
Efficient Test Script Generation and Maintenance

for Web Applications

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2023

Hiroyuki KIRINUKI

Abstract

The speed of business has become increasingly important in recent years, leading to a

need for quick improvements to services. To achieve this, it is necessary to shorten the

software release cycle. Testing is an essential part of the software development process,

and regression testing is a critical component of this. Reducing the costs of regression

testing is a major challenge in shortening the release cycle. End-to-end testing is a crucial

part of regression testing and involves testing applications with a graphical user interface

(GUI) such as interactions between web browsers and users.

Test automation is an effective way to reduce the cost of regression testing. Testing

tools such as Selenium are commonly used to automate end-to-end testing for web appli-

cations. End-to-end test automation involves creating test scripts that describe the steps

in the test procedures.

The first challenge related to test scripts is that locators for identifying web elements

are fragile because they depend on the structure of web pages and the attributes of the

web elements, requiring a significant amount of effort to maintain. The second challenge is

the high cost of implementing maintainable test scripts. This dissertation presents three

studies that address these challenges and improve end-to-end test automation for web

applications.

The first study proposes an approach called COLOR for repairing broken locators in

accordance with software updates. COLOR uses various properties from web pages as

clues and evaluates their reliability. Our experimental results from four open-source web

applications show that COLOR consistently presents the correct locator with an accuracy

ranging from 77% to 93% in the first place and is more robust against page layout changes

compared to structure-based approaches.

The second study proposes an approach for generating modularized test scripts to im-

prove their maintainability. The technique extracts operations useful for test automation

from test logs and generates test cases that cover the features of an application by ana-

lyzing its page transitions. The approach was evaluated using test logs from four testers,

showing that it can generate more complete methods than an existing approach. Our

empirical evaluation also showed that the approach can reduce the time required to im-

plement test scripts by 48% compared to manual implementation. This study contributes

to reducing implementation and maintenance efforts.

The third study proposes a technique to identify web elements to be operated on a

web page by interpreting natural-language-like test cases. The test cases are written in

a domain-specific language that is independent of the metadata of web elements and the

structural information of web pages. Natural language processing techniques are used to

understand the semantics of web elements, and heuristic search algorithms are used to

explore web pages and find promising test procedures. The technique was applied to test

cases for two open-source web applications, with the results showing that it was able to

successfully identify 94% of web elements to be operated on and all the web elements in

68% of the test cases. This study contributes to the easy implementation and maintenance

of test scripts for various users.

List of Publication

Journal

[1-1] Hiroyuki Kirinuki and Haruto Tanno: “Automating End-to-End Web Testing via

Manual Testing”, Journal of Information Processing, Vol. 30, pp. 294-306, 2022.

[1-2] Hiroyuki Kirinuki, Haruto Tanno, and Katsuyuki Natsukawa: “Recommending Cor-

rect Locator for Broken Test Scripts using Various Clues in Web Application”, Com-

puter Software, Vol. 36, No. 4, pp. 3-17, 2019.

International Conference

[1-3] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto, “Web

Element Identification by Combining NLP and Heuristic Search for Web Testing”,

IEEE 29th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 1044-1054, March 2022.

[1-4] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto, “NLP-

assisted Web Element Identification Toward Script-Free Testing”, In Proceedings of

the 37th IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 639-643, September 2021.

[1-5] Hiroyuki Kirinuki, Haruto Tanno and Katsuyuki Natsukawa, “COLOR: Correct Lo-

cator Recommender for Broken Test Scripts using Various Clues in Web Appli-

cation”, IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 310-320, February 2019.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 End-to-End Test Automation for Web Application 1

1.3 Related Work . 3

1.3.1 Test script generation . 3

1.3.2 Test script maintenance . 3

1.3.3 NLP-based approaches . 4

1.4 Contribution of Dissertation . 5

1.5 Overview of Dissertation . 6

1.5.1 Locator recommendation using various clues for test script mainte-

nance . 7

1.5.2 Maintainable test script generation via manual testing 7

1.5.3 Web element identification using NLP and heuristic search 8

1.6 Chapter Organization . 8

2 Locator Recommendation Using Various Clues for Test Script Mainte-

nance 9

2.1 Introduction . 10

2.2 Motivating Example . 11

2.2.1 Sample application and test script 11

2.2.2 Test script repair . 14

2.2.3 Causes of test breakages . 14

2.3 Approach . 14

2.3.1 Recommendation algorithm . 15

2.3.2 Application example . 19

2.4 Evaluation . 21

2.4.1 Experimental setup . 21

2.4.2 Weights of properties . 22

2.4.3 Results . 25

ii

2.5 Discussion . 27

2.5.1 How should we determine the weights? 27

2.5.2 Characteristics of COLOR . 27

2.5.3 Execution time . 29

2.6 Threats to Validity . 30

2.7 Conclusion . 30

3 Maintainable Test Script Generation via Manual Testing 32

3.1 Introduction . 33

3.2 Page Object . 35

3.3 Related Work . 38

3.4 Approach . 38

3.4.1 Page-object generation . 39

3.4.2 Test-case generation . 42

3.4.3 Limitation . 45

3.5 Evaluation . 46

3.5.1 Experimental setup . 46

3.5.2 Page-object generation . 48

3.5.3 Test-case generation . 51

3.5.4 Empirical evaluation . 54

3.6 Threats to Validity . 57

3.7 Conclusion . 58

4 Web Element Identification using NLP and Heuristic Search 59

4.1 Introduction . 60

4.2 Motivating Example . 61

4.3 Approach . 63

4.3.1 Vectorization . 63

4.3.2 Heuristic search algorithm . 67

4.4 Evaluation . 72

4.4.1 Experimental setup . 75

4.4.2 Results . 76

4.5 Discussion . 79

4.5.1 What are the cases where our approach does not work? 79

4.5.2 Limitations . 80

4.5.3 Threats to validity . 81

4.6 Conclusion and Future Work . 81

iii

5 Conclusion 82

5.1 Summary . 82

5.2 Future Work . 83

Acknowledgements 84

References 85

iv

List of Figures

1.1 Overview of dissertation . 6

2.1 Login form of Joomla! . 13

2.2 Overview of COLOR . 15

2.3 Outline of recommendation algorithm . 17

2.4 Application example . 18

2.5 MRR calculated by each algorithm . 25

2.6 Rank for each broken locator . 26

2.7 Top page menu of Joomla! . 28

2.8 Example of changes to different HTML tag 29

3.1 Owner add page of PetClinic and its page object 37

3.2 Overview of proposed approach . 39

3.3 Datum of operation in test log . 40

3.4 Example of path selection for test-case generation 42

3.5 Example of generated test case and methods that it calls 44

4.1 Description input fields and Python snippets to enter the value “test de-

scription” . 62

4.2 A drop-down list in the log-in module page of Joomla! and a Python snippet

to select the value “Icons” . 63

4.3 An overview of our approach . 64

4.4 An example of web element vectorization 66

4.5 An example of page-level search . 69

4.6 An example of transition-level search . 70

4.7 The relationship between the number of test steps and that of plausible or

executable test scripts . 79

v

List of Tables

2.1 Test script for Joomla! version 1.5 . 12

2.2 Test script for Joomla! version 2.5 . 12

2.3 Properties used in this study . 16

2.4 Similarity calculation in Figure 2.4 . 19

2.5 Applications for our experiment . 20

2.6 Heuristic weights . 23

2.7 Stability, uniqueness, and automatically calculated weights 24

3.1 Web pages and features of PetClinic . 47

3.2 Summary of tests by testers . 48

3.3 Classification of methods in page objects generated with our approach and

APOGEN . 49

3.4 Classification and average length of generated test cases 51

3.5 Features confirmed from generated test cases 53

3.6 Summary of the test scenarios for empirical evaluation 55

3.7 The time to implement test scripts (minute) 55

4.1 The specification of our DSL . 65

4.2 A summary of the target applications and test cases 71

4.3 How test steps are converted into Python code 72

4.4 The number of successful identifications . 74

4.5 Average machine time (in seconds) required per test case. 77

vi

Chapter 1

Introduction

1.1 Background

The speed of business has become increasingly important, and the need for quick service

improvement is essential. To achieve this, it is necessary to shorten the software release

cycle. Software development involves testing to ensure that the software is working prop-

erly before releasing it. In testing, it is necessary to confirm not only that newly added

functions work properly, but also that existing functions work as before. Testing to confirm

that an existing feature still works as before is called regression testing.

Reducing the costs required for regression testing is a major issue in shortening the

release cycle. It has been reported that regression testing accounts for 25% of the total

costs required for development in the case of an enhancement or modification project [1].

When aiming to shorten the release cycle, regression testing needs to be performed many

times in a short period, which makes the costs of regression testing a significant portion of

the total development costs. In today’s fast-paced business environment, spending a large

amount on regression testing may lead to missed business opportunities. Automation of

testing is an effective means of reducing the cost of regression testing, and various research

has been conducted on this topic.

1.2 End-to-End Test Automation for Web Application

Regression testing includes end-to-end testing, which is testing throughout the entire sys-

tem. End-to-end testing for applications with a graphical user interface (GUI) often

involves simulating interactions between the application and its users. This type of test-

ing is important because it helps to ensure that different parts of the system are working

together correctly.

Test automation tools such as Selenium [2] are commonly used to automate end-to-

1

end tests for web applications. In the case of a web application, the test automation

tool is typically used to automate browser operations and validate the results of those

operations. To perform end-to-end testing automatically, it is necessary to write test

scripts that describe the test procedures.

There are two approaches to automating end-to-end testing: record & replay and

programming [3]. Record & replay tools like Selenium IDE first record the operations

performed by testers on a web browser and convert these operations into test scripts.

When the test scripts are executed, the tool replays the recorded operations as they were

performed. This approach makes it easy to implement test scripts by simply following

the test procedures while operating a web browser. However, the generated test scripts

are not modularized and have low readability, which becomes an issue when maintaining

them over a long period.

In the programming approach, developers implement test scripts in general-purpose

programming languages such as Java and Python, using libraries (e.g., Selenium Web-

Driver) to operate a web browser. Only skilled developers can implement properly mod-

ularized and readable test scripts. Implementing such scripts means that developers can

maintain them more easily compared to using record and replay tools [4].

In testing web applications, each step of the test script is often represented by a

combination of the type of operation to be performed, the input value, and the target of

the operation. For example, a test script for a login form might include steps to enter a

username and password, click the “Login” button, and verify that the user is redirected to

the correct page. One common approach to specifying targets in web application testing

is to use locators, which are a way to uniquely identify a web element on a web page.

For example, the “id” and “name” attributes of a web element can be used as locators.

XPath, which shows the position of web elements within the HTML document object

model (DOM), can also be used as a locator. There is also a technique called image-based

locator [5], which identifies web elements by matching images.

The implementation of test scripts is known to be costly, with initial implementation

time accounting for nearly 90% of the total cost to reach a return on investment [6].

Test scripts include locators for specifying the web elements to be operated on, but

these locators frequently change as applications evolve, requiring maintenance of the test

scripts [7,8]. If significant efforts are required for this maintenance, the cost of implement-

ing the test scripts may not be recouped. Thus, generating maintainable test scripts and

efficiently maintaining them are important challenges.

2

1.3 Related Work

1.3.1 Test script generation

In the following, we present related studies that have improved upon existing automatic

test generation approaches.

Crawling-based techniques for end-to-end test script generation have been proposed

to minimize the cost of end-to-end testing [9–11]. These techniques generate test scripts

that cover all features of an application through dynamic exploration. GUI ripping is

an approach that automatically traverses GUIs and generates their model for regression

testing [12, 13]. Some studies also try generating test scripts by extending existing test

scripts [14–16] or using reinforcement learning [17]. However, the test scripts generated

with these techniques are not complete and require modifications such as adding assertions

by the developer, and maintainability is not considered.

In order to generate useful test scripts, it is necessary to follow the test cases written

by developers or the use cases of the application. In addition, the maintainability of

the generated test scripts should be considered, as developers need to maintain the test

scripts as the application evolves. Thus, it is difficult to incorporate existing approaches

into continuous development as they are.

1.3.2 Test script maintenance

Some researchers have attempted to overcome the fragility of locators. While structure-

based locators are generally considered more fragile than attribute-based locators, devel-

opers often use XPath as a locator since elements do not always have an id or name.

Leotta et al. proposed the robust XPath algorithms ROBULA (ROBUst Locator Al-

gorithm) [18] and ROBULA+ [19]. These algorithms focused on the expressiveness of

XPath. ROBULA starts with a generic XPath returning all nodes ("//*") and refines it

using heuristic XPath specialization steps to increase robustness until only the element of

interest is selected. ROBULA+ enhances ROBULA with additional heuristics. Yandra-

pally et al. [20] presented an approach to robustly identify elements using contextual clues

without recording anything about the internal representation. Their approach identifies

an element relative to other prominent elements on the page (e.g., Click on “LabelA” near

“LabelB”).

Yeh et al. [5] proposed SIKULI, a visual approach to automate operations on a screen

by using images to identify web elements. The advantage of visual locators is that they

are not dependent on the metadata or structure of web pages, and the target elements

are easy to understand visually. Stocco et al. [21] proposed a technique called PESTO

that converts conventional locators to visual locators, but such visual locators are fragile

3

to changes in user interfaces.

The problem with these approaches is that there is a limit to robustness due to the

difficulty in predicting how the software will be updated. Since the eligible locator varies

depending on the characteristics of the application, the approach of pre-determining the

locator lacks flexibility.

The other approach to dealing with locator changes is repairing locators in accordance

with software updates, which is more flexible than the previous approach if the repair

accuracy is high. Leotta et al. proposed an approach to repair locators using a multi-

locator algorithm [22]. They use five structure-based locators: FirePath absolute, FirePath

relative ID-based, Selenium IDE, Montoto, and ROBULA+. The multi-locator algorithm

selects the best locator among these five locators based on a voting procedure that assigns

different weights to different locators. If this procedure succeeds and the locator with the

most votes is able to identify the element, all other broken locators can be automatically

repaired. However, this approach has a theoretical limit: if all locators are broken, the

multi-locator algorithm cannot correctly identify the element.

Choudhary et al. [23] proposed the WATER (Web Application TEest Repair) approach

to repair locators by mainly using the Levenshtein distance of XPath. They assume that

two elements are likely to be the same across two releases if the Levenshtein distance

between their XPath is small. WATER also takes into account five attributes in case the

Levenshtein distance is the same. The problem with this approach is that it is fragile when

the page layouts of the application are drastically modified. In such cases, the XPath of

the element may be significantly changed and the locator may not be correctly repaired

even using WATER. Hammoudi et al. proposed an incremental test repair approach

called WATERFALL that applies WATER iteratively across a sequence of fine-grained

versions of a web application [24]. Both methods are related to general program repair

techniques [25–29], but these methods focus on locators in test scripts.

Yandrapally et al. [30] proposed an approach to modularize test scripts automatically

to improve their maintainability of test scripts generated by a record and replay tool.

Their approach identifies operations to be modularized by analyzing the test scripts and

the document-object model of an application. Their experimental results showed that the

number of steps can be reduced by 49–75% by converting parts of the test scripts into

a subroutine. However, this approach does not consider how the subroutines follow the

actual use cases of the application.

1.3.3 NLP-based approaches

Several researchers have leveraged natural language processing (NLP) techniques in testing

or operating web applications. Manipulating web applications in natural language would

free us from the problem of implementing test scripts.

4

Thummalapenta et al. [31] proposed a technique to interpret test cases written in nat-

ural language. Their technique requires that a test step includes all necessary information

for mechanically interpreting it. Dwarakanath et al. [32] proposed using DSL in test cases

to accelerate test automation. However, their technique also requires locators to uniquely

identify web elements.

Lin et al. [33] proposed a technique to identify the topic of input fields for crawling-

based test automation techniques, which can be applied to mine behavioral models, etc.

They showed that their technique improved the accuracy of input topic identification by

up to 22% compared to a rule-based approach. However, their technique only considers

input fields and only identifies pre-trained topics.

Pasupat et al. [34] proposed a machine-learning-based technique to convert a natu-

ral language command (e.g., clicking on the second article) into the web element to be

operated on the page. Their technique can be applied to end-to-end testing, but many

of the commands given in their study are indirect and difficult to interpret with their

model, leading to low conversion accuracy. Bajammal et al. utilized NLP techniques for

accessibility testing [35].

1.4 Contribution of Dissertation

We believe that the challenges to be addressed regarding end-to-end test scripts that have

not been solved by existing studies are as follows:

• Locators are dependent on the structure of web pages and the attributes of web ele-

ments, which can decrease the maintainability of test scripts. Additionally, existing

locator repair techniques rely on structural information, resulting in low accuracy.

• The implementation of test scripts is costly, and existing test script generation tech-

niques do not take maintainability into account.

• It has not yet been possible to directly execute test cases written in natural language.

We present three studies that we have conducted to address these challenges:

1. Locator recommendation using various clues for test script maintenance

2. Maintainable test script generation via manual testing

3. Web element identification using NLP and heuristic search

The first study uses various information obtained from web pages to perform more

accurate locator recommendation. This research contributes to reducing the maintenance

cost of test scripts. The second study reduces implementation and maintenance efforts by

5

Manual testing logs

Natural language-

like test cases
User

Test Scripts
Maintain

Generate Chapter 2

Chapter 4

Chapter 3

User

Figure 1.1: Overview of dissertation

automatically generating modularized test scripts based on application use cases extracted

from manual testing logs. The third study identifies web elements using NLP and heuristic

search to generate test scripts from natural language-like test cases. The third study is

a first step towards realizing executable test cases using natural language. In this study,

instead of directly executing test cases, we convert natural language-like test cases into

test scripts using NLP and heuristic search. If automated testing could be completed with

only natural language instructions, the first and second research would not be necessary.

However, it is not possible to achieve this with current technology, so we believe that

support for generating and maintaining test scripts using conventional locators is also

necessary.

The second and third techniques both generate test scripts, but they have different

strengths. The second technique is effective at generating test scripts that cover a wide

range of possible use cases, whereas the third technique is better suited for generating test

scripts for specific scenarios specified by users. One of the advantages of these techniques is

that manual testing and test case creation can be done without programming knowledge.

Furthermore, they are often performed even without automated testing, so there is no

need to prepare for generating test scripts.

Although all the techniques proposed in this dissertation are targeted at web appli-

cations, the ideas could potentially be applied to applications with GUI (e.g., mobile

applications).

1.5 Overview of Dissertation

This dissertation is composed of the following three studies. Figure 1.1 shows the overview

of the dissertation and the three studies.

6

1.5.1 Locator recommendation using various clues for test script main-

tenance

As mentioned in the previous sections, test scripts frequently need to be changed as ap-

plications are updated. The costs of modifying these test scripts are a major obstacle to

test automation due to their fragility. In particular, locators in test scripts are prone to

change. Some prior studies attempted to repair broken locators using structural clues, but

these approaches usually cannot handle radical changes to page layouts.

In this research, we propose a novel approach called COLOR (correct locator rec-

ommender) to support repairing broken locators in accordance with software updates.

