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Abstract

Software testing plays an essential role in software quality assurance. It helps developers to reveal and
remove bugs in software. Test coverage, such as statement and branch coverage, is widely known and used
in software testing. Developers often use test coverage to measure the sufficiency of tests, to find untested
statements, and to localize a faulty statement. In recent years, many researchers have proposed novel metrics
for measuring test coverage of source code. However, because such novel coverage metrics are not organized,
it is impossible to understand and compare the benefits and limitations of each metric. This paper organizes
the characteristics of each coverage metric by surveying a body of 80 papers that propose coverage metrics.
The survey results showed that the proposed metrics could be divided into two main groups: (1) metrics that
improve or complement traditional coverage and (2) metrics that are effective in specific domains, such as
concurrent programming. We also identified the characteristics of each metric, such as effective domains,
information needed to measure coverage, and granularity of measurement. Furthermore, we provide a

catalog of coverage metrics to help developers and researchers select the best metrics for their context.
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1 Introduction

Software testing is an essential activity in software quality assurance. Though software testing is a broad
concept that includes various verification activities such as review, walkthrough and inspection, this paper
focuses on a validation activity, especially in a programmed test. The programmed test means to confirm
whether the given program behaves as expected by the program execution. This paper refers to it as simply
test or testing.

Developers usually evaluate the quality of tests with many criteria. One of the most well-known criteria
is test coverage that measures the comprehensiveness of tests against source code based on the execution
path. Test coverage can be used for measuring the sufficiency of tests, finding non-tested statements, and
localization of a faulty statement[1].

Well-known coverages, such as statement and branch coverage, are known to have limitations. For
instance, 100% statement coverage does not guarantee that the source code has no bugs[2, 3]. To address
their drawbacks, many researchers have proposed test coverage metrics. However, these novel metrics are
not structured and organized yet. So, it is impossible to understand and compare the benefits and limitations
of each metric. This lack of organization also prevents consideration of the use of such coverage metrics.

In this paper, we conduct a literature review of 80 papers on test coverage metrics. We aim to organize
the studies that propose novel coverage metrics and to examine the characteristics of each proposed metric.
Hence, our research questions are, what are the objectives of the test coverage metrics proposals? and what
kind of novel test coverage metrics are proposed?. In our analysis, we found that the proposal of coverage
metrics was primarily due to two reasons: (1) to improve or complement traditional coverage and (2) to
effectively measure coverage in specific domains. Based on this finding, we analyzed the characteristics of
the coverage metrics for each proposal reason and domain. Through this study, we provide developers and
researchers with a catalog of test coverage metrics and allow them to select suitable metrics in their context.

The rest of the paper is organized as follows. In Section 2, we present our research questions, describe
the scope of our survey, and explain our methodology for collecting relevant studies. In Section 3, we show
the backgrounds of proposals for test coverage metrics and the characteristics of each metric through the
analysis of our research questions. In Section 4, we discuss future research directions on test coverage. In

Section 5, we provide final remarks and future works.



2 Research Objective and Methodology

In this section, we present the two research questions that we aim to address. Following this, we describe

the scope of our survey and show our methodology to select the relevant publications for analysis.

2.1 Research Questions
Our research questions (RQs) are as follows:

* RQ1: What are the objectives of the test coverage metrics proposals? This RQ explores the
backgrounds of coverage metrics proposals. We answer this RQ by investigating the problems that
each coverage metric aims to address.

* RQ2: What kind of novel test coverage metrics are proposed? In this RQ, we catalogue the
proposed coverage metrics in the last few decades. This RQ provides details of each coverage metric.

2.2 Survey Scope
2.2.1 Test Coverage

Test coverage is defined as a metric in software testing that measures the amount of testing performed
by a set of tests. The term test coverage is often used to refer to code coverage for white box testing (e.g.,
statement and branch coverage), but this is inaccurate. In addition to code coverage, there are various
types of test coverage for different test types and objects, such as specification coverage[4] and mutation
coverage|5].

We focus on tests that verify the implementation of programs. Therefore, we treat the term test coverage
as the coverage of tests that check the correctness of source code. Note that we are not talking about the
code coverage itself. For example, we consider both white box testing and black box testing as methods for
testing source code, although they are different testing approaches.

2.2.2 Target Period

In 1963, Miller and Maloney|[6] first mentioned the concept of test coverage. The authors explained that
if a portion of a program is not executed by at least one test, the developer lacks the means to determine if
that portion of code is executing correctly. Subsequently, many studies on test coverage were carried out
from the 1970s to the 1980s [7,8,9, 10, 11].

We are interested in the newly proposed test coverage. Therefore, we target studies that propose test
coverage metrics in the last three decades (1992-2022).

2.3 Paper Selection

We collected the papers for our study by using a specific set of keywords in some popular digital libraries.
This paper collection was performed at the beginning of May 2022.

