, the proposed method injected a small amount
of new quirks.

Keywords: decompiler · fine-tuning · deep learning · quirk · grammat-
ical error correction

1 Introduction

Decompiler is one of the reverse engineering systems that translate low-level
program representation (e.g., binary or bytecode) to human-readable language
(e.g., source code) [2]. Decompiler is expected to be applied to various purposes.
One of the major applications is to understand the program behavior in an
environment where source code cannot be accessed. Famous IDE tools, such
as Eclipse and IntelliJ, have a decompiler feature in default. This feature helps
developers to analyze the inside of dependent libraries without their source code.
Furthermore, a decompiler is one of the important techniques for binary security
analysis [3]. Several decompiler-based malware detection methods have been
proposed for Android applications [1] [11].

A critical challenge in decompilers is that the decompiled code contains dif-
ferences from the original code. This paper calls these difference quirk. Low-level
program languages do not contain identifier information written in the original
code. So, the complete identifier reconstruction is fundamentally impossible [8].
It is known that source code identifiers play an important role in source code
comprehension [6]. Therefore, identifier quirks become obstacles to applying de-
compiler for the scenario of program comprehension. Decompilation quirks occur
not in identifiers but rather in program structure. It is because a single program
instruction in low-level language does not always correspond to high-level lan-
guage instruction. For example, iteration instruction in low-level language can



be translated to both for and while statements. This translation is considered
an inference problem. Harrand et al. [5] have reported that the decompiled code
sometimes behaves differently from the original code by the structural quirks.

The study aims to provide a method to fix decompilation quirks. We pro-
pose a deep learning-based quirk fixation method that adopts grammatical error
correction (GEC) to achieve this goal. GEC is a well-known technique for de-
tecting and fixing grammatical errors, including in natural language sentences.
Our method assumes quirks in the decompiled code, one of the grammatical
errors against the original code. The proposed method has a significant advan-
tage in applicability, which can be applied to any decompilers and programming
languages. Also, the method has high compatibility with deep learning. A large
learning dataset (i.e., a set of pairs of decompiled and original code) can be
easily generated with a fully automated. We apply our method to ReCa [10], a
program competition dataset, as an evaluation. Evaluation results show that the
proposed method removes 55% of identifier quirks and 91% of structural quirks.

2 Decompilation Quirk

This section illustrates decompilation quirks with concrete source code examples.
Fig. 1 shows quirk examples with famous Java decompilers, CFR. We can see
various quirks in decompiled code. This paper broadly classifies quirks into two
types: identifier quirk and structural quirk.

There are two identifier quirks for local variables. As explained in the first
section, bytecode does not contain identifier information, especially in local and
temporal variables. So, the reconstruction of local variable identifiers is a chal-
lenging task. Only the loop index i is reconstructed correctly. Probably, CFR
has a specific reconstruction rule that follows common sense in which loop in-
dexes should be named i, j, and k. However, we lost almost identifiers, such as
occurrence and numbers, that help program comprehension.

Next, we focus on structural quirks. The final modifier for the method
parameter has been lost. We cannot grasp the programmer’s intent that the
parameter is immutable from the decompiled code. Those variables and method
modifiers are used to declare constraints for the compiler. So, bytecode does not
contain this information. The guard clause to find a sentinel in a loop is merged
into the loop condition in for statement. This merge causes a further quirk: the
sentinel condition is reversed from == to !=. Postfix operator ++ becomes prefix
operator. In summary, though overall behavior is the same as the original code,
the decompiled code is slightly difficult to read to grasp its intent.

3 Proposed Quirk Fixation Method

3.1 Overview

This paper proposes an automated fixation method for decompilation quirks.
The fundamental idea of our method is to adopt deep learning-based GEC



Original code Decompiled code (CFR)

int count(final int[] numbers) {
int occurrence = 0;
for (int i = 0; i < numbers.length; i++) {
if (numbers[i] == -1) { // found sentinel
break;

}
occurrence++;

}
return occurrence;

} Identifier quirk Structure quirk

int count(int[] arrn) {
int n = 0;
for (int i = 0; i < arrn.length

&& arrn[i] != -1; ++i) {
++n;

}
return n;