COLOR uses various properties as clues obtained from screens (i.e., attributes, texts,

images, and positions). We examined which properties are reliable for recommending

locators by examining changes between two release versions of software, and the reliabil-

ity is adopted as the weight of a property. Our experimental results obtained from four

open-source web applications show that COLOR can present the correct locator in first

place with an accuracy of 77% – 93% and is more robust against page layout changes than

structure-based approaches.

1.5.2 Maintainable test script generation via manual testing

The cost of implementing and maintaining test scripts is a major obstacle to the introduc-

tion of test automation. In addition, many testing activities, such as exploratory testing,

user-interface testing, and usability testing, rely heavily on manual efforts. We propose

an approach to generate test scripts from manual testing recorded by our tool.

The generated test scripts leverage the page-object pattern, which improves the main-

tainability of test scripts. To generate page objects, our approach extracts operations as

methods useful for test automation from the test logs. Our approach also generates test

cases that cover the features of an application by analyzing its page transitions. This en-

ables the generation of test scripts that are close to the actual use cases that were difficult

to generate using existing techniques.

We evaluated whether our approach could generate complete test scripts from test

logs obtained from four testers. Our experimental results indicate that our approach can

generate a greater number of complete methods in page objects than a current page-object

generation approach. We also conducted an empirical evaluation of whether our approach

can reduce the cost of implementing test scripts for real systems. The result showed that

our approach reduces the time required to implement test scripts by about 48% compared

to manual implementation.

7

1.5.3 Web element identification using NLP and heuristic search

It can be challenging to determine and maintain the locators needed by test scripts to

identify web elements on web pages. This is because locators depend on the metadata of

web elements and the structure of each web page. A potential solution to this problem is

to allow natural language test cases to be executed without the need for test scripts.

In this study, we propose a technique for identifying web elements that should be op-

erated on a web page by interpreting natural language-like test cases. The test cases are

written in a domain-specific language that is independent of the metadata and structural

information of web elements and web pages. We use natural language processing tech-

niques to understand the semantics of web elements and create heuristic search algorithms

to explore web pages and identify promising test procedures.

To evaluate the effectiveness of our technique, we applied it to test cases for two open-

source web applications. The results show that our technique was able to successfully

identify approximately 94% of the web elements to be operated in the test cases. Further-

more, our approach was able to identify all the web elements that were operated in 68%

of the test cases.

1.6 Chapter Organization

Chapter 2 describes locator recommendations for test script maintenance, Chapter 3 ad-

dresses maintainable test script generation via manual testing, Chapter 4 provides web

element identification using NLP and heuristic search, and in Chapter 5, we summarize

the findings of this dissertation and discuss future challenges.

8

Chapter 2

Locator Recommendation Using

Various Clues for Test Script

Maintenance

9

2.1 Introduction

Developers need to develop software quickly and release it in accordance with changes in

market conditions. Before releasing it, they perform testing to confirm that the software

works properly. This includes not only ensuring that new features work properly, but

also confirming that existing features continue to work as expected. This type of test for

existing features is called regression testing, which can account for a significant portion

of software maintenance costs [36, 37]. Therefore, reducing the costs of regression testing

and shortening the release cycle are major challenges in software development. In web

application development, test automation tools such as Selenium [2] are commonly used

to automate end-to-end tests and make regression testing more efficient.

However, maintaining these test scripts can be time-consuming, as developers often

need to modify existing test scripts in response to software updates. Several methods

have been proposed to maintain end-to-end test scripts on various platforms [4, 8, 38–40].

For example, Leotta et al. [4] developed test scripts for six open-source web applications to

evaluate the costs of automated web testing approaches. As part of their evaluation, they

examined the costs of test script maintenance on the new release version of the software.

They developed a total of 196 Selenium IDE test scripts on the old version of the software

and then had to repair 180 of those scripts on the new version of the software. In other

words, about 92% of the test scripts broke between the two releases. Christophe et al. [7]

investigated eight OSS repositories that included Selenium test scripts and found that 75%

of Selenium test scripts were modified at most three times before the corresponding file

was deleted.

The main reason for the fragility of test scripts is known to be the use of locators.

Selenium uses locators to find and match the web elements on a page that need to interact

with each other. Hammoudi et al. [8] examined the breakages of Selenium IDE test scripts

across 453 versions of eight web applications and classified the causes of test breakages.

Their experimental results revealed that 73.62% of the breakages were caused by locators.

Therefore, in this study, we focus on problems related to broken locators.

Most web testing tools (e.g., Selenium) use attribute-based locators (e.g., id, name,

etc.) or structure-based locators (e.g., XPath). A problem with these locators is that

they may be changed even by a trivial software update, such as changing a page layout

or attributes of web elements. There have been studies that aim to support the main-

tenance of test scripts for web applications [41–43]. Some of these studies attempted to

automatically repair broken test scripts by using structural clues. The core concept of

these studies is that web elements located close to each other across two releases are more

likely to be the same. However, this concept does not always work well because page

layouts can change frequently in some recent web applications. Some testing tools (e.g.,

10

Sikuli [5]) use images to find and match web elements. The advantage of image-based

testing is that it can be applied to any kind of application and does not require recording

anything about the internal representation. Stocco et al. [21] proposed a technique to mi-

grate DOM (document object model)-based testing to image-based testing. Image-based

testing is more robust than DOM-based testing in some situations, but it is vulnerable to

changes in screen appearance [44].

In this study, we propose a novel approach called COLOR (correct locator recom-

mender) to support the automatic repair of broken locators in accordance with software

updates. COLOR uses various properties as clues obtained from screens (i.e., attributes,

texts, images, and positions) to overcome the weaknesses of structure-based and image-

based approaches. COLOR can recommend correct locators even if page layouts change

drastically.

First, we clarify which properties are prone to change between two releases and are

reliable for recommending locators. Second, to evaluate the accuracy of the recommenda-

tions, we applied COLOR to four open-source web applications that include page layout

changes. The experimental results show that COLOR can present the correct locator in

the first place with 77% - 93% accuracy and above third place with 82% - 95% accuracy.

Furthermore, we prove that COLOR is more robust against page layout changes than

existing structure-based approaches by comparing it with a prior method.

The main contributions of this study are as follows:

• We propose a novel approach called COLOR that uses multiple properties obtained

from a screen as clues. COLOR is more robust than structure-based approaches

against complex changes, including page layout changes.

• We clarify which properties are reliable for recommending locators by examining 699

locators across two release versions of applications.

• We applied COLOR to broken locators to demonstrate its effectiveness and superior-

ity over structure-based approaches. We also analyzed its results and characteristics.

2.2 Motivating Example

2.2.1 Sample application and test script

We use Joomla!1, an open-source content management system, as an example. We assume

that a user logs in as an administrator in Joomla! version 1.5. To do this, the user first

clicks on the “Administrator” link on the top page, which takes them to the login page. The

1https://www.joomla.org/

11

Table 2.1: Test script for Joomla! version 1.5

Action Locator Value

open /joomla

click css=li.item17>a>span

type id=modlgn username user01

type id=modlgn passwd pass01

click link=Login

assertTitle Main

Table 2.2: Test script for Joomla! version 2.5

Action Locator Value

open /joomla

click link=Site Administrator

type id=mod login username user01

type id=mod login password pass01

click link=Log in

assertTitle Main

12

<label for="modlgn_username">Username</label>
<input name="username" id="modlgn_username" class=...>
<label for="modlgn_passwd">Password</label>
<input name="passwd" id="modlgn_passwd" class=...>
...

(a) Version 1.5

<label for="mod_login_username">User name</label>
<input name="username" id="mod_login_username" class=...>
<label for="mod_login_password">Password<label>
<input name="password" id="mod_login_password" class=...>
...

(b) Version 2.5

Figure 2.1: Login form of Joomla!

user then enters their “Username” and “Password” on the login page and clicks the “Login”

button, as shown in Figure 2.1(a). Table 2.1 shows the implementation of these operations

as a Selenium IDE script. Each line in the test script represents one operation and consists

of three components: action, locator, and value. The action specifies the type of operation,

for example, “type” means input from the keyboard. The locator is an identifier that

specifies the web element for the operation. Id, name, XPath, CSS selector, and so on can

be used as a locator in Selenium IDE. For example, css=li.item17>a>span in the second

line is a CSS selector and refers to the “Administrator” link. id=modlgn username in the

third line refers to the “Username” input form, whose id is modlgn username in HTML.

The value is the input value given by the user or the expected result, and “user01” in the

third line is the input given to the “Username” input form. In addition, the postcondition

13

of transition to the main page is given in the last line. “assertTitle” validates that the

page title is the same as the value “Main”. If we execute the script in Table 2.1, the

operations are executed sequentially from the first line. We can consider the test to have

passed if the test execution completes.

2.2.2 Test script repair

We will introduce an example in which a test script requires modification. For the login

form in Joomla! version 2.5, as shown in Figure 2.1(b), we cannot execute the test script

developed for version 1.5, as shown in Table 2.1. This is because the page layouts and

attributes of web elements differ between versions 1.5 and 2.5, and some web elements

referred to by the locators in Table 2.1 do not exist in version 2.5. For example, the test

script in Table 2.1 can be modified as shown in Table 2.2 for use in version 2.5.

When developers modify a test script manually, they need to first understand its

behavior by referring to the locator, comment, and test case specifications. However, test

scripts are often unreadable, and documents of test case specifications are often lacking.

In such cases, understanding the behavior of test scripts is difficult. For example, the

locator in the second line of Table 2.1 is described using a CSS selector, and we cannot

understand what operation will be performed just by reading the test script. Test script

modification should be automated because such tasks are time-consuming and can lower

motivation for test automation.

2.2.3 Causes of test breakages

Existing test scripts are often modified in accordance with software updates, as described

in Section 2.2.2. Hammoudi et al. [8] examined the causes of test breakages across 453

versions of eight web applications and roughly classified them into five types: locators,

values/actions, page reloading, user session, and JavaScript popup boxes. Locator break-

age occurs when the locator does not refer to the web element that the test is supposed

to operate on. It is often caused by modifying the layout of pages or the attributes of web

elements. To repair the broken test script, developers need to set the correct locator that

refers to the web element to be operated on in the test. Hammoudi et al. revealed that

locator breakage accounts for 73.62% of all test breakages, so locator repair appears to be

important to support. Therefore, we focus on locator breakage in this study.

2.3 Approach

In this study, we propose COLOR, which uses various properties as clues obtained from

the screen to gain more robustness against software updates. Existing locator repair ap-

14

Existing test script

Old version
application

1st execution

Properties

2nd execution

Candidates for
correct element

New version
application

Figure 2.2: Overview of COLOR

proaches mainly focus on structure-based locators. COLOR is more robust than structure-

based approaches because it uses more various clues. Therefore, COLOR can handle

complex changes, including attribute changes, layout changes, and link text changes.

COLOR uses various properties (i.e., attributes, texts, images, and positions) as mul-

tifaceted clues to determine whether two web elements are the same or not. Figure 2.2

shows an overview of COLOR. COLOR requires two successive versions of an application.

Now, we postulate that there are executable test scripts for the old version of the software

Vk and that the test scripts are not executable for the new version of the software Vk+1

due to broken locators. First, COLOR executes existing test scripts for Vk and collects

19 kinds of properties from each web element in Vk. These properties are used for rec-

ommending locators in the later procedure. Table 2.3 shows the properties as the clues

used in this study. The properties are classified into four categories: attribute, position,

text, and image. Target web elements are <input>, <button>, <a>, , and <select>

tags in this research, and we adopt their major attributes as properties in the attribute

category. Second, COLOR executes existing test scripts on the new version of the soft-

ware Vk+1. The recommendation procedure is triggered by a locator error, and COLOR

presents candidates for a correct web element.

2.3.1 Recommendation algorithm

The locator le needs to correctly identify the web element to be operated on in the test

for Vk+1. We define le as a locator that refers to the web element e being operated on.

If le does not uniquely identify a web element in the test execution, the operation cannot

be performed. Let E be the set of web elements on the page of Vk+1. If there is a web

element e′ ∈ E with the same role as e in Vk, it is considered to be the web element that

should be operated on in Vk+1. We can repair the locator by specifying e′ and modifying

le to le′ . The locator is considered repaired if the same operation can be performed on the

web elements in the test execution on both Vk and Vk+1. In this study, COLOR calculates

15

Table 2.3: Properties used in this study

Category Property Description

Attribute id unique id of web elements

class class of web elements

name name of web elements

value initial value of input forms

type type of input forms

tag name name of HTML tags

alt alternative text for tags

src source URI of images

href destination of link anchors

size size of input strings

onclick event handler of click events

height height of web elements

width width of web elements

Position XPath absolute XPath of web elements

X-axis X-axix on the screen

Y-axis Y-axis on the screen

Text link text link text of <a> tags

label label linked with input forms

Image image image of web elements encoded to Base64

the similarity between e and each web element in Vk+1 using various clues and finds a web

element e′ ∈ E with the same role as e. The higher the similarity, the more likely it is to

be a correct locator.

Figure 2.3 shows the outline of the recommendation procedure, and Algorithm 1 shows

the details of the recommendation algorithm. First, COLOR calculates the similarities

for each property and then combines them into a single similarity. Let P be the set of

properties that e and e′ have in common, and let e[p] be the value of property p ∈ P in

e. Properties can have various types of values, such as numeric values, character strings,

and specific values. Therefore, the method for calculating the similarity for each property

needs to be adjusted accordingly. We use the Euclidean distance for numerical values

and the Levenshtein distance for character strings as measures of similarity. For specific

values, the similarity is set to 1 if the values match and to 0 if they do not. The similarity

s(e[p], e′[p]) (0 ≤ s(e[p], e′[p]) ≤ 1) between e[p] and e′[p] is calculated as follows:

16

id, name, class, etc.

x-axis, y-axis, XPath

link text, label

Attribute

Position

Properties

Properties id class image

Element ! user user xxxx

Element !′# usr usr yyyy

Similarity $% $& $%'

Compare old element
with each candidates

Text

Image image

!

Candidates()*%
!′#

Element()

! !′+

!′,

!′-

RankSimilarity

0.9

0.7

0.4

1

2

3

Integrate by taking weighted average
and sort candidates by similarity

Figure 2.3: Outline of recommendation algorithm

When p is height, width, X-axis, or Y-axis:

s(e[p], e′[p]) = 1− |e[p]− e′[p]|
Max(p)

(2.1)

When p is image, tag name, or size:

s(e[p], e′[p]) =

1 (e[p] = e′[p])

0 (e[p] ̸= e′[p])
(2.2)

Otherwise (p takes a character string):

s(e[p], e′[p]) = 1− Levenshtein(e[p], e′[p])

MaxLength(e[p], e′[p])
(2.3)

17

Algorithm 1: Recommendation algorithm

input : An web element e in Vk

output: Candidates E in Vk+1 sorted by the similarities

1 for p← P do

2 e[p]← the value of p in e

3 for e′ ← E do

4 for p← P do

5 e′[p]← the value of p in e′

6 s(e[p], e′[p])← calculating similarity between e[p] and e′[p]

7 S(e, e′)← taking weighted average from each similarities

8 sort E by S(e, e′)

id="modlgn_username" id="mod-login-username"

Action Locator Value
type id=modlgn_username user01
type id=modlgn_passwd pass01

click link=Login

0.89

0.62

Joomla! Ver. 1.5

Action Locator Value
type id=mod-login-username user01
type id=modlgn_passwd pass01

click link=Login

modify

Similarity

Joomla! Ver. 2.5

candidate1

candidate2

Figure 2.4: Application example

where Max(p) is the maximum value that |ei−e′i| can take (e.g., Max(X-axis) is the width

of the screen), Levenshtein(e[p], e′[p]) is the Levenshtein distance between e[p] and e′[p],

and MaxLength(e[p], e′[p]) is the length of the longer of e[p] and e′[p].

s(e[p], e′[p]) equals 1 when e[p] and e′[p] are the same and approaches 0 as the difference

between e[p] and e′[p] becomes larger. Next, COLOR integrates the calculated similarity

s(e[p], e′[p]) for each property, taking into account that different properties may have

different contributions to the overall similarity. For example, the contribution of the class

property may be considered smaller than that of the id property. This is because different

web elements may have the same class but never have the same id. If the ids of two

web elements are the same before and after the software update, it is likely that the

web elements are the same, but if only their classes are the same, it is not necessarily

18

Table 2.4: Similarity calculation in Figure 2.4

Property id name type Y-axis label Integrated

“Username”

input form

modlgn

username
username text 186 Username -

Candidate1
mod-login-

username
username text 216 User Name -

Similarity 0.78 1.00 1.00 0.94 0.78 0.89

Candidate2
mod-login-

password
passwd password 257 Password -

Similarity 0.33 0.00 0.00 0.86 0.00 0.62

the case. Therefore, after calculating s(e[p], e′[p]) for each property, COLOR calculates

the integrated similarity S(e, e′) (0 ≤ S(e, e′) ≤ 1) by taking a weighted average using

the weight wp for each property. In this study, COLOR determines wp based on the

contribution of each property. We will explain how to set the weight wp in Section 2.4.2.

The similarity S(e, e′) is calculated as follows:

S(e, e′) =

∑
p∈P s(e[p], e′[p])wp∑

p∈P wp
(2.4)

2.3.2 Application example

Figure 2.4 shows how COLOR can be applied to the example in Section 2.2. In this

case, the id of the “Username” input form has been modified between the two releases,

so the test script for version 1.5 of the software cannot be executed on version 2.5 of the

software. As an example, we will show the procedure for recommending the locator for

the “Username” input form in the first line of the test script.

First, we calculate the similarity between the “Username” input form in version 1.5

and each web element in version 2.5. We will focus on the two candidates shown in Figure

2.4 in version 2.5. Part of the calculated similarities is shown in Table 2.4. We have

included five properties in Table 2.4: id, name, type, Y-axis, and label. The integrated

similarity is actually calculated using a total of 19 properties, as shown in Table 2.3.

From the calculation results, we can see that the similarity between candidate1 and

the “Username” input form is the highest. Therefore, we can infer that candidate1 is the

web element most likely to be the “Username” input form in version 2.5. Based on this, we

can conclude that the broken locator on the first line of the test script should be modified

to id=mod-login-username in version 2.5.

19

T
ab

le
2.
5:

A
p
p
li
ca
ti
on

s
fo
r
ou

r
ex
p
er
im

en
t

N
a
m
e

D
es
cr
ip
ti
on

1s
t
R
el
ea
se

2n
d
R
el
ea
se

#
a
ll
lo
ca
to
rs

#
b
ro
k
en

lo
ca
to
rs

J
o
o
m
la
!

C
on

te
n
t
m
an

ag
em

en
t
sy
st
em

1.
5.
0

2.
5.
0

1
43

94

P
H
P
-F
u
si
on

C
on

te
n
t
m
an

ag
em

en
t
sy
st
em

6.
0.
1

7.
0.
0

22
6

4
7

M
a
n
ti
sB

T
B
u
g
tr
a
ck
in
g
sy
st
em

1.
1.
8

1.
2.
0

25
0

4
0

M
R
B
S

S
y
st
em

fo
r
b
o
o
k
in
g
m
ee
ti
n
g
ro
om

s
1.
10

.7
1.
11

.5
8
0

2
2

20

2.4 Evaluation

To evaluate the effectiveness of COLOR, we implemented the recommendation algorithm

and formulated the following research questions:

RQ1: What are the reliable properties for recommending locators?