We used the following ten keywords: fest coverage, coverage metrics, code coverage, testing strategies,
software testing strategies, oracle quality, test oracle quality, test suite quality, test suite effectiveness, and
insufficiently tested code. Since we intended to collect all papers related to our survey as much as possible,
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Figure 1: Publications per year from 1992 to 2022

the set of keywords includes not only those directly related to coverage metrics but also those related to
testing strategy and test quality.

Using the ten keywords, we searched in the three digital libraries (ACM Digital Library, IEEE Xplore
and Google Scholar). For each query, we collected the top 200 publications in order of relevance. As a
result, we obtained 5,818 publications. (Note that a search for insufficiently tested code in IEEE Xplore
returned 18 publications.) After removing duplicate publications, we ended up with 4,459 publications.

Following our paper collection, we filtered the publications we obtained. We first quickly eliminated
papers that were obviously irrelevant to our study by manually checking the titles and abstracts of all the
collected publications. Two people performed this filtering to reduce the number of false negatives. This
process took two months and resulted in 237 papers. After quick filtering, we conducted a full-text analysis
of each selected paper. We reviewed whether each paper proposed test coverage metrics. At the end of
this process, we obtained 43 relevant papers. Finally, we performed the forward and backward snowballing,
i.e., analyzing publications citing or cited by the 43 papers. This activity took a month and produced 37
additional papers. Therefore, we ended up with a final set of 80 papers.

We analyzed the publication years and venues of selected papers. Figure 1 shows the number of published
papers that propose coverage metrics per year. Until 2004, the number of papers was one or less per year;
however, the number of published papers has increased since 2005.

Figure 2 shows the number of papers per venue. We explicitly reported venues where at least two
publications were published, while we grouped all venues with only one publication together in the Other
column. We found that many venues are related to software testing, software reliability, and software
engineering. We also noticed that 13 publications (16.25%) appeared in journals, and 67 (83.75%) appeared
in conferences/workshops/symposiums.
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3 Research Results

To answer RQ1, we examined the background of the proposed test coverage metrics for 80 studies. In
this section, we describe the results of surveying 80 studies proposing coverage metrics. It is arranged into
subsections according to the defined RQs.

3.1 RQI1: What are the objectives of the test coverage metrics proposals?
3.1.1 Backgrounds of Proposals for Coverage Metrics

To answer RQ1, we examined the backgrounds of 80 studies. The results show that a common reason
for proposing coverage metrics is to address the limitations of existing coverages. We also found that
each coverage can be divided into two groups: (1) general-purpose coverages that improve or complement
traditional coverages and (2) domain-specific coverages that are effective in particular domains. General-
purpose metrics were proposed in 20 studies, and 60 studies proposed domain-specific metrics. There are
12 domains, and the breakdown of the domains is summarized in Table 1.

3.1.2 Aims of General-purpose Coverages

This section explains the aims of the proposals for general-purpose coverage metrics.

Bug Detection. One of the aims of general-purpose coverages is to enhance the ability of tests to
detect bugs. For example, Aghamohammadi et al.[12] argued that incorporating the frequency of executed
statements into statement coverage leads to detecting faults more effectively. McMinn et al.[13] discussed
the test coverage criteria that are well correlated with real fault revelation.

Oracle Quality. It is perfectly possible to achieve 100% coverage and still not have any result checked
by even a single oracle. In the extreme case, a test code without any assertions at all that executes every
statement in the source code achieves 100% statement coverage. Some researchers tackled this problem. For
example, Schuler and Zeller[2, 14] proposed measuring the exhaustiveness of the verification of statements

by assertions.

Table 1: Domains

Category Domain # papers
Concurrent Programming 16
. . Object-Oriented Programming 10
Programming Paradigm . .
Multi-Staged Programming 1
Quantum Programming 1
Web Application 16
Service-Oriented Architecture 7
. Database Application 3
Application type —
GUI application 2
Android Application 1
Machine Learning Program 1
Fuzz Testing 1
Others i
Agile Development 1




Test Effort. Writing additional tests can be difficult and costly. According to a survey of practicing
software developers, a significant portion of this cost is due to the difficulty of identifying which parts of the
code should be tested[15]. Several coverage metrics have been proposed to effectively identify entities to be
tested. For example, Huo and Clause[16] proposed direct and indirect coverage that identify how entities are
covered by tests. The authors demonstrated that faults in code indirectly tested are significantly less likely
to be detected than those in code directly tested.

3.1.3 Aims of Domain-specific Coverages

In this section, we discuss the issues addressed by domain-specific coverage metrics.

Covering domain-specific entities. Most domain-specific coverage focuses on determining whether
the test covers domain-specific elements. Examples of domain-specific elements include thread synchro-
nization[17] and interleaving[18] in concurrent programs, inheritance[19] and polymorphism[20] in object-
oriented programs, and SQL statements[21] and DOM elements[22] in web applications.