}

Fig. 1: Example of decompilation quirks in Java

Step 3

Original code

Decompiled code

Compile

Decompile Dataset

Pre-trained model

Train data

Validation data

Test data

Fine-tuned model

Pair Divide

Fine tune

Extract

Fix quirks

Step 1 Step 2

Fixed code

Quirk fixed

Quirk remained

Quirk injectedQuirk

011010
101101

Fig. 2: Flow of quirk fixation by the proposed method

by assuming a decompilation quirk as a syntax error. Our method leverages
CodeT5 [13], a Transformer-based pre-trained model, applying fine-tuning as a
translation task using decompiled and original code pairs. The generated model
attempts to translate code with quirks to code without quirks.

3.2 Procedure

Fig. 2 shows the overall procedure of quirk fixation by the proposed method.
The method consists of the following three steps.

Step 1. Dataset Generation: In this step, we create a learning dataset
of original and decompiled code pairs. First, we obtain source code from an
arbitrary data source such as GitHub or a public dataset. Next, all source code
is compiled to generate byte code or machine code, depending on the language.
Then, we recover the source code from the bytecode using a decompiler. At this
point, decompiled code contains certain quirks. Finally, original and decompiled
codes are paired as a dataset.

Step 2. Fine-Tuning: Next, we generate a quirk fixation model by fine-
tuning. First, we divide the dataset generated in Step 1 into three types: training
data, validation data, and test data. The split rates are 80%, 15%, and 5%,
respectively. Then, CodeT5 is fine-tuned by using training data and validation



data. The learning task is a translation task using a paired dataset. Finally, we
obtain a model that considers quirks as grammatical errors and corrects them.

Step 3. Quirk Fixation: Finally, we attempt to fix decompilation quirks
using the generated model. The input to the model generated by fine-tuning is
decompiled codes contained in test data. As a result, the model generates fixed
codes with certain quirks removed.

4 Experimental Setup

4.1 Purpose

The experiment aims to confirm the extent to which identifier quirks and struc-
tural quirks in the decompiled code have been fixed.

This experiment focuses on Java as the programming language and CFR
as the decompiler. The decompiled code by CFR has the slightest difference
from the AST of the original code and the second-highest compilability rate
among Java decompilers [5]. As described in Section 3.1, our method can be
applied to any programming language and decompiler. Further experiments will
be conducted for several decompilers and programming languages.

4.2 Definition of Decompilation Quirks

We define quirks as differences in the AST between the original code and the
decompiled code. Quirk is defined as the following two types.

Identifier Quirks: Identifier quirks are differences related to changes in iden-
tifier names. We classify the updates of nodes whose labels are SimpleName or
QualifiedName in the AST as identifier quirks. Quirks highlighted in yellow in
Fig. 1 are one of the identifier quirks. Since identifier names are lost at compile
time, it is difficult for the decompiler to recover them. Even if the variables have
meaningful names in the original code, the names are changed after decompiling.
It leads to a decrease in program comprehension.

Structural Quirks: Structural quirks are differences related to changes in the
syntax of the source code. All differences excluding identifier quirks, are classified
as structural quirks. The reversal of the finding sentinel condition presented in
Fig. 1 is one of the structural quirks. Structural quirks lead to reduced readability
as with identifier quirks. It could also affect the behavior of the program.

4.3 Quirk Evaluation

As an experiment procedure, we first detect the difference in AST between the
original code and the decompiled code and between the original code and the
fixed code. These differences are considered a set of quirks. Then, we confirm how



Quirks in 
decompiled code

Quirks in 
fixed code

Fixed Remained Injected

Fix rate =

Inject rate =

Fig. 3: Inclusion relation of two quirk sets

many quirks in the decompiled code have been fixed by analyzing the inclusion
relationship between the two quirk sets. We use GumTree [4] to detect differences
in AST. GumTree is a tool that can identify changes between two programs.

Fig. 3 shows a Venn diagram representing the inclusion relationship between
the set of quirks in the decompiled code and the set of quirks in the fixed
code. We define the fix rate as the percentage of fixed quirks in the decom-
piled code. The fix rate is calculated as fixed/fixed+remained. The proposed
method may inject new quirks. The percentage of injected quirks among the
quirks in the fixed code is defined as the inject rate. The inject rate is calculated
as injected/injected+remained.