COLOR uses various properties as clues obtained from screens, but the properties have

different contributions to the recommendation accuracy. Therefore, we will investigate

which properties have the greatest impact and propose a method for determining the

weight of each property.

RQ2: Is COLOR more robust against page layout changes than structure-based approaches?

Structure-based approaches are known to be fragile in the face of page layout changes.

We will confirm that structure-based approaches do not always perform well and that

using clues other than structural ones can help recommend correct locators. We will

use the similarity calculation algorithm from WATER [23] as a structure-based approach

for comparison. We have chosen WATER for this comparison because it is similar to

COLOR in terms of calculating the similarities between two web elements. Although

WATERFALL is a state-of-the-art technique, the core idea of WATERFALL does not

conflict with COLOR. This is because WATERFALL applies WATER iteratively across

a sequence of fine-grained versions of a web application, and we can apply WATERFALL

even if we substitute WATER with COLOR.

RQ3: Can COLOR accurately recommend correct locators?

If COLOR recommends many incorrect web elements, it will be difficult to use in

practice. We will evaluate COLOR’s ability to accurately recommend correct locators.

The idea of applying locator repair iteratively across a sequence of fine-grained versions

can be incorporated into other techniques, including COLOR.

2.4.1 Experimental setup

Table 2.5 shows the applications used in our experiment. These are open-source web

applications implemented in PHP. Table 2.5 includes the names of the open source software

(OSS), descriptions, release versions, numbers of all locators surveyed, and numbers of

broken locators. These applications have all been used in previous studies [22, 23]. We

used two release versions for each application in our experiment. We selected applications

and versions that include complex changes such as attribute changes, layout changes, link

text changes, and so on.

We will assume that there are test scripts developed for the first release version that

cannot be executed on the second release version due to broken locators. The procedure

for the experiment is as follows:

(1) We collected the properties shown in Table 2.3 from a total of 699 operable web

21

elements (i.e., buttons, input forms, and links) on the pages of the main features in each

release version.

(2) We manually examined the pairs of web elements that have the same role across two

release versions. We define these pairs as the correct set C, and let ⟨ei, e′i⟩ ∈ C be each pair

of web elements. To reduce bias in the results, we eliminated multiple similar or identical

web elements (e.g., buttons in a tabular form, web elements in the header or footer, etc.)

from C except for one.

(3) We specified broken locators between two release versions. We used four types of

locators (id, link text, name, and absolute XPath) in our experiment because these are

commonly used by developers. Although relative XPath and CSS selector are also com-

mon, we did not use them because they have multiple expressions and the robustness of

such locators depends on their expressions. We prioritized the types of locators in the

order of (I) id, (II) link text, (III) name, and (IV) absolute XPath, which is the default

order in selenium IDE. A type of locator with a higher priority is used preferentially. For

example, if ei has an id, it is used as a locator for ei, and if ei does not have an id but

has link text, the link text is used as a locator. If the locator changes between two release

versions, we consider it to be broken.

(4) We applied COLOR to broken locators. COLOR shows candidates for the correct web

element in order of similarity, and candidates are typically checked to start from the top

rank. Therefore, presenting the correct locator at a higher rank is beneficial.

To evaluate the accuracy of the recommendation algorithms, we use mean reciprocal

rank (MRR). MRR is a statistical measure commonly used to evaluate the ranking of

correct answers in recommendation and search systems. A higher MRR means that the

correct answer is more likely to appear at a higher rank. MRR is calculated as the average

of the reciprocal ranks of the results for a sample of queries Q:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(2.5)

where ranki is the rank of the correct answer for the i-th query. In our experiment, the

query is ei and the correct answer is e′i. If a locator recommendation system raises e′i to

a higher rank, the MRR will be higher, indicating that the system is superior.

2.4.2 Weights of properties

The weights of properties are determined based on their contribution to the accuracy

of recommendation. We set weights of properties in three ways: unweighted, heuristic

weights, and automatically calculated weights. Unweighted means that we consider all

properties as making the same contribution to the recommendation, namely, wp = 1.

22

Table 2.6: Heuristic weights

Property Joomla! PHPFusion MantisBT MRBS

id 2 – – –

class 1 1 – –

name 4 1 1 1

value 0 1 1 1

type – 1 1 1

tag name 1 0 0 –

alt 0 1 0 0

src – – – –

href 0 – 0 3

size 0 – – –

onclick 2 2 – –

height 15 – – –

width 1 1 – –

xpath 1 0 – 1

X–axis 0 1 2 0

Y–axis 1 1 0 0

link text 1 1 0 1

label 0 – – –

image 0 – – –

The heuristic weights are the weights resulting from the search to maximize the MRR

for each OSS in the experiment. The search was conducted by starting from the top of

Table 2.3, introducing properties one by one, and increasing the weights by 1 until the

MRR reached its maximum.

In Table 2.6, “–” means that the property is not included in the target web elements

in the application or its impact is very small and therefore does not affect the result. A

weight of 0, on the other hand, can adversely affect the results if the property actually

has a positive weight. Table 2.6 shows that the way to set the weight depends on the

target, but some tendencies can be observed. To answer RQ1, class, name, type, onclick,

and width would generally be effective because they contribute to improving MMR for

multiple targets.

The heuristic weights are determined by calculating the MRR for each application,

but this method is not practical when actually applying our technique because the correct

web elements are not known in advance. Therefore, it is desirable to have weights that

can be commonly used for multiple applications.

23

Table 2.7: Stability, uniqueness, and automatically calculated weights

Property Stability Uniqueness Weight

id 0.86 1.00 0.86

class 0.90 0.40 0.35

name 0.87 0.91 0.80

value 0.70 0.84 0.61

type 0.93 0.47 0.44

tag name 0.96 0.21 0.21

alt 0.57 1.00 0.57

src 0.62 1.00 0.62

href 0.81 0.86 0.62

size 0.83 0.32 0.26

onclick 0.75 0.88 0.66

height 1.00 0.33 0.33

width 0.99 0.66 0.66

XPath 0.72 1.00 0.72

X-axis 0.95 0.64 0.60

Y-axis 0.91 0.71 0.65

link text 0.83 0.91 0.76

label 0.44 0.74 0.31

image 0.12 0.88 0.12

Therefore, we propose an automatic weighting method based on the assumption that

properties with more stable and unique values contribute more to identifying similar web

elements. If a property is stable and has a unique value, the roles of two web elements

with the same value of the property are likely to be the same across two release versions.

We define stability(p) as the stability and uniqueness(p) as the uniqueness of a prop-

erty. Therefore, properties with high stability are less likely to change between releases,

and properties with high uniqueness are less likely to have the same value on a page.

stability(p), uniqueness(p), and wp are calculated as follows2:

stability(p) =

∑
⟨ei,e′i⟩∈C

s(ei[p], e
′
i[p])

|C|
(2.6)

uniqueness(p) =
the number of unique web elements in terms of p

|C|
(2.7)

wp = stability(p)× uniqueness(p) (2.8)

2The number of unique web elements in terms of p is summed up from each page.

24

heuristic

Figure 2.5: MRR calculated by each algorithm

Table 2.7 shows the values of stability(p), uniqueness(p), and wp for each property. In

Table 2.7, the values of weight are not simply the product of stability and uniqueness but

are the mean values of wp calculated by (2.8) for each application. The results are fairly

intuitive. For example, id values are completely unique because different web elements

cannot have the same id values, whereas class values are not as unique as id because

different web elements can have the same class. Therefore, the weight of class values is

smaller than that of id.

The weights of id, name, and link text are higher than those of other properties because

they have both high stability and uniqueness. These properties are commonly used as

locators in test scripts. Value, src, href, and onclick are not typically used as locators, but

they also have a high weight. X-axis and Y-axis are not unique in the category of position,

but they have higher stability than XPath and are therefore fairly reliable. The image

property makes the lowest contribution of all properties. This is because its stability is

very low due to page layout changes in the applications.

2.4.3 Results

Figure 2.5 shows the MRR for each application. We calculated the MRR in WATER and

three patterns of COLOR: unweighted, heuristic weights, and automatically calculated

weights. The results show that COLOR yields higher MRR than WATER, indicating that

COLOR recommends correct locators more accurately when there are significant page

layout changes. COLOR with automatically calculated weight yields slightly better MRR

than COLOR with no weights in the cases of Joomla! and PHP-Fusion but does not

improve the MRR in the cases of MantisBT and MRBS. COLOR with heuristic weights

25

1

11

21

31

41

51

1 11 21 31 41 51 61 71 81 91

Ra
nk

N-th broken locator

id
name
text
xpath

(a) Joomla!

1

6

11

16

21

26

31

1 11 21 31 41

Ra
nk

N-th broken locator

(b) PHP-Fusion

1

5

9

13

17

1 6 11 16 21 26 31 36 41

Ra
nk

N-th broken locator

(c) MantisBT

1

11

21

31

41

51

1 6 11 16 21

Ra
nk

N-th broken locator

(d) MRBS

Figure 2.6: Rank for each broken locator

improves MRR by 1% – 14% compared with COLOR with automatically calculated weight

and by 16% – 167% compared with WATER. To answer RQ2, these results show that

COLOR is more robust against page layout changes than structure-based approaches.

Figure 2.6 shows a list of broken locators sorted by rank yielded by COLOR using

manually weighted properties. Figure 2.6 contains four types of markers (id, name, text,

and XPath) that indicate the types of broken locators. COLOR tends to not present the

correct locator at a high rank when the XPath locator is broken in Joomla! or when the

text locator is broken in other applications.

As a result, COLOR presents the correct web elements for a broken locator in first

place with 77% – 93% accuracy and above third place with 82% – 95% accuracy. To

answer RQ3, we consider this accuracy to be sufficient for practical use.

26

2.5 Discussion

2.5.1 How should we determine the weights?

Heuristic weights rely on a history of locator modifications in the target application, mak-

ing them more difficult to apply compared to automatic weights. If there is no significant

difference in accuracy between heuristic and automatic weights, it is preferable to use

automatic weights. However, Figure 2.5 shows that automatic weighting was not very ef-

fective in this study. Therefore, it is recommended to use heuristic weights when accuracy

is a priority and automatic weights when there is no history of locator modifications in

the early stages of development.

The problem with automatically calculated weights is that they use all properties,

including harmful properties. We believe that the key idea behind automatic weighting is

not bad, as properties that have low weights in Table 2.7 (e.g., tag name, size, image) tend

to harm the accuracy of recommendation. However, the calculation method (2.8) can be

improved. This result indicates that generalization on an application-by-application basis

is inadequate, and determining weights on a per-page basis may be necessary.

As can be seen from Table 2.6, the optimal weight varies depending on the target appli-

cation. This is because the characteristics of the changes made in the target applications

are different and difficult to generalize. If the appearance and layout of the application are

drastically changed, the image and axis properties may adversely affect accuracy. On the

other hand, if they are not changed but the attributes of web elements are changed, the

image and axis properties may positively affect accuracy. Therefore, we need to under-

stand the characteristics of changes from past versions and tune the weights accordingly.

For example, removing harmful properties from automatic weighting depending on the

characteristics of an application may improve the accuracy of recommendation.

2.5.2 Characteristics of COLOR

Figure 2.5 indicates that COLOR is more robust against screen layout changes than WA-

TER. The reason for this improvement is that WATER mainly uses XPath to calculate

similarity among web elements, which is not effective when dealing with significant page

layout changes. For example, the site design of Joomla! was renewed with the version up-

grade from 1 to 2. Figure 2.7 shows the change in the top page menu. The link text to the

login page is changed from “Administrator” to “Site Administrator”, and the structure of

the top page is changed drastically. In this case, the similarity of XPath is not effective in

recognizing that the two link texts are the same because the DOM trees of the screens are

likely to have changed. In contrast, information related to the semantics of web elements

(i.e. id, name, text, etc.) is less variable than the structure of a screen. In this example,

27

(a) Version 1.5
(b) Version 2.5

Figure 2.7: Top page menu of Joomla!

the strings “Administrator” and “Site Administrator” are similar, so COLOR seems to be

more effective than WATER.

In Figure 2.6, some web elements are presented at low ranks despite using optimal

weights. This is because the weighting cannot improve the MRR due to the characteristics

and the theoretical limit of COLOR. We identified two cases where COLOR did not work

well:

1. Many similar web elements on a web page.

2. Changes to a different HTML tag.

The first case occurs when there are many similar web elements on a page (e.g. web

elements in a table, radio buttons with many options, etc.). In such cases, there are many

web elements that have similar values for their properties, making it difficult for COLOR

to differentiate between them. Such web elements often do not have a descriptive name

or id, so XPath is often chosen as a locator. This is why COLOR tends not to present

correct web elements for XPath locators of Joomla! in Figure 2.6.

The latter case occurs when one HTML tag is changed to another. For example, in

MRBS, the “delete” link was changed to a “delete” button between two release versions,

as shown in Figure 2.8. COLOR calculates similarities by using properties that two web

elements have in common. However, the “delete” link and the “delete” button have no

attributes in common, which means that COLOR may present incorrect web elements

at higher ranks because there are few factors to distinguish between the two without

structural clues, and it cannot handle page layout changes.

28

Delete

<input class="button" name="delete"
src="images/delete.png" title=”delete"
alt=”delete" type="image">

Figure 2.8: Example of changes to different HTML tag

To solve these problems, we need to analyze the semantic equivalence between two web

elements. One possible solution is to collect clues from web elements outside of the focus.

For instance, we could obtain a character string that explains a web element. COLOR cur-

rently refers to <label> elements that have a for attribute linked with <input> elements.

However, <label> elements often do not have a for attribute in actual applications. We

believe that most of these problems can be solved if COLOR can obtain a character string

that explains a web element by using structural clues (e.g., labels are often on the left side

of the input form).

Another solution is to extract semantics from the HTML expression of the web element.

Although the “delete” link and the “delete” button in the previous example both include

the string “delete” in their HTML, COLOR cannot use it as a clue because of the different

properties. We can solve this problem by using natural language processing techniques to

extract semantics from web elements.

A limitation of COLOR comes from the selection of target web elements. In this

research, we chose <input>, <button>, <a>, , and <select> tags as operable web

elements. However, some applications use the <div> tag as a button, which means that

COLOR cannot recognize them as operable web elements. We excluded these from the

target web elements in this study, so it would be too costly to regard all <div> tags as

operable web elements. We think we can handle this problem by analyzing the event

linked to the web element.

2.5.3 Execution time

The execution time of the COLOR algorithm depends on the number of target web el-

ements on the page. If the page has many input forms, links, buttons, and so on, the

execution time will become longer because the number of candidates increases. The ap-

29

plication of COLOR takes approximately 40 ms per operable web element on a web page.

Most pages only contain several dozen web elements, so we consider COLOR to have no

practical problems in terms of execution time.

In some cases, it may be difficult to apply COLOR to pages with a large number of

web elements, such as portal sites. In such cases, we can compare web elements that have

the same tag in order to reduce the execution time.

2.6 Threats to Validity

This study has some threats to external validity. First, the number of applications in

our experiment is small, which may bias the results. We chose applications that include

page layout changes to show that COLOR can handle them. In the future, we want to

confirm whether the results will change when we use different applications. The same is

true for the release versions we chose, because the experimental results may be different

if different types of changes are made between the first and second releases. We plan to

obtain more general results by conducting experiments using three or more versions for

each application. However, there are sometimes drastic changes even between successive

versions of software, and we want to show that COLOR is effective in such cases.

We also need to discuss the selection of properties. We chose attributes that appear

frequently in the target applications. Other applications may include attributes that

COLOR does not use, and these attributes may be important for recommendations. In

the four target applications, we were not able to find any examples to show that these

properties are inadequate. We need to apply COLOR to more applications to confirm the

adequacy of the target properties.

Furthermore, the weights of the properties were determined based on the four applica-

tions in our study. When we apply COLOR to other applications, the results may change.

However, there were no applications that resulted in low MRR due to weighting in our

experiment. Therefore, these weights seem to be versatile to some extent. In the future,

we want to consider ways to calculate optimal weights for each application and increase

the number of target applications to obtain more general results.

2.7 Conclusion

We propose a novel approach called COLOR to support repairing broken locators by using

various clues obtained from a screen, in order to reduce the costs of regression testing.

COLOR uses various properties (e.g., attributes, positions, texts, and images) as clues and

is more robust than structure-based approaches against complex changes including page

layout changes. We first identified which properties are reliable for recommending locators

30

by examining 699 locators across two release versions of applications, and found that the

class, name, type, onclick, and width properties are effective for multiple targets, and

several properties are effective for some targets but harmful for others. We applied COLOR

to broken locators and showed that (1) COLOR can present the correct locator in first

place with 77% - 93% accuracy, and (2) COLOR is more effective against complex changes

including page layout changes than WATER, a conventional structure-based approach.

We plan to improve COLOR to enable it to recommend locators that were not recom-

mended in our experiment. Additionally, we want to increase the number of applications

for experiments and confirm that COLOR is generally applicable. We also aim to assess

the extent to which our proposed technique can actually reduce the amount of human ef-

fort required. The potential reduction in effort may vary depending on how the proposed

technique is utilized (e.g., automatically fixing broken test scripts and having the user

review them later, or running tests and interactively fixing each failed step as it occurs,

etc.).

31

Chapter 3

Maintainable Test Script

Generation via Manual Testing

32

3.1 Introduction

Software testing is a critical process for evaluating and improving the quality of software,

and developers often spend significant time and effort on it [45, 46]. Many researchers

are working to make software testing more efficient and effective at detecting bugs [47].

Automated testing can greatly improve the efficiency of software testing, especially for

tests that are repeated frequently, such as regression testing. With the increasing need

to shorten software release cycles in order to respond quickly to market changes, test

automation has become essential for software development.

When testing software with graphical user interfaces (GUIs), such as web applications,

it is also important to test the GUI from the user’s perspective. This type of testing

is called end-to-end testing, which is the focus of this study. To automate end-to-end

testing, tools that automate web-browser operation, such as Selenium [2], are often used.

Automating end-to-end testing requires implementing test scripts, and these scripts may

need to be modified as the application under test is modified. Christophe et al. [48] studied

the change history of the source code including Selenium test scripts, for eight open-source

web applications, and how modifications to the applications affected these scripts. They

found that 75% of Selenium test scripts were changed at least once every nine commits

(once every 2.05 days). This shows that Selenium test scripts are updated frequently as

the application evolves, so the maintainability of these scripts is important.

Record & replay and programming are two main approaches to automating end-to-

end testing. Leotta et al. [3] conducted a comparative study of these two approaches and

found that the programming approach took 32-112% longer to implement test scripts, but

required 16-51% less time to modify them. Overall, the programming approach was found

to be less costly in most cases when more than three modifications were needed.