More detailed information on the elements that each domain-specific coverage metric targets is provided
in Section 3.2.

Difficulty in Using Existing Coverages. In a few domains, it is difficult to take advantage of existing
coverage. For example, since multi-staged programs generate and run new program code at runtime, Kim
et al.[23] proposed to measure test coverage including generated code fragments detected by static analysis.
Ali et al.[24] focused on quantum programs. Testing quantum programs is challenging for several reasons,
such as the probabilistic nature and difficulties in estimating superposition states. The authors defined test
oracles to determine the passing and failing of test suites and proposed test coverage metrics based on the
inputs and outputs of a program.

3.2 RQ2: What kind of novel test coverage metrics are proposed?

This section describes the test coverage metrics proposed in the 80 studies we selected. We show the
characteristics of each metric according to the classification of the proposal backgrounds from our analysis
for RQI. Note that some studies presented multiple levels of coverage measurement granularity. Table
2 summarizes the characteristics of each test coverage, including effective domain, overview, information

required to measure coverage, and granularity of measurement.

3.2.1 General-purpose Coverage Metrics

Belli et al.[25] proposed a Test Segment Coverage as coverage that bridges the gap between branch
coverage and path coverage. Test segment coverage is the path coverage of each test segment (program
fragment composed of one statement or a sequence of statements). By adjusting the size of the test segments,
the thoroughness of the test coverage can be adapted to the needs of the tester.

Chen et al.[26] proposed a test coverage about variables. By calculating the program slice for a variable,
we can measure the test coverage for the code associated with that variable. In other words, the tester can
focus the test quality evaluation on important variables.

Koster et al.[27] proposed a State Coverage for test oracle assessment. This coverage measures whether
variables defined at code runtime are validated by assertions using control flow graphs and program slicing.

In the subsequent study by Vanoverberghe et al.[28], a general definition of State Coverage was proposed.

The authors’ definition does not require a specific structure for testing and allows more dynamic state update



identifiers (e.g., object identifiers) than nodes in the control flow graph.

Schuler et al.[2, 14] proposed a Checked Coverage. The concept of checked coverage is similar to state
coverage. This coverage metric requires testers to verify that statements that read or write variables or that
can affect the control flow of the program are checked by assertions. The authors consider statements on a
dynamic backward slice from an assertion as checked statements.

Zaraket et al.[29] proposed a property based coverage. This coverage derives from the hypothesis that
it is more effective to evaluate test suites based on their coverage of system properties than that of structural
program elements. The authors view a property as a logical expression in an assertion and annotation. By
using the property based coverage criterion, we can measure the test coverage for all the possible values that
variables in properties can take.

Whalen et al.[30] proposed an Observable Modified Condition/Decision Coverage (OMC/DC). OMC/DC
is a version of MC/DC that incorporates the concept of observability. The authors state that an expression
in a program is observable in a test case if we can modify its value leaving the rest of the program intact,
and observe changes in the output of the system. This coverage metric helps ensure that a fault encountered
when executing the decision propagates to a monitored variable.

Hassan et al.[31] proposed a Multi-Point Stride Coverage (MPSC). This coverage is equivalent to branch
coverage that incorporates the concept of dataflow coverage by taking into account the execution order of
each branch. By using a MPSC, we can more accurately predict the quality of a test suite than control flow
based coverage such as branch coverage. We can also more easily measure it than dataflow based coverage
such as def-use coverage[32].

Huo et al.[16] proposed Direct and Indirect coverage. The authors argue that it is useful in the man-
agement of testing resources to consider whether entities (e.g., functions, statements, and branches) were
covered directly or indirectly by tests. This is because indirectly covered entities are only peripherally
considered and are insufficiently tested[16].

McMinn et al.[13] proposed a fault coverage for software testing. Fault coverage is a concept in electronic
engineering that refers to the percentage of faults detected by tests out of a pre-defined list of faults. The
authors discuss the way to automatically generate fault coverage for software engineering by using a fault
database such as Defects4J[33].

Byun et al.[34] proposed a Flag-Use Object Branch Coverage (Flag-Use OBC). Object branch coverage
(OBC), branch coverage at the object code level, has the advantage of being programming language indepen-
dent and is amenable to non-intrusive coverage measurement techniques. However, OBC strongly depends
on differences in object code structure due to compilers and their optimizations. While OBC is a coverage
metric based only on jump instructions, Flag-Use OBC extends OBC to include many other instructions
involved in conditional behavior.

Someoliayi et al.[35] proposed a Program State Coverage. This coverage metric improves the ability
of line coverage to validate the effectiveness of the test suite. The authors consider the number of distinct
program states in which each line is executed. Program state coverage is calculated by the ratio of program
states executed in a line of tests to the maximum number of program states.