4.4 Dataset

In the experiment, we use ReCa [10], a program competition dataset. ReCa
contains source code for four programming languages, C, C++, Python, and
Java, but we only use Java. The bytecode generated by the compiler is required
to obtain the decompiled code. Therefore, we extracted only compilable source
code. Furthermore, only codes with a file size of 2 KB or less were subjected
to the experiment. Initially, the experiment was conducted without selection by
file size. As a result, the fine-tuning of the model stopped halfway through due
to memory problems. We considered both whether it would not cause memory
problems and whether the number of data used for fine-tuning was sufficient.
Finally, the experimental target was set to 2 KB or less source code. As a result
of extracting codes that satisfy the above conditions, the number of source codes
gathered was 17,220. These were divided in the ratio of 80:15:5 and used as
training, validation, and test data, respectively.

4.5 Pre-Trained Model

As the pre-trained model, we use CodeT5 [13], proposed by Wang et al. CodeT5
is a Transformer-based model pre-trained on the CodeSearchNet [7] dataset.
It can multitask, including code generation, transformations, and modification.
CodeT5 has several models of different sizes. We use CodeT5-small due to mem-
ory problems. Fine-tuning took approximately 90 minutes.



17,503

1,210

14,332

31,835 15,542

46,219 9,999

4,426

50,645 14,425

Fix rate = 55%
Inject rate = 08%

Fix rate = 91%
Inject rate = 69%

Identifier quirks Structural quirks

Fig. 4: Venn diagram of identifier quirks and structural quirks

5 Results and Discussion

5.1 Results

Fig. 4 shows Venn diagrams for the set of identifier quirks and the set of struc-
tural quirks. The numbers in the Venn diagram represent the total quirk of all
861 source codes in test data. Focusing on identifier quirks, the total number in
the decompiled code was 31,835. Of these, 17,503 were removed by the proposed
method, and the fix rate of identifier quirks was about 55%. On the other hand,
the proposed method injected a relatively small number of identifier quirks, with
an inject rate of 8%. Next, the total number of structural quirks in the decom-
piled code was 50,645. The proposed method removed 46,219, which is about
91%. On the other hand, new structural quirks injected by the proposed method
were 9,999. The inject rate was 69%, which was higher than identifier quirks.

A more detailed analysis can be shown in Fig. 5. This figure represents an
actual example of quirk fixation by the proposed method. A part of the source
code has been abbreviated to make it easier to understand the fixation’s effect.
The structural quirks highlighted in pink is the most important one to focus on.
The original code uses a variable of type boolean as a flag, determining the final
output. In contrast, the decompiled code uses the value of the variable n of type
int as a flag. The role of variable n is difficult to understand intuitively, reducing
readability. Furthermore, the conditional expression of the if statement in the
for statement is reversed. Usually, humans code differently. It is precisely the
cause of reduced readability. In contrast, the fixed code uses variables of type
boolean as flags, making their role clear. The if statement has also been fixed
to be written in the same way as the original code, which is easier to understand
and more readable.

Next, note the identifier quirks highlighted in yellow. The variable names for
arrays and flags in the fixed code have been changed to intuitively understandable
names. Since it is not the same name as the original code, it is a modification
failure in this definition. However, the fixed code is relatively superior in terms
of readability. It is one of the strengths of the proposed method.



void main(...) {
int[] a = ... //abbreviated
boolean f = true;
for (int i = 0; i < a.length - 1; i++) {
long t = a[i] * 2;
if (a[i+1] < t && a[i] != a[i+1]) {
f = false;
break;

}
}
if (f) ...

}

Original code

Decompiled code (CFR) Fixed code

void main(...) {
int[] arr = ... //abbreviated
boolean flag = true;
for (int i = 0; i < arr.length - 1; i++) {
long k = arr[i] * 2;
if (arr[i+1] < k && arr[i] != arr[i+1]) {
flag = false;
break;

}
}
if (flag) ...