In their experiment, the participants who used the programming approach imple-

mented their test scripts using the page-object pattern. The page-object pattern is a

design pattern for end-to-end test automation that improves the maintainability of test

scripts by separating test cases from page-specific code [49, 50]. The results of the study

suggest that the programming approach with the page-object pattern is well-suited for

software that is released frequently in short periods of time. However, using the program-

ming approach to create highly maintainable test scripts requires skilled developers. This

difficulty in implementing test scripts can make it challenging to introduce automated end-

to-end testing into software development. To address this issue, Stocco et al. [51] proposed

an approach for automatically generating page objects. This approach involves crawling

an application to generate page objects, but it can be difficult to apply to large-scale

applications and generate complete page objects.

We propose an approach for automatically generating test scripts using the page-object

33

pattern from manual testing logs. The key advantage of our approach is that it allows

test scripts to be generated simply by performing manual tests, without the need for users

to be aware of test automation. While automated testing is becoming more common in

industry, not all testing can be automated, due to the high implementation cost and the

difficulty of automating certain types of tests, such as user-interface testing and usability

testing.

Manual testing approaches can be broadly classified as scripted testing or exploratory

testing [52–54]. Scripted testing involves designing tests in advance and then execut-

ing them according to the test design. Developers often document the test design and

may create test-procedure manuals with detailed instructions for each test. In contrast,

exploratory testing involves conducting test execution, test design, and learning simulta-

neously, without pre-planning the tests. Exploratory testing cannot currently be replaced

by automated testing because it relies on the expertise of the tester.

Our proposed approach allows test scripts to be generated with minimal preparation

by recording manual testing, which is an essential part of software development. Our

approach addresses the problems of manually implementing test scripts and the limitations

of other approaches for generating page objects. In our approach, the actions of the tester

are treated as the use of a feature on a web page, and these actions are converted into

methods of the page object. This makes it possible to automatically generate test scripts

from manual testing logs.

The test scripts generated by our approach not only include page objects, but also

test cases that cover the features of an application by analyzing the page transitions of

that application. In general, a test case is a specification of a test and includes a set

of operations that are executed on an application to determine if it meets the software

requirements. Although test code may be written in natural language, for the purposes of

this study, test code is defined as implemented in source code. Our approach lowers the

barrier to introducing automated end-to-end testing to software development.

To evaluate the effectiveness of our approach, we asked four testers to conduct manual

testing on an open-source web application and evaluated whether our approach could

generate useful test scripts. A test script in this context refers to a set of page objects

and test cases. The results of the experiment showed that our approach was able to

generate a greater number of complete methods in page objects than a current approach

for page-object generation. We also conducted an empirical evaluation of whether our

approach could reduce the cost of implementing test scripts for real systems. The results

showed that our approach reduced the time required to implement test scripts by about

48% compared to manual implementation.

The contributions of this study are as follows:

• We propose a technique for generating automated test scripts with page objects from

34

manual testing activities, which is an essential part of software testing.

• We evaluated the completeness of the generated test scripts and showed that our

approach can generate a greater number of complete page objects than an existing

page-object generation technique.

• Our empirical evaluation showed that our approach can significantly reduce the costs

of test script implementation compared to other practical approaches used in real-

world software development.

3.2 Page Object

A page object is an object-oriented representation of a web page, with each web page

represented as an object. In this study, we define a page object as a class that contains

accessors and methods. An accessor is used to obtain a reference to a web element using

a locator. The body of a method is a sequence of operations, such as clicking on web

elements, entering values into input fields, or selecting items from drop-down lists. The

method returns the page object of the destination page. Web elements that are operated

on in the methods are specified using an accessor.

Figure 3.1 shows an example of the owner add page in the PetClinic open-source web

application [55] and its corresponding page object. The owner add page consists of five

input fields, four links, and one button. It also has a feature that allows it to transition to

another page or add an owner. The page object in Figure 3.1 is implemented in JavaScript

using WebdriverIO [56], a test-automation framework for web or mobile applications that

makes the test code more concise than plain Selenium WebDriver.

The firstName accessor indicates an input field for the first name. $(‘#firstName’)

captures the web element with the id of “firstName” in the HTML of the web page. The

information used to uniquely identify a web element on a web page, such as #firstName,

is called a locator. Users can use id, name, text, XPath, etc. as a locator. The defined

accessors are only called from methods within the page objects.

The addOwner() method in Figure 3.1 takes the values to be entered in each input field

as arguments. This method inputs the values in each input field and then clicks the add

owner button. When writing test cases to carry out an operation on the owner addition

page, we use the methods defined in the page object. The return value of the method is

generally the page object of the destination page after the page transition. This allows us

to write test cases using a method chain.

The page-object pattern allows test cases and page-specific code to be separated by

modularizing operations and locators. This means that changes to test cases can be

minimized by only modifying accessors or methods in the page object when web pages

35

or features under test are modified. This makes it easier to maintain test cases as the

application evolves.

36

Input

First Name
Last Name
Address
City
Telephone

Add Owner

Feature

Go to top page
Go to the owner search page
Go to the veterinarians list page
Go to the error page
Add owner

Link

HOME
FIND OWNERS
VETERINARIANS
ERROR

Button

Use

Elements

Page object of the page

Owner add page of Petclinic

Figure 3.1: Owner add page of PetClinic and its page object

37

3.3 Related Work

Stocco et al. [51] proposed a technique called APOGEN for automatically generating page

objects. APOGEN generates page objects by crawling web applications under test and

automatically extracting web elements from the pages. It then clusters the web pages

based on their similarity and integrates the pages belonging to the same cluster into a

single page object. This is because having multiple similar page objects can reduce the

modularity of the test script, which can undermine the strength of the page object.

Although APOGEN can help reduce the cost of implementing page objects, it has two

problems with regard to page-object generation. The first problem is that it requires some

preparation to use. When an application requires specific input values for page transitions,

it is necessary to teach the crawler the locators of input fields and the input values in

advance. In addition, if APOGEN does not propose the correct cluster, users need to fix

the cluster manually. In contrast, our approach requires almost no preparation because it

uses logs of manual testing, which are essential for software development. Chen et al. [57]

improved the accuracy of page clustering for page-object generation by considering CSS

styles and the attributes of web elements, but the problems caused by crawling have not

been resolved.

The second problem with APOGEN is the completeness of the page objects it gen-

erates. If the crawling cannot cover certain web pages, APOGEN will not be able to

generate page objects for those pages. APOGEN generates methods that operate web

elements enclosed in <form> tags as a feature of the web page, but this technique may

not be applicable on some web pages. This is because using features of web pages is not

always the same as operating web elements enclosed in <form> tags. In addition, because

APOGEN converts all possible page transitions into methods, it may generate too many

methods that are not used in actual tests if the application has many links or buttons.

In contrast, our approach can accurately extract features from pages regardless of their

structure by using tester operations, so it is likely to generate useful methods for auto-

mated testing. Furthermore, APOGEN only generates page objects, but our approach can

also generate test cases that use these page objects.

3.4 Approach

Figure 3.2 shows an overview of our approach, which takes manual testing logs as input

and outputs test cases and page objects. The generated test cases use the page objects and

call methods declared in them. In order to record manual testing activity, we developed a

tool [58] that collects test logs that consist of operation data, such as information about

tags and attributes of operated web elements, types of operations (e.g. click or input),

38

Tester

Test log

Application

Proposed approach

Test cases

Page Objects

Use

Test script

Record manual testing

Figure 3.2: Overview of proposed approach

and page titles/URLs where the operations are performed. Testers can record this data

without being aware of the tool’s existence during the test. Figure 3.3 shows an example

of an operation data when a pet’s birthday is entered on the pet add page of PetClinic.

Our approach consists of two phases: page-object generation and test-case generation.

In the page-object-generation phase, our approach generates page objects using data of

operated web elements and operation procedures. In the test-case-generation phase, our

approach selects test cases that cover all page transitions by analyzing page transitions

obtained from test logs and constructs test cases that leverage the generated page objects.

3.4.1 Page-object generation

The proposed approach generates page objects for all web pages visited during a test.

However, some web applications (e.g., single-page applications) may not have obvious

page transitions, so we clarify the definition of a page. In this study, testers have the

option to choose either a title match or URL match as the definition of page equality.

They can also use regular expressions to define pages with matching titles or URLs as the

same.

The generated page objects contain accessors that access web elements that have been

operated at least once during the test. These accessors return web elements specified by

locators using a function of WebdriverIO. To improve the robustness against application

modifications, we use locators in the following order of priority: (i) id, (ii) name, (iii)

text, and (iv) absolute XPath. This is because XPath locators are known to change more

frequently than other locators. Text locators are only used for web elements that can

contain text (e.g., <a> and <button>). They identify web elements by whether the link

39

"pageInfo":{
"title":"PetClinic :: a Spring Framework

demonstration",
"url":"http://localhost:8080/owners/1/pet

s/new"
},
"operation":{

"type":"input",
"input":"2020/3/3",
"elementInfo":{

"tagname":"INPUT",
"text":"",
"xpath":"/HTML/…/DIV/INPUT",
"attributes":{

"class":"",
"id":"",
"name":"birthdate",

}
}

}

Figure 3.3: Datum of operation in test log

text and inner text match the given string.

In the page-object pattern, a method contains a sequence of operations performed on

a web page and represents a feature provided by the page. An operation o is defined as

follows:

o = ⟨t, i, e, p⟩

where t is the type of operation (e.g. input or click), i is the input value, e is the operated

web element, and p is the web page where the operation is performed. We consider a

sequence of operations performed from the time a tester arrives on a certain page until

the time they leave as the use of a certain feature of that page. We call such operations

an operation sequence.

Algorithm 2 describes the detailed algorithm for generating methods for page objects.

We first need to obtain the set of pages that testers visited by analyzing the test log

(lines 1–4). Suppose we have pages p1,..., pn. We then extract the operation sequences

performed on each page as the candidates for the methods (lines 5–16). Let Spi be the op-

eration sequences for pi. By scanning the test log, we can retrieve the operation sequences

performed on pi.

If we converted all operation sequences into methods, many duplicate methods would

be generated. Therefore, we prevent the generation of duplicate methods by rejecting

operation sequences that are included in other operation sequences (lines 17–27). This

process aims to generate only versatile methods. For example, we can replace the absence

of an operation on an input field with the operation of entering an empty string into the

input field.

Let us define operation sequence s1 and Es1 as the set of web elements operated in

40

Algorithm 2: Method generation for page objects

Input: a test log

Output: methods for each page object

1 page set P ← ∅;
2 foreach operation in the test log do

3 add the page where the operation is executed on P ;

/* Now we have pages p1, p2, ..., pn */

4 foreach page pi in P do

5 let Spi is the operation sequences for pi;

6 Spi ← ∅;

7 operation sequence s← ∅;
8 foreach operation in the test log do

9 add the operation to s;

10 if there is a page transition, and the previous operation is executed on pi then

11 add s to Spi for the page;

12 s← ∅;

13 foreach page pi in P do

14 let the sequences adopted as methods for the page object of pi be Mpi ;

15 Mpi ← ∅;
16 sort Spi in descending order by length;

17 foreach operation sequence s in Spi do

18 if s is not included in any other s′ ∈Mpi then

19 add s to Mpi ;

20 convert Mpi to methods;

s1, and define s2 and Es2 in the same manner. We assume that “operation sequence s2

includes s1” means that the destination of s1 and s2 are the same, and Es2 includes Es1 .

For example, suppose a web page has web elements e1, ..., e4, and we set Es1 = {e1, e2, e4}
and Es2 = {e1, e2, e3, e4}, where Es2 includes Es1 . Also, suppose that the destinations of

s1 and s2 are the same. In this case, s1 is not adopted as a method because s2 includes

s1. We only take into account the operated web elements, regardless of the input value, to

determine the inclusion. Let Mpi be the operation sequences adopted as methods in the

page object for pi.

Finally, the algorithm converts each operation sequence in Mpi into JavaScript code

that uses the APIs of WebdriverIO. Since the algorithm converts operation sequences into

methods in this manner, the roles of the generated methods are unlikely to overlap.

41

!"

!#

!$!%

!&

!", !# , !$, !&
!", !# , !% , !& , !#

()*ℎ#
()*ℎ"

Figure 3.4: Example of path selection for test-case generation

We now present how to determine the identifiers of classes, accessors, and methods

in the page objects. Class names are determined by the title or URL used to define the

page. When we use regular expressions to define web pages, each web page can have a

user-defined alias. Accessor names are determined by the id, name, or text of the web

element. Method names are “go<class name of the destination>” when the method clicks

a link at the end of it; otherwise, it is “do<accessor name called lastly>”. If the generated

identifier name conflicts with other identifiers, the algorithm adds a serial number to the

end of the identifier name.

3.4.2 Test-case generation

In addition to page objects, the proposed approach also generates test cases using the

page objects. Our approach first determines the paths of page transitions to be checked in

each test case (a path is represented as a sequence of pages). A test case is constructed by

combining methods defined in the page objects and is executed along one of the determined

paths. We note that our test case generation algorithm does not take into account the

states of the target application, so the generated tests may not always be executable. This

limitation is discussed in Section 3.4.3.

The following presents the algorithm for determining the paths of page transitions.

Our approach selects paths that satisfy the following rules:

1. The path covers all page transitions checked during manual testing.

2. If the same pages are visited twice in one path, subsequent pages will not be visited.

3. Page transitions executed in other paths are not executed as often.

Figure 3.4 shows an example of path selection. The web pages p1, ..., p5 and page

42

Algorithm 3: Test-case generation

Input: A test log and page objects

Output: Test cases

1 path list ← ∅;
2 pathc ← ∅;
3 add the start page to pathc;

4 Construct page transition diagram from the test log;

5 Function breadthFirstSearch():

6 queue (of path) ← ∅;
7 Enqueue pathc to queue;

8 while queue is not empty do

9 pathc ← Dequeue from queue;

10 if all destinations from the last page of path are included in pathc then

11 Cut off the redundant page transitions at the end of pathc;

12 if pathc includes undiscovered page transitions then

13 Add pathc to path list;

14 foreach pa ← adjacent page of the last page of pathc do

15 if pa is not included in pathc then

16 path′ ← pathc with pa appended;

17 Enqueue path′ to queue;

18 breadthFirstSearch();

19 foreach path in the path list do

20 Convert path to a test case that consists of chained methods;

transitions among them are shown. In this case, the rules determine the two paths:

Path1 = [p1, p2, p4, p5, p2], Path2 = [p1, p2, p3, p5].

Here, Path1 and Path2 obviously satisfy the first rule. Next, p2 is the last page of Path1,

and subsequent pages are not visited. We can see that Path1 follows the second rule. p5

is the last page of Path2, and the page transition from p5 to p2 is not executed. Since

Path1 has already passed through the page transition from p5 to p2, the third rule rejects

the page transition.

On the other hand, both Path1 and Path2 pass through the page transition from p1 to

p2. The page transition is not rejected by the third rule because it is necessary to cover

all page transitions with two paths.

43

Te
st

ca
se

Pa
ge

-tr
an

sit
ion

 di
ag

ram
 of

 Pe
tC

lin
ic

an
d s

ele
cte

d p
ath

F
ig
u
re

3
.5
:
E
x
am

p
le

of
ge
n
er
at
ed

te
st

ca
se

an
d
m
et
h
o
d
s
th
a
t
it
ca
ll
s

44

Algorithm 3 describes the algorithm for test case generation. First, our approach

analyzes the test logs to generate a page-transition diagram of visited pages in the test

(line 4). Next, we obtain a list of paths satisfying the above three rules by carrying out a

breadth-first search on the page-transition diagram (lines 5–21). Depth-first search is also

a well-known graph-traversal algorithm, but in this case, a breadth-first search is superior.

This is because a breadth-first search determines the shorter paths first, contributing to

generating concise test cases. Let the start page of all paths be the start page of the

manual testing. When no more page transitions are possible due to the second rule, we

cut off the redundant page transitions at the end of the path because of the third rule. A

test case consists of chained methods defined in the page objects and executes the page

transitions following the path (lines 16–18).

For example, suppose there are three pages p1, p2, and p3. When a path [p1, p2, p3] is

converted to a test case, the test case first calls a method defined in the page object of

p1 to go to p2. The return value of the first method is the page object of p2, so the test

case then calls a method defined in the page object of p2 to go to p3. In this manner, our

approach generates test cases that satisfy the rules by converting each path into a test

case.

Note that if multiple methods execute the same page transition in one page object, the

first generated method is used in the test case. Our approach can also generate arguments

and input values for the method because the test logs contain input values when each page

transition is carried out by testers.

Figure 3.5 shows an example of a generated test case and the methods called from

the test case. The page-transition diagram and test case is a part of the output in our

experiment using PetClinic described in Section 3.5.

Suppose we obtain a path that transitions in the following order: the top page, owner

search page, owner page, and pet add/edit page. In this case, our approach generates a test

case that consists of four methods executing the page transitions. Each method is declared

in a different page object. The test cases start from the page object of the top page, and the

page object has the goOwnerSearchPage() method. Next, goOwnerSearchPage() returns

the page object of the owner search page, and the page object calls the doFindOwner()

method. By repeating the same steps, the test case is built. If methods require argu-

ments, the proposed approach extracts a set of input values that caused the required page

transition from the test log.

3.4.3 Limitation

Our approach in this study may generate test cases that require the application to be

in a certain state in order to be executed. To execute such test cases, we would need

to insert a process to initialize the database or modify the input values in the generated

45

test scripts. This state dependency issue is a common problem in many crawling-based

test generation techniques and record & replay tools, but it is outside the scope of this

study. There are existing studies [59,60] on dependency-aware test generation that could

potentially be used to address this problem. If these techniques are not adopted, users

will have to manually modify the generated test scripts to solve the state dependency

issue. However, using page objects in our test scripts makes them easier to modify, which

partially mitigates this problem. One of the goals of this research is to generate test scripts

that are easy to modify, as it is often difficult to create perfect test scripts for users.

Our approach has some limitations in terms of the types of applications and situations

it can be applied to. Currently, our approach does not generate any assertions, so users

will need to insert their own assertions to verify that the test scripts are being executed

correctly. However, it is technically possible to verify that the currently opened web page

matches the expected one, as we record the titles and URLs of the web pages where

operations are performed. Additionally, the generated test scripts use the page-object

pattern, which makes them highly maintainable and easy to add more detailed assertions

to.

Our recording tool is currently only able to record click and input operations, so it is

not possible to perform other types of operations (such as drag, mouse hover, etc.) in the

generated test scripts. Furthermore, our approach cannot generate methods that include

operations that were not performed during manual testing. However, we believe that by

keeping logs of not only planned manual testing but also some behavior verification and

smoke testing, we can compensate for the lack of test logs.

3.5 Evaluation

We conducted experiments to evaluate the effectiveness of our approach in generating test

scripts. Specifically, we sought to answer the following research questions:

RQ1. Can our approach generate a greater number of complete methods in page objects

than the current APOGEN approach?

RQ2. Can the test cases generated with our approach be used without modification and

cover the features of the application?

RQ3. Does our approach reduce the initial cost of test script implementation compared

to practical approaches used in industry?