Subsequently, Aghamohammadi et al.[12] proposed a Statement Frequency Coverage. Program state
coverage has some limitations, such as the need to set a maximum number of states because we cannot
predict the number of possible states and the possibility of statements with infinite states during test execution.
Statement frequency coverage solves these problems by incorporating the frequency of executed statements

into the statement coverage.



Bollina and Gay[36] proposed a Bytecode-MCC, a new variant of Multiple Condition Coverage (MCC)
for bytecode. The authors focused on masking, which occurs when one condition prevents another from
influencing the output of a boolean expression. MCC is able to overcome masking within a single expression
but cannot do so when conditions are defined in multiple expressions. Bytecode-MCC groups related
Boolean expressions from the bytecode, reformulates the grouping into a single complex expression, and
calculates all possible combinations of conditions within the constructed expression.

Miranda et al.[37,38] proposed a Relative Coverage. This is a coverage measurement technique that
focuses on the test scope of testers. By focusing coverage measurement only on in-scope entities, we can
expect to improve the cost-effectiveness of testing. The authors also proposed four instances of relative
coverage: Operational Coverage[37], Social Coverage[37,39], Relevant Coverage[37,40], and Reachability
Coverage[38]. Operational coverage focuses on the operations performed by a specific user group. Relevant
coverage measures test coverage in the scope of testing reused code. Reachability coverage targets the input
domain that a specific user is expected to exercise. Social coverage is a coverage metric for Service-Oriented
Architecture (SOA) and will be described in Section 3.2.2.

Cox[41] proposed a Differential Coverage. This is a concept of classifying coverage information into 12
categories (newly added code is not tested, previously unused code is covered now, etc.) by comparing the
current version of the code with a baseline. Especially in large-scale development, the analysis of coverage
information is very costly. We can reduce the cost of coverage analysis by automatically classifying coverage
information using differential coverage.

Kolchin and Potiyenko[42] proposed a Required k-Use Chains Coverage. A k-use chain represents a
sequence of k-length def-ues pairs (pairs of variable definitions and uses). Existing dataflow coverages do
not directly require subpaths that pass a possible sequence of variable uses in conditions from a def-point
to a use-point directly associated with the def-use pair. The proposed metrics measure the test coverage of

sequences of def-use pairs.

3.2.2 Domain-specific Coverage Metrics

Concurrent Programming. Taylor et al.[43] pioneered a hierarchy of concurrency coverage criteria.
The authors extended the notion of structural testing coverage criteria to concurrent programs. The proposed
coverage metrics require tests to cover the paths of the concurrency state graph, in which the nodes represent
states of concurrent programs.

Cheer-Sun et al.[44] proposed All-du-path Coverage for parallel programs. This metric considers du-
pairs, triples (var, d, u) where var is a shared variable, d is a node in the parallel program flow graph (PPFG)
where the value of var is defined, and u is a node in the PPFG where the value is read. In other words, this
metric requires that a set of paths in which no node redefines the value of var is covered by tests.

Bron et al.[17] proposed a Synchronization Coverage. This is a practical coverage based on the idea that
coverage tasks should be well understood by users and be coverable by tests. This coverage is accepted by
IBM. Synchronization coverage has seven synchronous processes as coverage tasks.

Lu et al.[18] proposed five concurrent program interleaving coverage metrics. A fundamental problem
of concurrent program bug detection and testing is that the interleaving space is too large to be thoroughly
explored. These interleaving coverage metrics are practical and effective for systematically exploring
interleaving spaces and effectively finding concurrency bugs.

Trainin et al.[45] proposed coverage metrics for the detection of concurrent bugs. The proposed metrics

focus on the use of synchronization primitives (for example, synchronization processes defined using the



Java keyword synchronized) and do not directly consider thread interleavings. The authors referred to
two test coverage of synchronization block and synchronization pair.

Sherman et al.[46] proposed coverage metrics inspired by Synchronization Coverage[17]. These metrics
are designed for saturation-based testing in concurrent programs; hence there is no need to estimate the
executable domain of each metric. The authors use a combination of three basic concurrency metrics and
SiX contexts as coverage tasks.

Kfena et al.[47] proposed coverage metrics for saturation-based and search-based testing to reflect
concurrency behavior accurately. In previous work[46], the identification of elements was too rough
because Java types were used to identify threads. The proposed metrics more accurately distinguish the
behavior of objects and threads based on object identifiers and thread identifiers. The authors derived 11
coverage metrics from dynamic analysis designed for discovering bugs in concurrent programs.

Yu et al.[48] proposed a coverage metric based on a set of interleaving idioms. An interleaving idiom
is a pattern of inter-thread dependencies and the associated memory operations. In addition, interleaving
idioms can represent more general interleaving patterns.