}

Fix by proposed method

Compile & Decompile

Identifier quirk

Structure quirk

void main(...) {
int[] nArray = ... //abbreviated
int n;
n = 1;
for (int i = 0; i < nArray.length - 1; ++i) {
long l = nArray[i] * 2;
if ((long)nArray[i + 1] >= l

|| nArray[i] == nArray[i + 1]) continue;
n = 0;
break;

}
if (n != 0) {...}

}

Fig. 5: Example of quirk fixation in a subject with ReCa

5.2 Discussion

We discuss why the fix rate of structural quirks was significantly higher than that
of identifier quirks. The pre-trained model used in this study was pre-trained and
fine-tuned on a dataset consisting of source code created by multiple developers.
The naming of identifiers is highly dependent on the developer, although there is
a certain degree of shared understanding. Variables with the same meaning are
often given different names, so the correct answer to identifier quirks can vary
widely from data to data. However, since the syntax is developer-independent,
the correct answer to structural quirks is almost uniquely determined. For these
reasons, we consider that the fix rate of structural quirks was significantly higher
than that of identifier quirks.

6 Conclusion

We proposed an automated fixation method for two types of quirks in the de-
compiled code. As a result, we confirmed that the proposed method could fix
55% of identifier quirks and 91% of structural quirks in the decompiled code.

For future work, we first try to conduct experiments with multiple decom-
pilers. The proposed method can fix quirks without depending on decompilers
or programming languages. Using more evaluation metrics is also an impor-
tant task. For practicality, it is necessary to evaluate the fixed code in terms of
whether it can be compiled and whether it passes the test cases of the original
code. Finally, we will compare with existing methods focusing only on identifier
quirks [9] [12].



Acknowledgements

This research was partially supported by JSPS KAKENHI Japan (Grant Num-
ber: JP21H04877, JP20H04166, JP21K18302, and JP21K11829)

References

1. Cen, L., Gates, C.S., Si, L., Li, N.: A probabilistic discriminative model for android
malware detection with decompiled source code. Transactions on Dependable and
Secure Computing (TDSC) 12(4), 400–412 (2014)

2. Cifuentes, C., Gough, K.J.: Decompilation of binary programs. Software: Practice
and Experience 25(7), 811–829 (1995)

3. Cifuentes, C., Waddington, T., Van Emmerik, M.: Computer security analysis
through decompilation and high-level debugging. In: Working Conference on Re-
verse Engineering (WCRE). pp. 375–380 (2001)

4. Falleri, J., andXavier Blanc, F.M., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: International Conference on Automated
Software Engineering (ASE). pp. 313–324 (2014)

5. Harrand, N., Soto-Valero, C., Monperrus, M., Baudry, B.: The strengths and be-
havioral quirks of java bytecode decompilers. In: International Working Conference
on Source Code Analysis and Manipulation (SCAM). pp. 92–102 (2019)

6. Hofmeister, J., Siegmund, J., Holt, D.: Shorter identifier names take longer to
comprehend. In: International Conference on Software Analysis, Evolution and
Reengineering (SANER). pp. 217–227 (2017)

7. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearch-
net challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436 (2019)

8. Jaffe, A., Lacomis, J., Schwartz, E.J., Goues, C.L., Vasilescu, B.: Meaningful vari-
able names for decompiled code: A machine translation approach. In: International
Conference on Program Comprehension (ICPC). pp. 20–30 (2018)

9. Lacomis, J., Yin, P., Schwartz, E., Allamanis, M., Le Goues, C., Neubig, G.,
Vasilescu, B.: Dire: A neural approach to decompiled identifier naming. In: In-
ternational Conference on Automated Software Engineering (ASE). pp. 628–639
(2019)

10. Liu, H., Shen, M., Zhu, J., Niu, N., Li, G., Zhang, L.: Deep learning based program
generation from requirements text: Are we there yet? Transactions on Software
Engineering (TSE) 48(4), 1268–1289 (2022)

11. Milosevic, N., Dehghantanha, A., Choo, K.K.R.: Machine learning aided android
malware classification. Computers and Electrical Engineering 61, 266–274 (2017)

12. Nitin, V., Saieva, A., Ray, B., Kaiser, G.: Direct: A transformer-based model for
decompiled identifier renaming. In: Workshop on Natural Language Processing for
Programming (NLP4Prog). pp. 48–57 (2021)

13. Wang, Y., Wang, W., Joty, S., Hoi, S.C.: CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859 (2021)