3.5.1 Experimental setup

Four testers conducted manual testing on Spring PetClinic version 2.2.0, which is an open-

source web application. Spring PetClinic is a sample application of the Spring Framework

46

Table 3.1: Web pages and features of PetClinic

Web page Feature

Top page Nothing

Owner search page Search owners by a last name

Owner search result page Show the list of owners hit by a search

Owner add/edit page Input owner data and add or update the owner

Owner page
Add or edit pet data of the owner and

add visit data for the pet

Pet add/edit page Enter pet data and add or update the pet

Visit data add page Enter visit data for the pet and add them

Veterinarians list page Nothing

Error page Nothing

and has more than 6k lines of Java code. Table 3.1 lists all the web pages and features of

PetClinic. We used the database prepared by PetClinic as the initial state.

All the web pages in PetClinic have a header with links to go to the top page, owner

search page, veterinarians list page, and error page. We consider the owner add page and

the owner edit page to be the same page because these two pages are generated from the

same template file in the Spring Framework and have a similar structure. We also consider

the pet add/edit page to be a single page for the same reason. Additionally, each owner

has a separate owner page in PetClinic, but we also treat these pages as a single page.

Since these page objects would need to be modified in the same way frequently when the

template is modified, we believe it would be more practical to separate these page objects

for experimentation.

In this experiment, we used two different manual testing approaches to evaluate whether

our approach does not depend on the specific manner of manual testing. Two testers per-

formed scripted testing, while the other two performed exploratory testing. All four testers

had more than three years of testing experience, and the two conducting exploratory test-

ing had experience with this type of testing.

Before conducting the experiment, we had the testers familiarize themselves with the

specifications of PetClinic by operating it. We also assumed that PetClinic had been

adequately unit tested on both the server-side and client-side. Next, we instructed the

testers on how to conduct end-to-end testing on PetClinic to check its functionality and

usability. Even though PetClinic is a stable application, we asked the testers to test it

with the aim of finding bugs.

The two testers who performed scripted testing designed and documented the content

of the tests in advance as test scenarios. A test scenario is a sequence of steps to test a

47

Table 3.2: Summary of tests by testers

Tester Approach # of test scenario # of operations

A Scripted testing 9 135

B Scripted testing 20 258

C Exploratory testing – 378

D Exploratory testing – 505

specific use case of the target application. The other two testers performed exploratory

testing for up to 30 minutes to find bugs using their knowledge and experience.

All the operations performed during the tests were recorded using our tool, which is

described in Section 3.4. Let the test logs obtained from testers A–D be test logs A–

D, respectively. Table 3.2 summarizes the tests conducted by the testers. The cases of

exploratory testing did not have documented test scenarios because the two testers did

not design the tests in advance. The number of operations is equal to the number of click

events and change events that occurred when the testers interacted with web elements.

We applied our approach to the test logs and generated four sets of test scripts. We

also merged the four test logs to create a single large test log that was equivalent to four

tests conducted consecutively. We applied our approach to the merged test log in the same

way. The generated test scripts from our approach and APOGEN are publicly available1.

3.5.2 Page-object generation

We compared our approach with APOGEN to evaluate whether the page-object-generation

phase of our approach was able to generate complete methods. We first examined the page

objects generated with our approach and APOGEN. PetClinic has nine pages, as shown in

Table 3.1. Note that we define owner pages, owner add/edit page, and pet add/edit page

each as one page using regular expressions on the URLs. This is because these pages are

generated from the same template, as explained in Section 3.5.1. Therefore, our approach

generated nine page objects from each test log.

Next, we applied APOGEN to PetClinic to generate page objects. We provided infor-

mation to APOGEN’s crawler to reach as many pages as possible and manually classified

the reached web pages into the pages shown in Table 3.1. However, we were unable to

generate page objects for the error page and owner search page due to limitations of

APOGEN. This result is the same as in the evaluation of an existing paper [51]. As a

result, we obtained seven page objects with APOGEN, excluding the two pages that could

not be reached.

1https://zenodo.org/record/5655786

48

Table 3.3: Classification of methods in page objects generated with our approach and

APOGEN

Source Complete Redundant To modify Unnecessary Header Total

APOGEN 5 0 6 0 18 31

Test log A 6 (9) 0 3 0 6 (7) 13 (17)

Test log B 8 (12) 0 7 1 8 (12) 24 (32)

Test log C 6 (10) 0 4 6 12 (16) 28 (36)

Test log D 9 (13) 1 6 3 10 (13) 29 (36)

Merged log 12 (16) 0 3 11 18 (23) 44 (53)

We then classified the methods in the page objects according to the following criteria:

Complete The methods have no parts that need to be modified in terms of arguments,

operations, and return values.

Redundant The methods function correctly but contain unnecessary operations that do

not affect their functionality.

To modify The methods require modification of arguments, operations, or return values

in order to use them.

Unnecessary The second or subsequent methods of multiple methods that check the

same page transitions.

Header The methods click links on the header to go to another page.

Although methods classified as header are all complete methods, we decided to distinguish

header from the others. This is because they are unlikely to be used in actual test cases

despite their large number.

Table 3.3 shows the results of the classification. The table shows both the case where

we counted only the methods in the seven page objects generated by APOGEN, and the

case where the two page objects that APOGEN could not generate were included. The

values in parentheses are counted by including the number of methods in the page objects

that could not be generated by APOGEN.

Our approach generated a greater number of complete methods than APOGEN, even

when we excluded the page objects of the web pages that APOGEN could not reach. It

also generated one redundant method goOwnerSearchPage() for test log D. This is because

tester D performed the operation sequence to click a link to go to the owner search page

after filling an input field on the owner add/edit page. The operation sequence was

49

converted to a method, but the operation of filling an input field was not necessary to go

to the owner search page.

The to modify methods were generated by both APOGEN and our approach, but our

approach tended to generate fewer of them. There were no correct page objects as return

values in four to modify methods generated by APOGEN, probably because APOGEN

does not take into account the case where different page transitions are performed depend-

ing on the input values when using the same feature. The other two to modify methods by

APOGEN lack operations to enter values when updating pet or owner information. On

the other hand, our approach was able to generate these methods that APOGEN could

not generate correctly. APOGEN converts operations on web elements enclosed in <form>

tags into a method, but PetClinic did not have such sets of web elements. Hence, there

was no sequence of operations that our approach could recognize but APOGEN could not.

Most of the to modify methods generated by our approach have an insufficient number

of arguments and cannot enter values into some input fields. This is because the testers

did not fill in all input fields on some pages during the tests. If the testers had conducted

a test that attempted to register an owner with a blank name, the generated method

would not have included the operation to fill in the name input field due to the method-

generation algorithm of our approach. However, there are other possible inputs that could

cause registration to fail, such as not giving an address and inputting incorrect characters.

The methods should always have arguments for all inputs to register an owner because

missing arguments reduce versatility. If there are no missing arguments and users want to

register an owner with a blank name, they can achieve this by providing an empty string

as an argument.

Our approach generated unnecessary methods that separately click different owners on

the owner search result page in most cases. Since these methods have the same destina-

tion, the second and subsequent methods are classified as unnecessary. The unnecessary

methods were only generated by our approach. However, if APOGEN reached the owner

search result page, it would generate many methods to click each owner and generate more

unnecessary methods than our approach.

Our approach generated fewer header methods, even though it generated more page

objects. Most of the methods classified as header are not important and would not be

used because developers usually just need to make sure the links are valid.

Our approach to generating page objects from the merged log results in the most com-

plete methods and the fewest methods to modify. This is because each log fills in missing

operations, and our approach converts operation sequences that include other small oper-

ation sequences into methods. As a result, even if a log does not include operations on all

input fields, our approach can generate a complete method if all input fields are operated

on in the other logs.

50

Table 3.4: Classification and average length of generated test cases

Source Complete Data-dependent To modify Total Avg. length

Test log A 7 0 1 8 4.25

Test log B 11 0 1 12 4.00

Test log C 10 4 0 14 4.58

Test log D 11 0 2 13 4.50

Merged log 19 0 1 20 4.46

However, generating page objects from the merged log can also lead to the generation

of many unnecessary and header methods. This is because the merged log includes many

operations for clicking various elements on the owner search result page and clicking links

in the header on each page. This problem may not occur in other applications, as it is

largely due to the specific design of PetClinic.

To summarize the evaluation of page-object generation and answer RQ1, our approach

to page-object generation is more likely to generate a greater number of complete methods

compared to APOGEN, regardless of the manual testing approach or testers. However,

generating page objects from a merged log can compensate for the incompleteness of each

log, but it also increases the number of extra methods that may not be used.

3.5.3 Test-case generation

We next evaluated the ability of our approach to generate complete test cases during the

test-case-generation phase. The choice of which test cases to automate depends on the

project, but in this experiment, we evaluated whether our approach could generate test

cases that check the normal scenarios for each feature without requiring modifications.

This is because such test cases are versatile and can be useful in any project. Addition-

ally, it is easy to implement test cases for exceptional scenarios (e.g., cases where owner

registration fails) by reusing the generated test cases and page objects. We classified the

test cases generated from test logs A–D according to the following criteria:

Complete A test case can be executed without modifying the order of method calls,

argument values, and the database state.

Data-dependent A test case can be executed by changing the database state from the

initial state or changing the value given by the method argument.

To modify A test case can be executed by replacing some called methods with other

methods that have the same transition destination as before.

51

Table 3.4 shows the results of the classification of generated test cases and the average

length of the test cases. The length of a test case refers to the length of paths of page

transitions checked in a test case. It also equals the number of called methods in a test

case, as a method call invokes a page transition.

The reason why four test cases of test log C were classified as data-dependent is that

tester C added a pet to an owner registered during manual testing. Since our approach

does not take into account the state of the application, as explained in Section 3.4.3, it

generated test cases that add a pet to an owner who does not exist in the initial state

of the database. The testers other than C only tested the edit feature for users and pets

registered by default, so this problem did not occur when using logs other than C. We

found that whether or not our technique generates data-dependent test scripts depends

on the way of testing. These data-dependent test cases can be turned into complete test

cases by replacing the method call in the test case with the method to click an initially

existing owner, or by changing the initial state of the database.

Some test cases were classified as to modify because some web pages with different

features were defined as one page. For example, adding and editing pets are different

operations, but we define the pet add/edit page as a single page because the templates

of the pages are the same. The method for clicking the “Add Pet” button after filling in

input fields and the method for clicking the “Update Pet” button after that are declared

as different methods in the page object. However, our approach did not distinguish these

methods when constructing test cases because both methods go to the owner page from

the pet add/edit page. As a result, our approach may generate test cases that call the

method to update a pet when the method to add a pet should be called. In this case, the

test case becomes complete if we replace the method call to update a pet with the call to

add a pet.

Table 3.5 shows which features were checked by the test cases generated from test logs

A–D and the merged log (labeled “M”). The features of PetClinic were extracted from

the test-case specifications written by testers A and B. In the table, a “✓” indicates that

the generated test cases checked the feature, “×” indicates that the generated test cases

did not check the feature even though the manual test did, and “–” indicates that the

generated test cases could not check the feature because the manual test did not check it.

Due to the limitation of our approach, it is not able to generate test cases for features that

were not checked by the manual tests. We assume that one test case can confirm multiple

features. For example, we have a test case that adds a pet to an owner found in the owner

search after moving from the top page to the owner search page. In this case, we determine

that the test case confirms features (1, 6, 12) in Table 3.5. Note that Table 3.5 shows

the results when the data-dependent and to modify test cases were correctly modified and

became complete.

52

T
a
b
le

3.
5:

F
ea
tu
re
s
co
n
fi
rm

ed
fr
om

ge
n
er
at
ed

te
st

ca
se
s

W
eb

p
a
ge

#
F
ea
tu
re

A
B

C
D

M

O
w
n
er

se
ar
ch

p
a
ge

1
If

o
n
e
h
it

is
m
ad

e
in

th
e
ow

n
er

se
ar
ch
,
th
e
ow

n
er

p
a
ge

w
il
l

b
e
d
is
p
la
ye
d
.

✓
✓

✓
✓

✓

2
If

tw
o
or

m
or
e
h
it
s
ar
e
m
ad

e
in

th
e
ow

n
er

se
ar
ch
,
th
ey

w
il
l

b
e
d
is
p
la
ye
d
on

th
e
ow

n
er

se
ar
ch

re
su
lt
p
ag

e.

–
✓
×
×

✓

3
If

n
ot
h
in
g
is

en
te
re
d
in

th
e
ow

n
er

se
ar
ch
,
al
l
ow

n
er
s
w
il
l
b
e

d
is
p
la
ye
d
on

th
e
ow

n
er

se
ar
ch

re
su
lt
p
ag

e.

✓
×

✓
✓
×

4
G
o
to

th
e
ow

n
er

ad
d
p
ag

e.
✓

✓
✓

✓
✓

O
w
n
er

se
ar
ch

re
su
lt

p
ag

e
5

M
ov
e
to

th
e
ow

n
er

p
ag

e
b
y
cl
ic
k
in
g
an

ow
n
er

n
am

e.
–

✓
✓

✓
✓

O
w
n
er

p
ag

e

6
G
o
to

th
e
p
et

ad
d
p
ag

e.
✓

✓
✓

✓
✓

7
G
o
to

th
e
p
et

ed
it

p
ag

e.
×
×
×
×
×

8
G
o
to

th
e
ow

n
er

ed
it
p
ag

e.
✓

✓
✓

✓
✓

9
G
o
to

v
is
it
d
at
a
ad

d
p
ag

e.
✓

✓
✓

✓
✓

O
w
n
er

a
d
d
/e
d
it
p
ag

e
1
0

A
d
d
an

ow
n
er

b
y
fi
ll
in
g
in

in
p
u
t
fi
el
d
s.

✓
✓

✓
✓

✓
1
1

E
d
it

an
ow

n
er

b
y
fi
ll
in
g
in

in
p
u
t
fi
el
d
s.

×
×
×
×
×

P
et

a
d
d
/e
d
it
p
ag

e
1
2

A
d
d
a
p
et

b
y
fi
ll
in
g
in

in
p
u
t
fi
el
d
s.

✓
✓

✓
✓

✓
1
3

E
d
it

a
p
et

b
y
fi
ll
in
g
in

in
p
u
t
fi
el
d
s.

×
×

–
×
×

V
is
it
d
at
a
a
d
d
p
ag

e
1
4

A
d
d
v
is
it
d
at
a
b
y
fi
ll
in
g
in

in
p
u
t
fi
el
d
s.

✓
✓

✓
✓

✓

H
ea
d
er

1
5

G
o
to

th
e
to
p

p
ag

e,
ow

n
er

se
ar
ch

p
ag

e,
v
et
er
in
a
ri
an

s
li
st

p
ag

e,
or

er
ro
r
p
ag

e.

✓
✓

✓
✓

✓

53

Some features were not checked by the generated test cases even though the manual

tests checked them. In most cases, this was because our approach generates test cases based

on the coverage of page transitions. For example, in a certain test case, if a transition

from the owner page to the pet add/edit page was performed by clicking the “Add New

Pet” button, the page transition was checked. However, when the “Edit Pet” button was

clicked from the owner page, the transition to the pet add/edit page was also performed.

Since this page transition had already been checked, our approach did not generate a test

case to check the feature for editing pets. As a result, for the pairs of features (2, 3), (6,

7), (10, 11) and (12, 13) in Table 3.5, only one feature of each pair was checked. However,

we believe that we can easily create test cases to check the other feature of each pair by

slightly modifying the generated test cases.

Finally, we discuss the smallness and simplicity of the generated test cases. Table 3.5

shows that the average length of the test cases was at most 4.58. This indicates that each

test case is concise and that users can easily understand them. An interesting point is

that test log D had about twice as many operations as test log B, and testers B and D

adopted different manual testing approaches, yet the numbers of test cases were almost

the same. Since the generated test cases depend on the page-transition diagram obtained

from the manual tests, our approach has the advantage of generating similar test cases no

matter how the manual tests were conducted, as long as the page-transition diagrams are

similar.

In this experiment, although the test cases generated from test log A were the smallest,

they covered most of the features checked in the other test cases. Therefore, we can say that

there is redundancy in the test cases generated from the other test logs. This is because

the more links on the header are clicked, the more complex the page-transition diagram

becomes. Our approach uses the page-transition diagram to make the test cases cover the

page transitions executed in the tests. However, every page of PetClick has a header, and

if testers go to another page by clicking the links on the header, the page transitions are

regarded as different. Hence, we found that our approach may generate a redundant set

of test cases if applications have mesh-like page transitions that are interconnected.

To answer RQ2, our approach generated complete test cases in most situations. The

generated test cases covered most of the features of the application. However, our ap-

proach may generate incomplete or redundant test cases when multiple pages with differ-

ent features are treated as the same one, or when the application has interconnected page

transitions.

3.5.4 Empirical evaluation

We evaluated whether our approach is efficient for implementing test scripts using page

objects at a lower cost than existing approaches. For comparison, we chose to implement

54

Table 3.6: Summary of the test scenarios for empirical evaluation

System
of test

procedures

of involved

pages
Description

Scenario 1 A 3 4 Check data query feature

Scenario 2 A 2 14 Check data update feature

Scenario 3 A 2 14 Check data lifecycle

Scenario 4 B 2 6 Check standard operation procedures

Table 3.7: The time to implement test scripts (minute)

Our approach SeleniumIDE Manual

Rec1 PO2 TC3 Total Rec PO TC Total Rec PO TC Total

Scenario 1 1 7 1 9 1 16 1 18 0 21 1 22

Scenario 2 3 26 2 31 3 41 2 46 0 66 2 68

Scenario 3 3 60 2 65 3 55 2 60 0 94 2 96

Scenario 4 1 5 1 7 1 20 1 22 0 28 1 29

Total 8 98 6 112 8 132 6 146 0 209 6 215

1 Time to record manual tests
2 Time to create or modify page objects
3 Time to create or modify test cases

test scripts manually and with SeleniumIDE, which are commonly used in real-world

software development. The target systems are an internet banking system (System A)

and a campaign information management system (System B), which were developed in a

real project of a partner company. We prepared three test scenarios for System A and

one test scenario for System B. Table 3.6 shows a summary of each scenario. Each test

scenario has multiple predetermined test procedures.

We asked one developer from the partner company to carry out the tasks of imple-

menting test scripts to automate the predetermined test procedures. The developer was

familiar with our approach, SeleniumIDE, and how to implement test scripts with page

objects. They also had a detailed understanding of the target systems. The condition

for task completion was that the developer implemented test scripts and confirmed that

they could automate the predetermined test procedures. The test procedures were also

complied with when recording the tests with SeleniumIDE and our recording tool. The

test script implementation tasks were carried out in the following order:

55

(i) Manual implementation: The developer implemented test scripts with page objects

written in JavaScript.

(ii) SeleniumIDE: The developer recorded tests, exported them as test scripts written

in JavaScript, and then rewrote them into test scripts with page objects.

(iii) Our approach: The developer recorded tests, generated test scripts using our ap-

proach, and modified them to automate the predetermined test procedures.