Tasiran et al.[49] proposed a Location-Pairs Coverage for shared-memory concurrent programs. A
location-pair is a pair of two control locations that can access the same shared variable and can be executed
by two different threads. The test coverage of location-pairs directly corresponds to the atomicity and
refinement violations.

Steenbuck and Fraser[50] proposed a concurrency coverage metric. The authors focused on concurrent
executions of combinations of shared memory access points with different schedules. Therefore, this metric
requires covering all possible schedules for sets of threads, variables, and synchronization points.

Tasharofi et al.[51] proposed coverage metrics for concurrent programs based on the actor model[52]. In
actor programs, concurrent entities communicate asynchronously by exchanging messages. The proposed
metrics require covering all the sequence of receive events in the program execution at three levels.

Terragni et al.[53] proposed a Sequential Coverage. This coverage metric has a sequence of events
(write/read object fields, acquire/release locks and enter/exit methods) as a coverage task. We can measure
this coverage by a single thread execution of a call sequence.

Choudhary et al.[54] proposed a coverage metric based on the set of pairs of methods that execute
concurrently. Enumerating all possible interleavings (i.e., total orders of memory accesses) is practically
infeasible. Concurrent method pairs yield an effective approximation of possible and covered interleavings.
Therefore, this test coverage metric leads to efficient and practical interleaving coverage

Wang et al.[3] proposed a MAP-coverage. This coverage is based on memory-access patterns (MAP),
which are patterns of how shared variables are accessed by multiple threads[55]. MAP has often been shown
to be associated with the nature of multi-threaded bugs[55]. Thus, comprehensive testing of all MAP is
effective in finding bugs.

Guo et al.[56] proposed a All Synchronization Pairs Coverage. A synchronization pair is a pair of
synchronization statements, such as synchronize block, wait(), and notify() of an object instance.
The proposed metric measures the test coverage of synchronization pairs. Although there are too many
interleavings in a multi-thread program with a high number of threads, this coverage allows interleavings to
be checked efficiently.

Taheri and Gopalakrishnan et al.[57] proposed coverage metrics for concurrency in GO language. The
existing concurrency coverage metrics are primarily in the context of Java and C/Pthreads. They are

not necessarily applicable to languages like Go, as such languages have different concurrency primitives



and semantics. The authors proposed five coverage metrics that characterize the dynamic behavior of
concurrency primitives.

Object Oriented (OO) Programming. Hsia et al.[58] proposed coverage metrics based on Enumerate
Data Member (EDM). A class is said to satisfy EDM property if its state-related data members are of
enumerate type (e.g., type enum). The authors argued that each set of values assigned to the object should
be covered by at least one test for classes satisfying EDM property. They provided three levels of coverage
metrics.

Chen et al.[59] proposed Object-Flow Coverage criteria. The proposed metrics are based on binding
of the possible classes with the program variables and object def-use pairs (pairs of object definitions and
uses). We can identify object bindings and def-use pairs by using an object control flow graph whose nodes
are statements that define or use an object.

Alexander et al.[60] proposed Coupling-Based Coverage metrics at three levels. These metrics focus on
coupling relationships among procedures and measure the test coverage of coupling paths (paths between
definition and use of state variables) of objects having dynamic binding.

Fisher et al.[61] proposed Change-Based Coverage metrics. The authors focused on the impact of code
changes based on the assumption that a disproportionate number of faults are likely to be present in recently
modified codes. This study defines four test coverage metrics for changed and added entities (e.g., methods
and statements) in the context of OO.

Najumudheen et al.[20] proposed criteria for method call, inheritance, and polymorphic coverage of
OO programs. These metrics are defined on the Call-based Object-Oriented System Dependence Graph
(COSDG), a synthesis of the dependence graph, call graph, and flow graph. COSDG incorporates details
such as class, dependence, flow, call, inheritance, and polymorphism.

Baldini et al.[62] proposed coverage metrics based on the program dependencies of methods. The
authors introduced a Def/Use table that represents define-use pairs of methods based on the data members
of every class. The proposed metrics measure the test coverages of all elements in the Def/Use table at three
levels.

Biswas[19] proposed Control Dependence Inheritance Coverage metrics based on JSysDG (Java System
Dependency Graph). Each time a tested class is reused through inheritance, we must retest it under a
new usage context[63]. Therefore, the cost of testing OO software can significantly exceed that of testing
procedural programs. By using these metrics, we can effectively measure the test coverage of control
dependencies associated with inheritance.

Mukherjee et al.[64,65] proposed coverage metrics in response to the fact that structural coverage metrics
for integration testing of OO programs have been scarcely reported. These coverage metrics are based on
data and control dependencies in the classes being integrated defined on JSysDG.