The developer was not allowed to use test scripts implemented in the previous tasks in

the later tasks. Carrying out the previous tasks was likely to make the later tasks easier,

which may not result in a fair outcome. We will discuss this issue in Section 3.6.

Table 3.7 shows how many minutes it took to finish each task. The results show that the

proposed approach reduced the time for implementing the test scripts by 48% compared

to manual implementation and by 23% compared to using SeleniumIDE. Most of the task

time was spent on creating or modifying page objects. The time spent on recording the

operations and creating or modifying the test cases was relatively small. The reason why

it took less time to create or modify the test cases is that they can be written easily as

a combination of methods in page objects, and the number of test cases is small. When

using our approach, the largest amount of time (42.3%) was spent on modifying the source

code to fix the methods in the page objects. The time spent on correcting locator errors

(34.7%) followed this. Other modifications included adding commands to wait for web

pages to load and removing unnecessary test steps.

The reason why the page objects generated by our approach required modifications was

due to the complexity of System A. Depending on its internal state, the page transitions

may change even if the same operation is carried out. In addition, System A has web

pages that change drastically and dynamically using JavaScript. Our approach currently

cannot handle such internal states of applications and drastic screen changes. If page

objects are not correctly associated with each page, the generated page objects require

significant modifications. However, despite the need for modifications to the generated

test scripts, the results show that using our approach is more efficient than implementing

from scratch. Our approach could potentially solve such problems by making it possible

to define screens more flexibly, for example, by defining pages using strings rendered on

web pages. Alternatively, using more advanced screen recognition techniques proposed in

research such as [61,62] could potentially improve the performance of our approach.

The main reason why the developer needed to fix the locators was that the locators

generated by our approach did not uniquely identify the web elements in a web page

in some cases. Since our approach does not collect any information other than the web

elements operated during the manual testing, the generated locators may not be unique.

This problem can be solved by considering all web elements in a web page to generate

56

locators during manual testing. We believe that these improvements will further reduce

the time required to implement test scripts using our approach.

To answer RQ3, our approach has the potential to reduce the cost of test script im-

plementation in real-world software development. Additionally, improving the algorithm

of our approach could potentially reduce costs even further.

3.6 Threats to Validity

The external validity of our study refers to the generalizability of our findings. First, we

only used PetClinic as the target to evaluate the proposed technique. Different results

from those in this study may be obtained if we apply the proposed approach to other

applications. In this study, we chose PetClinic since it was used in an existing paper [51]

to compare our approach with APOGEN. Next, the results of our experiment depended

on the content of the testers’ manual testing approach. Our experiments showed that our

approach can generate a greater number of complete methods and test cases for a variety

of testing approaches. However, when other testers conduct manual tests, we may not

obtain similar results. In addition, the proposed technique may not work well if manual

testing is not performed sufficiently. If the proposed technique is applied to an application

more complex than PetClinic, testers may miss features to be tested. Even if the manual

testing is sufficient, the generated test scripts may not be able to be executed due to the

state-dependency problem when some operations in the manual testing depend on past

ones.

In the empirical evaluation, only one developer carried out the test script implementa-

tion tasks. We may obtain different results from this evaluation if we have more developers

carry out the same tasks. In addition, doing the previous tasks may make the later tasks

easier, so it is possible that the time to carry out tasks using our approach is shorter than

it should be. However, we believe that the effect of the previous tasks on the evaluation

is small because the tasks assigned to the developer are simple compared to usual test

script implementation. In usual test script implementation, developers often implement

test scripts through trial and error. In our experiment, on the other hand, the test proce-

dures were predetermined and the developer understood the details of the systems under

test. Moreover, the developer did not spend time on properly naming identifiers and refac-

toring, other than converting predetermined test cases into test scripts. This would have

made it clearer how to implement test scripts in many parts.

A threat to the internal validity of our study is that we defined the web pages and

features of PetClinic ourselves and classified the generated page objects and test cases.

The definition of the features was based on the test specifications written by testers A and

B, so we believe that the definition is objective to some extent. To address this threat,

57

We will make the output of our approach publicly available so that other researchers can

verify the results.

3.7 Conclusion

In this study, we proposed a novel approach to generate test scripts using the page-object

pattern from manual testing logs. Through experiments, we showed that our approach

is able to solve the problems with existing approaches and generate a greater number of

complete methods in page objects. Our approach also generates test cases that leverage

the generated page objects and cover most of the features of the application under test.

The generated test cases and page objects are reusable, and users can easily add new test

cases to them.

In addition, our empirical evaluation demonstrated the potential for reducing the cost

of test script implementation in real-world software development. Our results showed that

our approach can reduce the time required for implementing test scripts by up to 48%

compared to manual implementation and by up to 23% compared to using SeleniumIDE.

This indicates that our approach is effective at reducing the cost of implementing and

maintaining test scripts by generating useful test scripts through the conducting of only

manual testing, which is essential in software development.

For future work, we aim to generate more complete page objects and test cases by

converting operation sequences into methods more precisely using the testers’ knowledge

contained in the test logs effectively. We also plan to make our recording tool publicly

available so that everyone can record their testing activities. By making the test logs

publicly available, researchers will be able to mine the data and use it for a variety of

purposes beyond test automation.

58

Chapter 4

Web Element Identification using

NLP and Heuristic Search

59

4.1 Introduction

In recent years, the timely updating of software has become increasingly important in order

to respond to rapid changes in market conditions. Developers need to verify that their

software works properly before release. The cost of regression testing can be overwhelming

in software maintenance [36,37]. Test automation is therefore an important technique for

reducing this cost.

In web application development, developers commonly use tools that automate end-to-

end testing, and they need to implement and maintain test scripts. A test script enables

the automation of the operations and verifications performed on web pages that are being

tested. The implementation of test scripts is known to be costly, as shown in a study by

Dobslaw et al. [6]. The authors investigated the return on investment (ROI) of end-to-

end test automation frameworks and found that, compared to manual testing, the initial

implementation time accounted for nearly 90% of the total cost until reaching the ROI.

The study also claimed that the dominant cost is the initial time required to implement

test scripts. One of the reasons for the high cost of implementing test scripts is that most

end-to-end test automation tools rely on the metadata of web elements and the structure

of web pages.

For example, Selenium [2], a de facto standard end-to-end test automation tool, re-

quires locators to identify web elements. Some locators depend on metadata such as id or

name attributes described in HTML documents, while other locators use XPath. XPath is

a query language for selecting a web element from an XML/HTML document. Developers

often have to understand the detailed implementation of a web page in order to determine

the appropriate locators. In this way, the implementation of test scripts can be obstructed

by the reliance on metadata and the structure of each web page.

The dependence on metadata and the structure of web pages is also an obstacle to

maintaining test scripts. Test scripts that use locators are known to be fragile, as shown

by previous research [7, 8]. From these studies, it is clear that using locators can increase

the cost of maintaining test scripts and hinder efficient regression testing.

Another major challenge with end-to-end testing is the cost of creating and maintaining

test cases. Note that this study defines a test case as a specification of test procedures and

expected results, and a test script as an automated program to verify the specification.

Writing test cases is important because not all tests can be automated, and not everyone

involved in testing may understand test scripts written in a programming language. Test

cases also require maintenance, and if both test cases and test scripts exist, developers

need to keep them consistent. As a result, it can be costly to create and maintain test

cases, especially for fast-evolving applications.

One efficient way to address the challenges discussed above is to make test cases ex-

60

ecutable without the need for test scripts. This would relieve developers from the prob-

lems of implementing test scripts and maintaining consistency between test cases and test

scripts. Our goal is to make it possible to execute test cases written in natural languages

without the need for conventional test script implementation using locators. To achieve

this goal, it is first necessary to be able to identify web elements from test case descriptions

without relying on the implementation of the application. In this study, we propose a tech-

nique for identifying web elements to be operated on web pages by interpreting test cases.

The test cases we focus on are written in a domain-specific language (DSL) without relying

on metadata of web elements or the structural information of web pages. We use natural

language processing (NLP) techniques to understand the semantics of web elements and

test cases and create heuristic search algorithms to find promising test procedures from

the possible ones. To evaluate our proposed technique, we applied it to test cases for two

open-source web applications. The experimental results show that our technique was able

to successfully identify approximately 94% of the web elements to be operated in the test

cases. We also succeeded in identifying all the web elements that were operated in 68%

of the test cases. Our experimental source code, the test cases, and the outputted test

procedures are publicly available1.

The contributions of this study are as follows:

• We propose a novel technique for identifying web elements by interpreting test cases

that are written in a domain-specific language that is close to natural language.

• We propose an algorithm that combines natural language processing (NLP) and

heuristic search to find promising test procedures.

• Our experiments demonstrate the potential for semantic-based identification of web

elements and reuse of test cases across multiple contexts and applications.

4.2 Motivating Example

In this section, we provide some examples of the problems that can arise when imple-

menting test scripts using locators, as discussed in Section 4.1. Figure 4.1 shows the three

different description input fields of Joomla!2 and MantisBT3 and Python snippets with

Selenium to enter the value “test description”. Even though these fields serve similar

purposes, it is necessary to use different locators when scripting them because they are

implemented differently. These differences in test script implementation can make it diffi-

1https://github.com/knukio/saner2022-experiment
2https://www.joomla.org/
3https://www.mantisbt.org/

61

Create project page of MantisBT

Report issue page of MantisBT

Add menu page of Joomla!

driver.find_element_by_id(“jform_menudescription”)
.send_keys('test description')

driver.find_element_by_id(“description”)
.send_keys('test description')

driver.find_element_by_id(“project-description”)
.send_keys('test description')

<input type="text"
name="jform[description]"
id="jform_menudescription"
value="" size="30"
maxlength="255">

<textarea class="form-control"
tabindex="11" id="description"
name="description" cols="80"
rows="10"
required=""></textarea>

<textarea class="form-control"
id="project-description"
name="description" cols="70"
rows="5"></textarea>

Figure 4.1: Description input fields and Python snippets to enter the value “test descrip-

tion”

cult to reuse parts of test scripts across different contexts. If all these web elements could

be represented by the word “description”, it would enable the reuse of parts of test scripts.

Figure 4.2 shows a drop-down list in the log-in module page of Joomla! and a Python

snippet using Selenium to select the value “Icons”. Despite the drop-down list being

labeled as “Display Label”, the id and name attributes of the web element do not seem to

be related to it. This can make it difficult for developers to understand what the snippet

means when they read it. If a web element does not have an id or name attribute, the same

problem can arise because XPath or CSS selectors would have to be used as a locator. In

this case, we suggest using the string “display labels” to identify this drop-down list.

62

<select id="jform_params_usetext" name="jform[params][usetext]">
<option value="0" selected="selected">Icons</option>
<option value="1">Text</option>

</select>

Select(driver.find_element_by_id('jform_params_usetext'))
.select_by_visible_text('Icons')

Dropdown list in log-in module page

Figure 4.2: A drop-down list in the log-in module page of Joomla! and a Python snippet

to select the value “Icons”

4.3 Approach

The proposed technique interprets test cases written in a DSL that is close to natural

language and determines a promising test procedure. A test case written in the DSL is a

sequence of test steps. In this case, a test step is the smallest operational unit, as shown

in the following example:

enter "admin" in "username"

Our technique interprets this test step as an operation that identifies a web element

that might be represented by “username” and enters “admin” into it.

Figure 4.3 shows an overview of our approach. The proposed technique interprets a

test case and determines a test procedure by exploring the page transitions of the system

under test. Our approach vectorizes web elements and strings specifying the target of the

operation in order to understand their semantics. We also use a heuristic search algorithm

to consider multiple test procedures and find the most promising one.

Table 4.1 shows the specification of our DSL. Our DSL can currently handle only simple

operations such as clicking, inputting, and selecting. open command opens a specified URL

in a browser and is generally called at the beginning of the test case. click, enter, and select

commands operate a certain web element. These operations contain a target to specify the

web element to be operated. Let us call this string that specifies the web element target

string. The target string can be any user-specified string, regardless of the implementation

of a web page. enter and select commands also include a value to be entered into the

input field or selected from a drop-down list.

4.3.1 Vectorization

In order to determine the appropriate test procedure, we need to identify the web element

that corresponds to the target string specified in the test case. To do this, we measure the

similarity between the web elements and target strings.

63

Test case

System under test

𝑒1, 𝑒2, 𝑒3…
Web elements

Proposed technique Test procedure

Explore

enter "admin" in "username"

enter "admin" in "password"

click “log in"

click “new article“

click “save and close"

…

…

1. Vectorize web elements and strings specifying
the target of the operation in the test case

2. Determine procedures by using heuristic search

to determine a promising test procedure

“username”
“password”

𝑒1
𝑒2

[0.24, 0.38, … , 0.91]
[0.34, 0.98, … , 0.21]
[0.71, 0.24, … , 0.28]
[0.55, 0.30, … , 0.43]

=
=
=
=

…

enter "admin“ in

enter "admin“ in

click

click

click

Figure 4.3: An overview of our approach

One approach we use is to vectorize both web elements and target strings in order to

represent their semantics. Word embedding techniques, such as Word2Vec, fastText, and

GloVe, are often used to represent the semantics of a word or sentence as a vector.

However, web elements often contain information that is irrelevant to their semantics,

so we devise a specific approach to represent the semantics of web elements. First, we

separately extract the values of attributes and visible texts from a web element. Visible

texts include the inner text of the element, as well as any labels associated with the element

through the use of the for attribute. The for attribute specifies which web element a

label is bound to, allowing us to identify the label that represents the element.

We separate attributes and visible texts because we believe that visible texts more

directly represent the semantics of the web element, and are therefore more important

64

Table 4.1: The specification of our DSL

Operation Description

open url Open a specified url

click target Click a button, link, etc., specified with target

enter value in target Enter value in an input field specified with target

select value from target Select value from a drop-down list specified with target

--- (page separator) A separator between pages for the heuristic search algorithm

explained in Section 4.3.2

than attribute values. In this process, we ignore some attributes that are primarily used

for visual layouts, such as the class and style attributes.

The following describes the procedure for preprocessing the obtained values.

1. Split the values into words based on white space or symbols.

2. Convert the words into lowercase.

3. Remove stop words such as prepositions and articles.

Figure 4.4 shows an example of vectorizing a web element and a target string in Joomla!.

In this example, we have a web element, a button labeled “Save & Close”. The text “Save

& Close” that is rendered on the button is extracted as text words. Only the value of the

onclick attribute is extracted as attribute words.

The value of the onclick attribute is often important information because it is often

the name of a JavaScript function and represents the feature of the web element. The other

attributes (e.g., class, area-hidden) are ignored. Thus, we obtain the text words:

[save, close]

and the attribute words:

[joomla, submitbutton,user, save]

Next, we convert these words into vectors representing their semantics. Among the

available word-embedding algorithms, we selected fastText [63] because of its ability to

handle unknown words using subword embedding. The fastText model has one million

word vectors trained on Wikipedia 2017, UMBC WebBase corpus, and statmt.org news

dataset4. Since web elements often contain abbreviations and proper nouns, we believe

that a technique using subwords is suitable for this task.

4https://fasttext.cc/docs/en/english-vectors.html

65

<button onclick="Joomla.submitbutton('user.save');"
class="btn btn-small button-save">

Save & Close
</button>

[joomla,submitbutton,user,save][save, close]

Text words Attribute words

Web Element

Extract words

Vectorize with fastText

[0.93, 0.34, …][0.34, 0.13, …]

click “save and end”

Test step

[save, and, end]

Target words

[0.42, 0.18, …]

Target vector (𝒗𝐭𝐚𝐫𝐠𝐞𝐭)

Target string

Calculate similarity between target string and each web element

Text vector (𝒗𝐭𝐞𝐱𝐭) Attribute vector (𝒗𝐚𝐭𝐭𝐫)

Figure 4.4: An example of web element vectorization

The proposed technique vectorizes each word and takes their mean to obtain a text

vector from the text words and an attribute vector from the attribute words. The text

vector represents the semantics of the text words, and the attribute vector represents those

of the attribute words.

In addition, we introduce tf-idf to weight each word. Intuitively, if the same word

appears in a web element frequently, the word could be considered to uniquely represent

the web element. However, if the same word appears across multiple web elements, the

word would not be considered to represent the elements.

Therefore, although tf-idf is usually used to weight words among documents, we apply

tf-idf to weight words among elements in this study. The weighting scheme is as follows:

tfidf(w, e,E) = fw,e × log
N

nw

where w is a word, E is a set of web elements, e (∈ E) is a web element, fw,e is the

frequency of word w in web element e, N is the total number of web elements, and nw is

the number of web elements in which w appears.

Let M be the number of text words, and wi be the i-th unique word. Vector vi is the

resulting vector after applying fastText to wi. The text vector vtext of a web element e is

calculated by the weighted mean of vi with tf-idf as the weight:

vtext =

∑M
i=1(tfidf(wi, e, E)× vi)∑M

i=1 tfidf(wi, e, E)

The attribute vector vattr is also calculated in the same way.

66

The method for vectorizing target strings is almost the same as that for vectorizing

web elements. We extract target words from a target string and preprocess the target

words in the same way as for web elements. We vectorize each word by using fastText

and calculate the mean of vectors of the words without tf-idf. Thus, we obtain the target

vector vtarget from a target string.

Then, we can calculate the similarity between a target string and a web element by

using vtarget, vtext, and vattr. The similarity between a target string t and a web element

e is calculated as a weighted mean of the two cosine similarities:

similarity(t, e) =
α× sim(vtarget,vtext) + sim(vtarget,vattr)

α+ 1
(4.1)

where α (≥ 1) is a constant to add weight to the text words, and sim is the cosine similarity

of two vectors.

4.3.2 Heuristic search algorithm

A web element that is most similar to the target string is considered to be operated in

the test step. However, we do not determine a test procedure in order from the beginning

by using only word-vector-based similarities calculated in Eq. (4.1). This is because it

is uncertain whether the vector representation of the web element correctly represents its

semantics.

The uncertainty of using only the NLP-based approach leads to the following problems.

The first is that multiple target strings may be determined to be closest to the same web

element. For example, suppose that there is a password field and a confirm password

field on the web page. Two test steps have “password” and “confirm password” as target

strings, respectively, in a test case. Suppose also that both strings are determined to

be the most similar to the password input field. In this case, the two target strings are

considered to specify the same web element. However, in general, different target strings

should specify different web elements.

The second problem is that, if a web element identification fails at an early step of the

test case, the subsequent test procedure cannot be determined correctly. Our technique

requires a browser to render web pages in order to obtain web elements. However, because

web pages may include static or dynamic page transitions, our technique needs to execute

each test step each time to properly execute the expected page transitions. If a test step

executes an incorrect page transition, the subsequent test steps will not be able to reach

the expected web page and will therefore be ineffective.

To address this uncertainty associated with the word-vector-based similarity, we have

developed two heuristic search algorithms: page-level search and transition-level search.

We use page-level search to address the first problem and transition-level search to address

the second problem.

67

Page-level search

The page-level search algorithm helps to accurately determine a test procedure that is

relevant to a single web page. To clarify which test steps are relevant to a single web page,

we introduce the page separator "---" in our DSL. The page separator ensures that all

web elements that are operated in the test steps between two separators are rendered on

the web page when the page is loaded. This is useful because it allows us to confirm that

the web elements specified by the target strings exist on the same page.

The page-level search algorithm finds plausible permutations of web elements that

correspond to the target strings in test steps relevant to a web page. First, the algorithm

calculates the similarities between all possible pairs of a target string and a web element

on a particular web page. Next, it calculates scores for permutations of web elements that

correspond to the target strings. We call this score a page-wise score. More promising

permutations have a higher page-wise score.

When N test steps are executed on a web page, the page-wise score sp is calculated as

the mean of the sum of similarities between a target string and a web element:

sp =
1

N

N∑
i=1

similarity(ti, ei)

where ti is the i-th target string, and ei is a web element corresponding to ti. Page-wise

scores are calculated for all possible permutations. We note that the possible permutations

are determined by the type of element (input field, button, or drop-down list) and the type

of operation (enter, click, or select). For example, if an operation is enter, the candidate

web elements that can be operated in the test step are limited to input fields. When a

permutation is selected, the operation procedure for the web page is determined. We call

this a page-wise procedure.

Figure 4.5 shows an example of page-level search. In this example, the web page has a

password field e1 and a confirm password field e2. Two test steps are given for operating

on the input fields. The similarities between the target strings and the web elements

can be calculated using the algorithm described in Section 4.3.1. There are two possible

permutations in this example: “password” refers to e1 and “confirm password” refers to

e2, or vice versa. In this example, the page-wise score of the former is 0.8, and that of the

latter is 0.7, so the former is more plausible. When the former is selected, the page-wise

procedure executes the operations in the order of e1 and e2.

Without page-level search, both of the target strings would be considered to represent

e1. The page-level search algorithm helps to correctly determine the test procedure that

is relevant to a web page.

68

enter “root” in “password”

enter “root” in “confirm password”

Test steps for this page

similarity(“password”, 𝑒1) = 0.9

similarity(“password”, 𝑒2) = 0.6

similarity(“confirm password”, 𝑒1) = 0.8

similarity(“confirm password”, 𝑒2) = 0.7

Page-wise procedure and page-wise score

Similarity

Elements on a web page

𝑒1

𝑒2

enter “root” in “password”

enter “root” in “confirm password”

𝑒1
𝑒2

Score:
0.9+0.7

2
= 0.8

enter “root” in “password”

enter “root” in “confirm password”

𝑒2
𝑒1

Score:
0.6+0.8

2
= 0.7

Figure 4.5: An example of page-level search

Transition-level search

We obtained multiple page-wise procedures with page-wise scores by applying the page-

level search algorithm. However, it is not enough to only perform the page-level search

because the page-wise procedure with the highest page-wise score is not always correct.

The transition-level search algorithm explores multiple possible sequences of page-wise

procedures. It helps to determine a promising test procedure throughout the entire test

case.

Figure 4.6 shows an example of transition-level search. In this example, we assume

that a test case has five test steps, excluding the page separator. The first three test steps

are executed on page X, and then the last two are executed on one of the pages following

page X. In this case, there are two page-wise procedures, ppx1 and ppx2, on page X, and

they are the most promising procedures on page X. ppx1 makes a page transition from X

69

enter “root” in “password”

enter “root” in “confirm password”

click “login”

enter “test user” in “name”

click “search”

Page-wise procedure:

𝑝𝑝𝑥2: score 0.7

Page X

Page Y

Page Z

𝑝𝑝𝑥1: score 0.9

Page-wise procedure:

𝑝𝑝𝑦2: score 0.1

𝑝𝑝𝑦1: score 0.3

Page-wise procedure:

𝑝𝑝𝑧2: score 0.5

𝑝𝑝𝑧1: score 0.7

Test steps in a web page Test steps in the next page

Transition-wise score:

[𝑝𝑝𝑥1, 𝑝𝑝𝑦1]: 0.9+0.3 = 1.2

[𝑝𝑝𝑥1, 𝑝𝑝𝑦1]: 0.9+0.1 = 1.0

[𝑝𝑝𝑥2, 𝑝𝑝𝑧1]: 0.7+0.7 = 1.4

[𝑝𝑝𝑥2, 𝑝𝑝𝑥2]: 0.7+0.5 = 1.2

Transition

enter “root” in “password”

enter “root” in “confirm password”

click “login”

enter “test user” in “name”

click “search”

Test case

Figure 4.6: An example of transition-level search

to Y , and ppx2 makes a page transition from X to Z.

We also assume that the two most promising page-wise procedures are obtained on

page Y or Z after ppx1 or ppx2 is executed. It should be noted that ppx1 is likely to be

incorrect even though it has the highest page-wise score on page X. This is because both

ppy1 and ppy2 have low page-wise scores, which means that page Y is not likely to have

the web elements specified by the target strings “name” and “search”.

On the other hand, page Z seems to have the web elements specified by the target

strings because of its high page-wise score. Therefore, even though it does not have the

highest page-wise score on page X, it is more promising to execute ppx2 on page X than

ppx1.

70

T
a
b
le

4.
2
:
A

su
m
m
ar
y
of

th
e
ta
rg
et

ap
p
li
ca
ti
on

s
an

d
te
st

ca
se
s

A
p
p
li
ca
ti
on

V
er
si
on

D
es
cr
ip
ti
o
n

F
ea
tu
re

ca
te
go

ry
#

o
f
te
st

ca
se
s

#
o
f
to
ta
l
te
st

st
ep
s

J
o
o
m
la
!

3.
9

C
o
n
te
n
t
m
a
n
ag

em
en
t
sy
st
em

A
rt
ic
le

m
an

ag
em

en
t

1
0

9
0

U
se
r
m
an

ag
m
em

en
t

4
4
4

M
en
u
m
an

ag
em

en
t

7
6
4

M
a
n
ti
sB

T
2.
2
4.
1

B
u
g
tr
ac
ke
r

Is
su
e
m
an

ag
em

en
t

8
8
0

U
se
r
m
an

ag
em

en
t

6
5
4

O
th
er
s

12
1
2
1

T
o
ta
l

4
7

4
5
3

71

Table 4.3: How test steps are converted into Python code

Operation Python code

open url driver.get(url)

enter value in target driver.find element by type(locator).send keys(value)

select value from target
Select(driver.find element by type(locator)

.select by visible text(value)

--- (page separator) (This is not reflected in test scripts.)

We determine the most promising procedure throughout the test case by consider-

ing the transition-wise scores. The transition-wise score is calculated as the sum of the

page-wise scores up to the current web page. Because there are many possible page-wise

procedures and page transitions, it would take too much time to explore all the possible

sequences within the page-wise procedures. Therefore, we use the beam search algorithm,

which explores a graph by expanding the most promising node in a limited set.

The beam search has two parameters: a search width and a beam width. When the

search width is Ws, the beam search considers the top Ws page-wise procedures at each

step. Therefore, if the beam search considers N states at the current step, the number of

states at the next step will be Ws × N . When the beam width is Wb, the beam search

prunes the states, leaving the Wb states with the highest transition-wise scores.

Let M be the number of page-wise procedures executed up until the current state.

The transition-wise score st is:

st =
M∑
i=1

spi

where spi is the page-wise score of the i-th page-wise procedure. It is important to note

that the transition-level search is performed while dynamically exploring the application

that is being tested. Because the state changes of the application during the exploration

can affect the result of the transition-level search algorithm, it is desirable to initialize the

state of the application each time a new page transition is attempted.

To summarize this section, the transition-level search algorithm determines the pro-

cedure with the highest transition-wise score throughout the test case. The sequence of

page-wise procedures with the highest transition-wise score is considered to be the most

promising for the test case.

4.4 Evaluation

We applied the proposed technique to test cases written in our DSL to evaluate the

accuracy of our technique. The target applications in our experiment were Joomla! and

72

MantisBT, which are non-trivial and popular open-source web applications. We chose

these applications because they have rich features, dynamic user interfaces, and are widely

used in practice.

We first prepared test cases manually for the two applications as inputs for our tech-

nique. To investigate the effectiveness of our technique, we addressed the following research

questions:

RQ1. How accurately can our approach identify web elements and determine test proce-

dures?

RQ2. Did the vectorization and the heuristic search contribute to determining test pro-

cedures?

RQ3. Can we apply our approach to testing in actual development?

73

T
ab

le
4.
4:

T
h
e
n
u
m
b
er

of
su
cc
es
sf
u
l
id
en
ti
fi
ca
ti
o
n
s

S
ea
rc
h
/B

ea
m

w
id
th

W
s
=

W
b
=

5
W

s
=

W
b
=

3
W

s
=

W
b
=

1
W

s
=

W
b
=

5

D
is
ti
n
gu

is
h
te
x
t/
at
tr
ib
u
te

Y
es

Y
es

Y
es

N
o

T
es
t
st
ep

T
es
t
ca
se

T
es
t
st
ep

T
es
t
ca
se

T
es
t
st
ep

T
es
t
ca
se

T
es
t
st
ep

T
es
t
ca
se

J
o
om

la
!

17
9
(9
0.
4%

)
13

(6
1
.9
%
)

1
7
9
(9
0
.4
%
)

1
3
(6
1
.9
%
)

1
6
3
(8
2
.3
%
)

9
(4
2
.9
%
)

1
6
2
(8
1
.8
%
)

9
(4
2
.9
%
)

M
an

ti
sB

T
24
7
(9
6.
9%

)
19

(7
3
.1
%
)

2
4
5
(9
6
.1
%
)

1
8
(6
9
.2
%
)

2
3
1
(9
0
.6
%
)

1
5
(5
7
.7
%
)

2
4
0
(9
4
.1
%
)

1
8
(6
9
.2
%
)

T
ot
al

42
6
(9
4.
0%

)
32

(6
8
.1
%
)

4
2
4
(9
3
.6
%
)

3
1
(6
6
.0
%
)

3
9
4
(8
6
.0
%
)

2
4
(5
1
.1
%
)

4
0
2
(8
8
.7
%
)

2
7
(5
7
.5
%
)

74

4.4.1 Experimental setup

There are a large number of features in Joomla! and MantisBT, so we did not prepare

test cases that cover all of them. We therefore chose the key use cases of the applications

by referring to their user manuals and then wrote test cases to cover them. As a result,

we chose 21 use cases of Joomla! and 26 use cases of MantisBT.

The use cases of Joomla! belong to the following three categories, as described in the

user manual for administrators [64]: article management, user management, and menu

management. Because the user manual of MantisBT does not have an organized catego-

rization like Joomla!, we assumed that there are three main features in MantisBT: issue

management, user management, and others (management of projects, tags, custom fields,

and global profiles). We then chose the use cases to cover these features. We note that we

excluded some use cases that require operations that our technique does not support.

Table 4.2 shows a summary of the applications and the test cases used in our experi-

ment. We wrote 47 test cases to verify the chosen use cases. However, the way of writing

test cases can vary depending on the person. In particular, the accuracy of our technique

depends heavily on the target strings used. Therefore, we set the following rules for writing

test cases:

1. If the manual describes a specific procedure for the use case, we follow the manual

as closely as possible. If a use case has multiple ways it can be achieved, we choose

one of them randomly.

2. It is not necessary to fill in all input fields in the test cases. In addition to the

required input fields, we fill in one or more optional input fields. When we operate

on the same web pages in multiple test cases, we try to fill in different optional input

fields from the input fields operated in the other test cases.

3. We limit the text used as target strings to one or a combination of the following:

• The text of nearby labels that are obviously related to the target element (e.g.,

a label right next to an input field)

• The text displayed in tooltips of the target element

• For buttons, the text displayed on the button

• For input fields, the default text specified by placeholder attributes

• For checkboxes and radio buttons, the text “checkbox” and “radio button”

The idea behind these rules is to reduce bias when creating test cases.

We applied the proposed technique with three different sets of parameters. In this

experiment, we set the same values for the search widths Ws and beam widths Wb and

75

tried three different values: Ws = Wb = 1, 3, or 5. Ws = Wb = 1 means that the

transition-level search was not performed, and the page-wise procedure with the highest

page-wise score was adopted on each web page.

In this study, we attempted to treat text vectors and attribute vectors separately for

better web-element embeddings. To confirm whether this approach worked well, we also

examined the case where elements are represented by a single vector without distinguishing

between text vectors and attribute vectors at the vectorization step. This means that all

words in a web element are treated equally. In this case, we set Ws and Wb to 5, whether

the vectors are distinguished or not. When distinguishing between the vectors, we set

α = 3 as the weight of the text vector in Eq. (4.1).

To confirm the accuracy of the test procedure determined by the proposed technique,

we output the test procedure as a test script written in Python. We can determine the

locators for the test script according to the sequence of the page-wise procedures. This is

because, if a web element operated at a certain test step is determined, we can obtain a

locator from the implementation of the web element.

Table 4.3 shows how each test step is converted into Python code. As shown in the

table, a single test step is converted into a single line of Python code. The type in the

Python code is id, name, or xpath, depending on the locator type, and locator is a locator

string obtained from the web element. open operations are directly converted into Python

code because these operations do not include a target string.

We do not ensure that the generated test scripts are always executable. This is because

we do not consider an appropriate waiting time for rendering pages and the states of the

system under test. We are focusing on whether the proposed technique can accurately

identify web elements and determine a test procedure in this evaluation.

4.4.2 Results

We manually checked the test scripts to determine the accuracy of the proposed technique

in identifying web elements. Table 4.4 shows the number of successful identifications.

The test step in the table refers to the number of test steps that correctly identified web

elements. Some test steps were duplicated because the test cases often included the same

test steps. For example, the log-in steps were included at the beginning of all of the test

cases. However, we counted the duplicate steps as being distinct, even if the test steps

looked the same. This is because the XPaths of web elements may change depending on

the state of the web pages, even if the web elements themselves may look the same.

Furthermore, because of the uncertainty of our approach, the same test steps may be

interpreted as different test procedures depending on the context. The test case in the

table refers to the number of test cases in which all test steps in the test case identified

web elements correctly. In other words, even if one of the test steps failed to identify the

76

Table 4.5: Average machine time (in seconds) required per test case.

Ws = Wb = 5 Ws = Wb = 3 Ws = Wb = 1

Joomla! 107 66 25

MantisBT 94 56 21

Average 101 61 23

correct web element, it was counted as a failure.

RQ1: How accurately can our approach identify web elements and deter-

mine test procedures?

First, we explain the results when text vectors and attribute vectors were distinguished.

Table 4.4 shows that when Ws = Wb = 5, approximately 94% of test steps were successful

in identifying web elements. Our approach also succeeded in identifying all web elements

in 68% of the test cases. No improvements in accuracy were observed for more search

width or beam widths. To answer RQ1, therefore, our technique can correctly identify

web elements in up to approximately 94% of the test steps and identify all web elements

in 68% of the test cases.

RQ2: Did the vectorization and the heuristic search contribute to deter-

mining test procedures?

When Ws = Wb = 3, the accuracy was slightly lower than in the case where Ws = Wb = 5.

We can see that when Ws = Wb = 1 (without transition-level search), the accuracy was

much lower compared to the other cases. This result indicates that the correct page-wise

procedure is suggested in the top three by the page-level search in most cases. Therefore,

we can say that page-level search worked well in our approach. Comparing the cases

Ws = Wb = 1 and 3, we can see that the transition-level search significantly contributes

to the accuracy of our technique. Thus, the heuristic search algorithms compensate for

the uncertainty of the NLP-based approach.

Next, we explain the results when text vectors and attribute vectors were not dis-

tinguished. Furthermore, by comparing the case in which the text vector and attribute

vector are distinguished and the case where they are not, we can see that distinguishing

the vectors is effective for our approach. The result also suggests that text words represent

the semantics of elements more directly than attribute words. Therefore, the approach

weighting text vectors contributes to the accuracy of the proposed technique. To answer

RQ2, the vectorization approach and the heuristic search algorithms both contribute to

determining correct test procedures.

77

RQ3: Can we apply our approach to testing in actual development?

Table 4.5 shows the average execution time (in seconds) of our technique per test case. We

can see that the time is approximately proportional to the search width and beam width.

The loading time of the fastText model, approximately 200 seconds, is not included here.

We consider this time to be negligible when the number of test cases to be processed at

a time is large because our technique can process multiple test cases simultaneously after

the model is loaded. Most of the execution time of our technique is due to the dynamic

exploration of the application by the transition-level search. However, we can make the

exploration executed in parallel, in which case the execution time is not proportional to

the number of test cases. Therefore, we assume that the time required to handle a large

number of test cases is reasonable.

We obtained some results that illustrate the strengths of the NLP-based approach in

real-world development. First, our technique was able to identify different web elements

by the same test step depending on the context. In our experiments, the test step “enter

"test description" in "description"” was able to correctly identify all three web

elements in the situation shown in Figure 4.1. This shows the possibility of reusing the

same test steps in different test cases and applications.

Our technique was also able to identify web elements that did not seem to be directly

related to the target strings. The web element in Figure 4.2 did not include the words

display and labels in the HTML document of the web element. However, our technique

was able to correctly identify this web element with the test step “select "Icon" from

"display labels"”, even though this web page contained 48 drop-down lists as candi-

dates for the operation. This result indicates that the NLP-based approach is effective in

capturing the abstract semantics of web elements.

Figure 4.7 shows the relationship between the number of test steps in each test case and

the number of executable test scripts generated from the rule described in Table 4.3. The

result is for the case when Ws = Wb = 5. There were between six and thirteen test steps in

all of the test cases. In the figure, All represents the total number of test cases. Plausible

represents the number of test cases in which all web elements were correctly identified.

Executable represents the number of generated test scripts that were executable from

start to finish. This result shows that 56% of the plausible test cases were converted to

executable test scripts.

The main reason for unexecutable test scripts is that some web elements, especially

in Joomla!, could not be operated by Selenium despite the locator being correct. These

failures depend on the implementation of the web page, not on locator errors. To operate

these web elements in the test executions, it may be necessary to include a command

to wait for a page load or to execute JavaScript directly through Selenium. Since it is

uncertain whether our technique can execute the correct test procedure, we need to find a

78

0

2

4

6

8

10

12

14

6 7 8 9 10 11 12 13

#
 o

f
te

s
t
c
a

s
e

s

of test steps

Executable

Plausible

All

Figure 4.7: The relationship between the number of test steps and that of plausible or

executable test scripts

way to deal with this uncertainty, such as combining our approach with existing locator-

based techniques. In addition, our current DSL does not consider assertions, which are

essential for automated testing.

To answer RQ3, we believe that the execution time is not a practical issue. By ana-

lyzing individual cases, we demonstrated the potential of reusing the same test step for

various test cases and applications. Additionally, users without programming knowledge

may be able to write test cases since our technique does not require knowledge of the

detailed implementation of the system under test. However, it is necessary to improve the

expressiveness of test cases in order to use them for real-world development.