Mukherjee[66] also focused on testing safety-critical software, such as nuclear power plants, in the OO
paradigm. Safety-critical software requires thorough testing; however, traditional coverage metrics suffer
from several shortcomings. The authors proposed test coverage metrics that cover program dependencies
more robustly and can detect faults at inter-object data dependencies.

Multi-Staged Programming. Kim et al.[23] proposed a New Decision Coverage for multi-staged
language. Multi-staged language is a programming language that can generate and execute new program
codes in execution time. Because it is hard to estimate what code fragments would be generated and
executed in multi-staged language, traditional coverage is not suitable for multi-stage languages. New

decision coverage metric measures the test coverage of both branches that already exist in the program and
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those generated at runtime. In the study, this metric is designed for a two-staged language.

Quantum Programming. Ali et al.[24] proposed input/output coverage metrics for the quantum
program. Testing quantum programs is difficult due to the inherent characteristics of quantum computing,
such as the probabilistic nature and computations in superposition. However, automatic and systematic
testing is necessary to guarantee the correct operation of quantum programs. These proposed metrics are
based on the inputs and outputs of the quantum program and measure the comprehensiveness of tests without
destroying the superpositions of the quantum program.

Web Application. Sampath et al.[67] proposed coverage criteria intended for testing web applications
at a page level. The authors defined URL coverage at nine levels. A URL consists of a base address and
possible pairs of input field names and their values as per the RFC definition <protocol>://<host> [:<port>]
[<path> [? <query>]][68]. The coverages report the static pages (URLs) visited during test execution for a
given web application by using a user session.

Bai et al.[69] proposed test metrics based on Web Service Description Language (WSDL)[70] elements.
The authors considered that testing of web services should cover four elements: parameters, messages (input
and output), operations, and operation flows.

Smith et al.[21] proposed a SQL statement coverage for SQL injection input validation testing. Tra-
ditional coverage metrics cannot highlight how well the system protects itself through validation. SQL
statement coverage metrics measure the test coverage of SQL statements or input variables of SQL state-
ments. Coverage data based on these metrics can provide specific information about insufficient or missing
input validation.

Jokhio et al.[71] proposed two specification based coverage metrics: boundary coverage and transition
rules path coverage. Boundary coverage refers to boundary conditions such as minimum and maximum
values for parameters. Transition rules path coverage refers to the different execution paths that the program
may follow when receiving a given request. These are based on the goal specification that specifies the user
objectives.

Dao et al.[72] proposed coverage metrics for security testing of web applications. In many real web
applications, security sensitive sinks (e.g., functions that write data) are wrapped by wrapper functions and
called indirectly through these wrappers. The authors proposed three levels of coverage metrics for security
sinks.

The authors also proposed a Security Sensitive Data Flow Coverage[73]. They considered that test
cases should cover as many security sensitive data flows as possible to get high vulnerability detection
effectiveness. This metric measures the test coverage of security sensitive branches that contain calls to
security sensitive sinks or propagation of the values of security sensitive variables through assignments.

Alalfi et al.[74] proposed coverage metrics for dynamic web applications. Faults in web applications
are often caused by insufficient test coverage of complex interactions between components. These coverage
metrics are based on the client and database interactions and require testing server pages, SQL statements,
and server environment variables.

Alshahwan and Harman[75] proposed coverage metrics based on HTML output uniqueness. The authors
considered that raising the diversity of the output could lead to test suites that are more effective at exposing
faults. The proposed metrics measure the test coverages of unique outputs at four levels. In a subsequent
study[76], the authors extended their previous work[75] and proposed three additional coverage metrics.

Sakamoto et al.[77] proposed a Template Variable Coverage for a web application that is generated using

template engines. Template variable coverage focuses on the variables and expressions for embedding in

11



HTML templates, which are important for testing a web application’s functionality related to the dynamic
content of an HTML document. This metric measures the test coverage of template variables.

Zou et al.[78] proposed a Hybrid Coverage criteria, which combines HTML element coverage with
statement coverage of the code. The authors focused on richer iterations between client-side and server-side
in dynamic web applications. Thus, the key idea of hybrid coverage is to combine the runtime client-side
and server-side features of the web application. This coverage metric requires that tests cover all HTML
elements and statements.

Zou et al.[79] also proposed a Virtual DOM (V-DOM) Coverage. This coverage metric is based on a
V-DOM tree produced by a server script, a logical aggregation of all the possible DOM trees that represent
pages on the client side. By measuring the test coverage of the V-DOM element in the V-DOM tree, we can
consider executions on both server-side and client-side.

Mirzaaghaei et al.[22] proposed DOM Coverage metrics. Web application tests generally interact with
the DOM. The authors argued that the DOM itself should be considered as an important structure of the
system that needs to be adequately covered by tests. Based on this idea, this paper proposed six coverage
metrics related to the DOM state.