4.5 Discussion

4.5.1 What are the cases where our approach does not work?

In this study, we did not find a relationship between the number of test steps and the

success rate of determining correct test procedures. Intuitively, as the number of test

steps increases, the probability of correct test procedures would be expected to decrease,

but this was not the case in this experiment. This is likely because whether the web

element is difficult to identify is a more significant factor than the number of steps. We,

therefore, need to focus on individual failures for more detailed analyses. For example, if

identifying web elements fails at an early step of the test case and an unexpected page

transition is executed, the identification of subsequent web elements will also fail. However,

the result in Table 4.4 shows that the accuracy of web element identifications is high, and

79

the accuracy of identifying all web elements in a test case is low. This indicates that web

element identifications often fail in the latter part of each test case. In this experiment,

we found that web element identifications often failed, especially on the last web pages

checked in the test case. This is because our technique does not benefit from the transition-

level search on the last page. On the last page, the transition-level search cannot use the

information of the next pages to choose the page-wise procedures. Therefore, our approach

is prone to failing identifications of web elements at the end of the test case. This is a

weakness of our heuristic search algorithms.

We found two patterns of web pages where the NLP-based approach did not work

well. The first was when there were multiple elements with the exact same label on the

page. In particular, in our experiments, if the web elements have the same label, our

technique cannot distinguish them by the rules for describing test cases. For example,

the user management page of Joomla! has two “Users” links on a web page. Within the

test case description rules, there is no way to write other than “click "Users"” when we

want to click on these elements. If there are meaningful words in the attribute text of the

web elements, our technique may be able to distinguish them by adding the words to the

target string. Alternatively, by extending our approach to allow for positional information

to be added to target strings, our technique may be able to handle the problem of the

same label.

The second pattern where the proposed technique does not work well is in the pres-

ence of an excessive number of elements on a web page. Our technique selects a web

element to be operated from the web elements rendered on the browser. A large number

of elements increases the likelihood of failing to identify a web element because there are

more candidates for the operation. Note that there may be many invisible elements in the

HTML document despite only some of the web elements being visible on the screen. For

example, some pages in Joomla! have such invisible elements. The web page to add menu

items in Joomla! has five tab menus, but their contents are embedded in a single HTML

document when the page is loaded. In addition, when the “Select” button is clicked on

the page, a pop-up menu appears, which is also embedded in the HTML document. This

means that the actual number of web elements on the page is much larger than the num-

ber of visible elements. One solution for this problem is to incorporate heuristics into our

technique, e.g., elements operated consecutively tend to be close to each other in terms of

their position on the screen.

4.5.2 Limitations

Our approach has limitations in the target applications and possible operations. Since

the proposed technique uses Selenium internally, it can only operate web elements that

Selenium can identify. For example, contents created using the canvas feature or Flash

80

cannot be operated. Currently, our DSL also cannot handle operations other than click,

enter, and select (e.g., drag and mouse hover). These operations can be addressed by

extending the proposed technique.

Furthermore, it is difficult to apply our approach to applications with ambiguous page

transitions such as single-page applications. Our approach assumes that page separators

are included in the test case properly. Therefore, users need to know when web elements

will appear on the web page in order to write appropriate test cases for such applications.

Eliminating the page separator from the DSL and not performing the page-level search

can solve this difficulty, but it will reduce the accuracy of our technique.

4.5.3 Threats to validity

The following presents two factors that undermine the external validity of our study. The

first is the scale of the experiment. We only experimented with two applications, Joomla!

and MantisBT, and the number of test cases is limited. Experiments on applications in

other domains may yield different results from our experiment. More accurate results

could be obtained by applying the proposed technique to a larger number of test cases.

We tried to make the results more reliable by referring to the official manuals and selecting

use cases from multiple functional categories to create test cases.

The second is the way of writing the test case. The accuracy of the NLP-based approach

depends heavily on the way target strings are written. In this study, we attempted to set

rules for writing test cases. These rules are based on the assumption that test cases are

written while observing the web page of the application under test. We wrote the test

cases ourselves, so some bias was inevitable, but we tried to reduce it by following the

rules. In addition, the created test cases are publicly available, so it is possible to verify

the validity of these test cases.

4.6 Conclusion and Future Work

In this study, we proposed an approach to identify web elements from test cases written in

a form similar to natural language and determine a test procedure. Our approach uses an

algorithm that combines NLP and heuristic search to obtain promising test procedures. To

evaluate the proposed technique, we took test cases written in our DSL as input and applied

our technique to two open-source web applications. The experimental results showed

that our NLP-based approach and heuristic search contribute to determining correct test

procedures.

As future work, we aim to increase the expressiveness of test case descriptions for

practical use. Additionally, we want to evaluate our approach on a larger number of

applications and test cases in order to demonstrate its effectiveness more generally.

81

Chapter 5

Conclusion

5.1 Summary

In this dissertation, we conducted three studies to improve the efficiency of implementing

and maintaining end-to-end test scripts for Web applications.

The first study proposes COLOR, an approach for repairing broken locators in response

to software updates. It uses clues from web pages to evaluate their reliability, and our

experimental results show that it has high accuracy and is robust against page layout

changes. This study contributes to reducing the cost of test script maintenance.

The second study proposes an approach for generating modularized test scripts to

improve their maintainability. It extracts useful operations from test logs and generates

test cases that cover the features of an application by analyzing page transitions. The

approach was evaluated using test logs from four testers, showing that it can generate

more complete methods than an existing approach. Our empirical evaluation also showed

that it can reduce the time required to implement test scripts by 48% compared to manual

implementation. This study contributes to reducing implementation and maintenance

efforts.

The third study proposes a technique for identifying web elements to be operated on

a web page by interpreting natural-language-like test cases. The test cases are written in

a domain-specific language that is independent of the metadata of web elements and the

structural information of web pages. Natural language processing techniques are used to

understand the semantics of web elements, and heuristic search algorithms are used to

explore web pages and find promising test procedures. The technique was applied to test

cases for two open-source web applications, with the results showing that it was able to

successfully identify 94% of web elements to be operated and all the web elements in 68%

of the test cases. This study contributes to the easy implementation and maintenance of

test scripts for various users.

82

5.2 Future Work

These studies have provided valuable results and knowledge that will serve as the founda-

tion for future work and help identify potential issues and areas for improvement.

The technique proposed in Chapter 4 involved converting natural language-like test

cases into locator-based test scripts. Ideally, however, the process should be carried out

entirely in natural language, without the need for test scripts. In order to achieve script-

free testing, the following two techniques must be developed.

The first technique necessary for end-to-end testing using natural language is the abil-

ity to interpret natural language and execute it directly as a test, without the need to

convert it into a test script. While it is currently difficult to achieve end-to-end testing

using natural language due to the limitations of natural language processing and machine

learning technologies, we believe it is feasible if test cases can be interpreted based on an

understanding of the structure of the web page and the domain of the web application.

The second technique is the ability to record operations and output them as test cases

written in natural languages, similar to conventional record & replay techniques. Even if

it is possible to interpret natural language and execute tests, writing test cases can still

be labor-intensive. However, this problem can be solved if test cases can be automatically

generated by interpreting the content of the operations.

83

Acknowledgements

First and foremost, I have to thank my research supervisor, Professor Shinji Kusumoto,

for his assistance and dedicated involvement in every step of my research activity. I am

grateful to him for attending our research discussions and providing valuable insights.

I would also like to express my sincere gratitude to Professor Yoshiki Higo for his

guidance in my research while I was in graduate school and for his willingness to accept

me into the doctoral program. Even though I was conducting my research remotely, he

always took care of me and was always there to support me.

I would also like to express my sincere gratitude to Assistant Professor Shinsuke Mat-

sumoto for his precise advice on my research and papers. He provided insightful comments

during our discussions, and his detailed feedback on the content of my papers was invalu-

able.

I would like to thank Professor Kozo Okano at Shinshu University, Professor Hiroshi

Igaki at Osaka Institute of Technology, and Keisuke Hotta at Fujitsu Ltd. for their helpful

advice while I was a graduate student at Osaka University.

I would also like to thank the office workers in our laboratory, Tomoko Kamiya, Kaori

Fujino, and Misako Hashimoto for their encouragement and support in various situations.

I would like to express my sincere gratitude to Yui Sasaki from The Japan Research

Institute, Ltd., who was also a working professional pursuing a doctoral degree like myself.

She provided valuable guidance on a variety of topics, including research scheduling and

paper writing.

I would like to express my deepest gratitude to Hoshino Takashi, Katsuyuki Natsukawa,

Kazuo Morimura, Tatsuya Muramoto, Haruto Tanno, and my colleagues at NTT Software

Innovation Center for encouraging and supporting me to enter the doctoral program.

Finally, I would like to thank my family and all of the staff in the Department of

Computer Science at Osaka University for their constant support and encouragement.

84

References

[1] Emelie Engström and Per Runeson. A qualitative survey of regression testing prac-

tices. In Proceedings of the 11th International Conference on Product-Focused Soft-

ware Process Improvement, PROFES’10, pages 3–16. Springer-Verlag, 2010.

[2] Selenium. http://www.seleniumhq.org/.

[3] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable

web testing: An empirical assessment during test case evolution. In 20th Working

Conference on Reverse Engineering, pages 272–281, October 2013.

[4] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable web

testing: An empirical assessment during test case evolution. In 2013 20th Working

Conference on Reverse Engineering, pages 272–281, 2013.

[5] T. Yeh, T. Chang, and R. C. Miller. Sikuli: Using GUI screenshots for search and

automation. In Proceedings of the 22Nd Annual ACM Symposium on User Interface

Software and Technology, pages 183–192. ACM, 2009.

[6] F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. de Oliveira Neto, and R. Torkar.

Estimating return on investment for gui test automation frameworks. In IEEE 30th

International Symposium on Software Reliability Engineering, pages 271–282, 2019.

[7] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence and mainte-

nance of automated functional tests for web applications. In 2014 IEEE International

Conference on Software Maintenance and Evolution, pages 141–150, 2014.

[8] M. Hammoudi, G. Rothermel, and P. Tonella. Why do record/replay tests of web

applications break? In 2016 IEEE International Conference on Software Testing,

Verification and Validation, pages 180–190, 2016.

[9] M. Iyama, H. Kirinuki, H. Tanno, and T. Kurabayashi. Automatically Generating

Test Scripts for GUI Testing. In IEEE International Conference on Software Testing,

Verification and Validation Workshops, pages 146–150, April 2018.

85

[10] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-

mated test generation for web applications. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, pages 67–78, Septem-

ber 2014.

[11] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller. WebMate: Web Appli-

cation Test Generation in the Real World. In IEEE Seventh International Conference

on Software Testing, Verification and Validation Workshops, pages 413–418, March

2014.

[12] A Memon. Gui ripping: Reverse engineering of graphical user interfaces for testing.

In In Proceedings of The 10th Working Conference on Reverse Engineering, pages

260–269, 2003.

[13] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon. Us-

ing GUI ripping for automated testing of Android applications. In 2012 Proceedings of

the 27th IEEE/ACM International Conference on Automated Software Engineering,

pages 258–261, September 2012.

[14] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra. Guided

test generation for web applications. In 35th International Conference on Software

Engineering, pages 162–171, 2013.

[15] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. Diversity-based web test generation.

In Proceedings of the 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, pages 142–

153, 2019.

[16] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-

mated test generation for web applications. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, pages 67–78, 2014.

[17] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Au-

tomatic Web Testing Using Curiosity-Driven Reinforcement Learning, page 423435.

2021.

[18] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test cases aging by

means of robust xpath locators. In 2014 IEEE International Symposium on Software

Reliability Engineering Workshops, pages 449–454, 2014.

[19] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+: An algorithm for

generating robust XPath locators for web testing. Journal of Software: Evolution

and Process, 28(3):177–204, 2016.

86

[20] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust test automa-

tion using contextual clues. In Proceedings of the 2014 International Symposium on

Software Testing and Analysis, pages 304–314. ACM, 2014.

[21] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Pesto: A tool for migrating dom-

based to visual web tests. In 2014 IEEE 14th International Working Conference on

Source Code Analysis and Manipulation, pages 65–70, 2014.

[22] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to increase the

robustness of web test cases. In 2015 IEEE 8th International Conference on Software

Testing, Verification and Validation, pages 1–10, 2015.

[23] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application test

repair. In Proceedings of the First International Workshop on End-to-End Test Script

Engineering, pages 24–29. ACM, 2011.

[24] M. Hammoudi, G. Rothermel, and A. Stocco. Waterfall: An incremental approach

for repairing record-replay tests of web applications. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 751–762. ACM, 2016.

[25] M. Monperrus. Automatic software repair: A bibliography. ACM Computing Surveys,

51(1):17:1–17:24, 2018.

[26] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for

automatic software repair. IEEE Transactions on Software Engineering, 38(1):54–72,

2012.

[27] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair

via semantic analysis. In 2013 35th International Conference on Software Engineering,

pages 772–781, 2013.

[28] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch

synthesis via symbolic analysis. In Proceedings of the 38th International Conference

on Software Engineering, pages 691–701. ACM, 2016.

[29] F. Long and M. Rinard. Staged program repair with condition synthesis. In Proceed-

ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages

166–178. ACM, 2015.

[30] R. Yandrapally, G. Sridhara, and S. Sinha. Automated Modularization of GUI Test

Cases. In Proceedings of the 37th International Conference on Software Engineering,

pages 44–54, 2015.

87

[31] Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra. Au-

tomating test automation. In Proceedings of the 34th International Conference on

Software Engineering, pages 881–891. IEEE Press, 2012.

[32] Anurag Dwarakanath, Dipin Era, Aditya Priyadarshi, Neville Dubash, and San-

jay Podder. Accelerating test automation through a domain specific language. In

2017 IEEE International Conference on Software Testing, Verification and Valida-

tion (ICST), pages 460–467, 2017.

[33] J. Lin, F. Wang, and P. Chu. Using semantic similarity in crawling-based web appli-

cation testing. In IEEE International Conference on Software Testing, Verification

and Validation, pages 138–148, 2017.

[34] P. Pasupat, T. Jiang, E. Liu, K. Guu, and P. Liang. Mapping natural language

commands to web elements. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 4970–4976, 2018.

[35] Mohammad Bajammal and Ali Mesbah. Semantic Web Accessibility Testing via

Hierarchical Visual Analysis. In Proceedings of the 43rd International Conference on

Software Engineering, pages 1610–1621, 2021.

[36] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.

ACM Transactions on Software Engineering and Methodology, 6(2):173–210, 1997.

[37] H. K. N. Leung and L. White. Insights into regression testing (software testing). In

Proceedings. Conference on Software Maintenance, pages 60–69, 1989.

[38] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li. Atom: Automatic

maintenance of GUI test scripts for evolving mobile applications. In 2017 IEEE

International Conference on Software Testing, Verification and Validation, pages 161–

171, 2017.

[39] S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI test suites using a genetic

algorithm. In Proceedings of the 2010 Third International Conference on Software

Testing, Verification and Validation, pages 245–254. IEEE Computer Society, 2010.

[40] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed test scripts.

In 2009 IEEE 31st International Conference on Software Engineering, pages 408–418,

2009.

[41] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why creating web page objects

manually if it can be done automatically? In Proceedings of the 10th International

Workshop on Automation of Software Test, pages 70–74. IEEE Press, 2015.

88

[42] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Apogen: automatic page object

generator for web testing. Software Quality Journal, 25(3):1007–1039, 2017.

[43] R. Yandrapally, G. Sridhara, and S. Sinha. Automated modularization of GUI test

cases. In Proceedings of the 37th International Conference on Software Engineering,

pages 44–54. IEEE Press, 2015.

[44] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-Based Web Locators:

An Empirical Study, pages 322–340. Springer International Publishing, 2014.

[45] B. Yang, H. Hu, and L. Jia. A Study of Uncertainty in Software Cost and Its Impact

on Optimal Software Release Time. IEEE Transactions on Software Engineering,

34(6):813–825, November 2008.

[46] A. Bertolino. Software Testing Research: Achievements, Challenges, Dreams. In

Future of Software Engineering, pages 85–103, May 2007.

[47] A. Orso and G. Rothermel. Software Testing: A Research Travelogue (2000–2014).

In Proceedings of the on Future of Software Engineering, pages 117–132, 2014.

[48] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence and Mainte-

nance of Automated Functional Tests for Web Applications. In IEEE International

Conference on Software Maintenance and Evolution, pages 141–150, September 2014.

[49] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving Test Suites Maintain-

ability with the Page Object Pattern: An Industrial Case Study. In IEEE Sixth In-

ternational Conference on Software Testing, Verification and Validation Workshops,

pages 108–113, March 2013.

[50] F Ricca and A Stocco. Web test automation: Insights from the grey literature. In

Conference: 47th International Conference on Current Trends in Theory and Practice

of Computer Science, 10 2020.

[51] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Clustering-Aided Page Object Gen-

eration for Web Testing. In Web Engineering, pages 132–151. Springer, Cham, June

2016.

[52] A. N. Ghazi, K. Petersen, E. Bjarnason, and P. Runeson. Levels of exploration in

exploratory testing: From freestyle to fully scripted. IEEE Access, 6:26416–26423,

2018.

[53] S. M. A. Shah, U. S. Alvi, C. Gencel, and K. Petersen. Comparing a Hybrid Testing

Process with Scripted and Exploratory Testing: An Experimental Study with Practi-

tioners, page 187202. 2014.

89

[54] J. Itkonen, M. V. Mantyla, and C. Lassenius. Defect detection efficiency: Test case

based vs. exploratory testing. In First International Symposium on Empirical Soft-

ware Engineering and Measurement, pages 61–70, 2007.

[55] PetClinic. https://github.com/spring-projects/spring-petclinic, Accessed

on Aug 2, 2021.

[56] WebdriverIO. https://webdriver.io/, Accessed on Aug 2, 2021.

[57] Y. Chen, Z. Li, R. Zhao, and J. Guo. Research on page object generation approach

for web application testing. In The 31st International Conference on Software Engi-

neering and Knowledge Engineering, pages 43–48, 07 2019.

[58] H. Kirinuki, T. Kurabayashi, H. Tanno, and I. Kumagawa. Poster: SONAR Testing

Novel Testing Approach Based on Operation Recording and Visualization. In 2020

IEEE 13th International Conference on Software Testing, Validation and Verification

(ICST), pages 410–413, October 2020.

[59] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. Dependency-Aware Web Test Gen-

eration. In 2020 IEEE 13th International Conference on Software Testing, Validation

and Verification (ICST), pages 175–185, October 2020.

[60] M Biagiola, A Stocco, A Mesbah, F Ricca, and P Tonella. Web test dependency

detection. In Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2019, pages 154–164. Association for Computing Machinery, August 2019.

[61] D. Roest, A. Mesbah, and A. v Deursen. Regression Testing Ajax Applications:

Coping with Dynamism. In Verification and Validation 2010 Third International

Conference on Software Testing, pages 127–136, April 2010.

[62] R Yandrapally, A Stocco, and A Mesbah. Near-duplicate detection in web app model

inference. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-

ware Engineering, ICSE ’20, pages 186–197. Association for Computing Machinery,

June 2020.

[63] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics,

5:135–146, 2017.

[64] Joomla! Administrator’s Manual. https://docs.joomla.org/Portal:

Administrators, 2020.

90