Ed-douibi et al.[80] proposed coverage metrics for REST API. REST APIs are commonly described using
languages such as the OpenAPI! Specification (OAS). The proposed metrics measure the test coverages of
API elements based on the OAS at four levels.

Martin-Lopez et al.[81] proposed coverage metrics for RESTful API because there are no standardized
coverage criteria for black-box testing of RESTful API. These metrics measure the test coverage of elements
related to API requests/responses. The paper provides four levels of coverage metrics for each of the API
requests and responses.

Nguyen et al.[82] proposed coverage metrics for output-oriented testing of a dynamic web application.
These coverage metrics measures test coverage of string literals output and decisions that affect the output.
Using these metrics helps to identify presentation faults such as HTML validation errors and spelling errors.

Service-Oriented Architecture (SOA). Mei et al.[83] proposed coverage metrics for WS-BPEL[84]
applications (a kind of service-oriented application). WS-BPEL applications use XPath extensively to
integrate loosely-coupled workflow steps. The authors presented test coverage of the XPath query at three
levels. These metrics aim to identify defects in service compositions that are caused by faulty (or ambiguous)
XPath expressions selecting a different XML element at runtime than the one that the composition developer
intended to be selected.

Bartolini et al.[85, 86] developed the notion of Relative Coverage that takes into consideration how the
service is used by the client. Relative coverage adapts to a tester’s context and measures the ratio between the
covered entities and those that are considered relevant in the given situation and environment. The authors
also proposed WSDL[70] based coverage metrics at three levels[87]. An interface of SOA is generally
specified in WSDL. These metrics measure the test coverages of service interfaces.

Hummer et al.[88] proposed a k-Node Dataflow Coverage to significantly reduce the search space of
service combinations in the integration test of dynamic composite Service-Based Systems (SBSs). This
metric is based on the dataflow of service composition. By restricting the paths for coverage measurement
to all k-length paths in the dependency tree, where a service composition is considered as a node, we can
reduce the number of dataflows to be covered by tests.

In 2014, Miranda et al.[37, 38, 39] proposed a Social Coverage. This is the instance of relative cov-

thttps://www.openapis.org/
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erage[37,38]. Social coverage was conceived for black-box environments having some notion of testing
community (i.e., several users/programs using/testing the service under test). This metric measures test
coverage for the in-scope entities identified by information about the entities invoked by similar users in the
same test community. The authors assume that the service provider will measure this coverage and provide
it to the customers.

Sneed et al.[89] proposed coverage metrics based on the structure and content of the service interface.
These are test coverage of input/output parameters or combinations of parameters in input/output messages.
Using these metrics, testers can evaluate test quality without considering the source code in SOA, where
they cannot access the source code of the service under test.

Database Application. Cabal et al.[90] proposed test coverage of SQL SELECT queries. This coverage
metric requires a coverage tree built from each SELECT statement encoding the conditions specified by the
where and join clauses of the query. This means that 100% coverage is achieved when the entire coverage
tree is covered.

Willmor and Embury[91] proposed eight test coverage metrics for database applications. These coverage
metrics focus on the structural and data-oriented elements of database systems. By using the proposed
metrics, we can check the test coverage of the structural aspects of the database application (e.g., operations,
transaction statements, and entities represented in the database) and the possible def-use pairs of database
system operations.

Halfond and Orso[92] proposed a Command-Form Coverage that is focused on the application-database
interactions. Most database applications dynamically generate commands in the database language (usually
SQL), pass these commands to the database for execution and process the results returned by the database.
Thus, this coverage metric measures the test coverage of all the possible SQL command forms that can be
issued at each database interaction point.

GUI Application. Memon et al.[93] proposed coverage metrics for GUI testing. The input to a GUI
consists of a sequence of events. The proposed metrics thus focus on events in the structure of the GUI and
measure the comprehensiveness of testing for events and event sequences.

Zhao and Cai[94] proposed GUI coverage metrics based on the event handlers in the source code of GUI
applications. The authors focused on data interaction relationships between event handlers and defined two
coverage metrics. These metrics measure the test coverages of event handlers and definition-use handler
pairs (pairs of a handler that sets a variable and one that uses its variable.).

Android Application Jabbarvand et al.[95] proposed an eCoverage. This study aims to reduce the num-
ber of tests in energy testing of Android applications. eCoverage takes into account the energy consumption
of segments (methods or system APIs). By using this metric, we can measure test coverage of energy-greedy
segments that highly contribute to the energy consumption of the application.

Machine Learning Program. Nakajima et al.[96] proposed a Dataset Coverage for Machine Learning
(ML) programs. The control structure of the ML program is so simple that any execution of the program takes
all control paths if the input training dataset is not trivial. Dataset coverage focuses on the characteristics of
the population distribution in the training dataset in metamorphic testing.

Fuzz Testing. Tsankov et al.[97] proposed a Semi-Valid Input Coverage for fuzz testing. Traditional
coverage metrics do not measure what fuzz testing is all about, namely, executing the system with semi-valid
inputs. Semi-valid input coverage metric measures to what extent the tests cover the domain of semi-valid
inputs, where an input is semi-valid if and only if it satisfies all the constraints but one.

Agile Development. Rott et al.[98] proposed a Ticket Coverage for agile development. This coverage

13



unveils which of the changes made in the course of a ticket are left untested. This metric measure test
coverage of the methods that were added and changed during the implementation of a given ticket and helps

to systematically focus testing efforts on changed code.
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4 Discussion

This section takes a high-level view of the studies covered in our survey. Through this activity, we

discuss future directions for research on test coverage metrics.

4.1 Domains of Studies

As shown in Section 2.3, the number of studies that propose test coverage metrics tends to increase
after 2005. We consider that the cause of this is the recent increase in the scale and complexity of software
development and the diversity of software (e.g., the emergence of new programming paradigms).

We identified the domains of coverage proposal studies in our analysis for RQ1 and summarized them
in Table 1. The results show that the research field is well-established in concurrent programming, object-
oriented programming, web applications, and service-oriented architecture. On the other hand, there are
a few studies in some domains, such as quantum programming and android applications. This analysis
suggests that there are many domains in need of effective coverage metrics.

4.2 Available Tools

Many tools for test coverage measurement were developed in selected papers. However, most of them
were created for the evaluation of proposed coverage metrics and are not available. As of January 2023, only
nine tools are available. These tools are listed in Table 3. This makes it difficult for developers to actually
use the proposed coverage metrics or for researchers to evaluate the coverage. Therefore, it is desirable to

build available tools for coverage measurement.

4.3 Evaluation of Coverage

The 13 studies did not evaluate their proposed coverage metrics [13,19,23,29,38,41,42,58,64,66,69,71,
91]. Although the theoretical definitions of coverage metrics were discussed, it is challenging to determine
their actual effectiveness without evaluation. From a practical standpoint, it is necessary to evaluate each
metric to accurately assess their effectiveness, including their ability to measure test effectiveness and the
cost of using them.

Table 3: Available Coverage Measurement Tools

Tool Coverage URL

no name[34] Flag-use OBC https://github.com/tj-byun/object-coverage-criteria
gendiffcov[41] Differential coverage https://github.com/henry2cox/lcov/tree/diffcov_initial
Maple[48] Interleaving coverage https://github.com/jieyu/maple

CovCon[54] Concurrent method pairs coverage  https://github.com/michaelpradel/ConTeGe/tree/CovCon
MAPTest[3] MAP-coverage https://github.com/sail-repos/Map-Coverage

GOATI[57] For GO language https://github.com/staheri/goat

DomCovery[22] DOM coverage https://github.com/saltlab/DomCovery

no name[80] API element coverage https://github.com/opendata-for-all/api-tester
WebTest[82] Output coverage https://github.com/git1997/VarAnalysis
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5 Conclusion and Future Work

In this paper, we conducted a survey of papers proposing test coverage metrics in the last three decades.
We analyzed 80 papers and answered two research questions to organize proposed coverage metrics. Our
first research question considered the backgrounds of proposals for each metric. We investigated the
problems that each coverage aims to address. As a result, we found that proposed coverage metrics can
be classified into two categories: (1) general-purpose metrics that improve or complement traditional
coverage and (2) domain-specific metrics that are effective in particular domains. Both metrics aim to
address the limitations of existing coverage. Generic coverage aims to improve or complement traditional
coverage in a domain-independent context, while domain-specific coverage focuses on testing domain-
specific elements. Our second research question set out to identify and organize the characteristics of
proposed test coverages. To that end, we examined and summarized the overview, the domain, the necessary
information for measurement, and the granularity of measurement for each coverage metric. A catalog of
novel coverage metrics would help developers and researchers to select suitable metrics in their context.

Our future work includes the following:

Development of coverage measurement tools. We found that only nine of the 80 studies disclosed
the tools to the public. We consider that it is important to develop and publish the coverage measurement
tool. Creating tools and explaining their design and implementation will help developers and researchers.
Furthermore, making the tools available will assist in the actual development and facilitates the comparison
of coverage metrics.

Evaluation of coverage metrics. Thirteen studies did not perform the evaluation of the proposed
coverage metric. It is difficult to consider the use of coverage metrics without assessing their ability
to measure test effectiveness and the costs of using them. Therefore, we plan to evaluate the proposed
coverages from a practical standpoint. We also intend to identify the advantages and disadvantages of each
metric by conducting a comparative evaluation. This analysis will result in the determination of the optimal

coverage from multiple perspectives.
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