Master Thesis

Title

A Literature Review of Test Coverage Metrics

Supervisor
Prof. Shinji Kusumoto

by
Masayuki Taniguchi

February 1, 2023

Departmant of Computer Science
Graduate School of Information Science and Technology
Osaka University

Master Thesis

A Literature Review of Test Coverage Metrics

Masayuki Taniguchi

Abstract

Software testing plays an essential role in software quality assurance. It helps developers to reveal and
remove bugs in software. Test coverage, such as statement and branch coverage, is widely known and used
in software testing. Developers often use test coverage to measure the sufficiency of tests, to find untested
statements, and to localize a faulty statement. In recent years, many researchers have proposed novel metrics
for measuring test coverage of source code. However, because such novel coverage metrics are not organized,
it is impossible to understand and compare the benefits and limitations of each metric. This paper organizes
the characteristics of each coverage metric by surveying a body of 80 papers that propose coverage metrics.
The survey results showed that the proposed metrics could be divided into two main groups: (1) metrics that
improve or complement traditional coverage and (2) metrics that are effective in specific domains, such as
concurrent programming. We also identified the characteristics of each metric, such as effective domains,
information needed to measure coverage, and granularity of measurement. Furthermore, we provide a

catalog of coverage metrics to help developers and researchers select the best metrics for their context.

Keywords

Software testing, Test coverage, Coverage metrics, Literature review

Contents
1 Introduction

2 Research Objective and Methodology
2.1 Research Questions e e
2.2 SUrvey SCOPE e e e e e
221 TestCoverage v vt e e e e
222 TargetPeriod
2.3 PaperSelection

3 Research Results
3.1 RQI: What are the objectives of the test coverage metrics proposals?

3.1.2 Aims of General-purpose Coverages
3.1.3 Aims of Domain-specific Coverages
3.2 RQ2: What kind of novel test coverage metrics are proposed?
3.2.1 General-purpose Coverage Metrics

3.2.2 Domain-specific Coverage Metrics

4 Discussion
4.1 Domainsof Studies e e e e
42 Available Tools e e e e
4.3 Evaluation of COVerage v v i i e e e e e e

5 Conclusion and Future Work
Acknowledgements

References

NN DD NN

0 AN O O L L L

19
19
19
19

20

21

22

List of Figures

1 Publications per year from 1992t02022

2 Publications pervenue

ii

List of Tables

1 Domains

2 Proposed Test Coverages i i i it e e

3 Available Coverage Measurement Tools

iii

1 Introduction

Software testing is an essential activity in software quality assurance. Though software testing is a broad
concept that includes various verification activities such as review, walkthrough and inspection, this paper
focuses on a validation activity, especially in a programmed test. The programmed test means to confirm
whether the given program behaves as expected by the program execution. This paper refers to it as simply
test or testing.

Developers usually evaluate the quality of tests with many criteria. One of the most well-known criteria
is test coverage that measures the comprehensiveness of tests against source code based on the execution
path. Test coverage can be used for measuring the sufficiency of tests, finding non-tested statements, and
localization of a faulty statement[1].

Well-known coverages, such as statement and branch coverage, are known to have limitations. For
instance, 100% statement coverage does not guarantee that the source code has no bugs[2, 3]. To address
their drawbacks, many researchers have proposed test coverage metrics. However, these novel metrics are
not structured and organized yet. So, it is impossible to understand and compare the benefits and limitations
of each metric. This lack of organization also prevents consideration of the use of such coverage metrics.

In this paper, we conduct a literature review of 80 papers on test coverage metrics. We aim to organize
the studies that propose novel coverage metrics and to examine the characteristics of each proposed metric.
Hence, our research questions are, what are the objectives of the test coverage metrics proposals? and what
kind of novel test coverage metrics are proposed?. In our analysis, we found that the proposal of coverage
metrics was primarily due to two reasons: (1) to improve or complement traditional coverage and (2) to
effectively measure coverage in specific domains. Based on this finding, we analyzed the characteristics of
the coverage metrics for each proposal reason and domain. Through this study, we provide developers and
researchers with a catalog of test coverage metrics and allow them to select suitable metrics in their context.

The rest of the paper is organized as follows. In Section 2, we present our research questions, describe
the scope of our survey, and explain our methodology for collecting relevant studies. In Section 3, we show
the backgrounds of proposals for test coverage metrics and the characteristics of each metric through the
analysis of our research questions. In Section 4, we discuss future research directions on test coverage. In

Section 5, we provide final remarks and future works.

2 Research Objective and Methodology

In this section, we present the two research questions that we aim to address. Following this, we describe

the scope of our survey and show our methodology to select the relevant publications for analysis.

2.1 Research Questions
Our research questions (RQs) are as follows:

* RQ1: What are the objectives of the test coverage metrics proposals? This RQ explores the
backgrounds of coverage metrics proposals. We answer this RQ by investigating the problems that
each coverage metric aims to address.

* RQ2: What kind of novel test coverage metrics are proposed? In this RQ, we catalogue the
proposed coverage metrics in the last few decades. This RQ provides details of each coverage metric.

2.2 Survey Scope
2.2.1 Test Coverage

Test coverage is defined as a metric in software testing that measures the amount of testing performed
by a set of tests. The term test coverage is often used to refer to code coverage for white box testing (e.g.,
statement and branch coverage), but this is inaccurate. In addition to code coverage, there are various
types of test coverage for different test types and objects, such as specification coverage[4] and mutation
coverage|5].

We focus on tests that verify the implementation of programs. Therefore, we treat the term test coverage
as the coverage of tests that check the correctness of source code. Note that we are not talking about the
code coverage itself. For example, we consider both white box testing and black box testing as methods for
testing source code, although they are different testing approaches.

2.2.2 Target Period

In 1963, Miller and Maloney|[6] first mentioned the concept of test coverage. The authors explained that
if a portion of a program is not executed by at least one test, the developer lacks the means to determine if
that portion of code is executing correctly. Subsequently, many studies on test coverage were carried out
from the 1970s to the 1980s [7,8,9, 10, 11].

We are interested in the newly proposed test coverage. Therefore, we target studies that propose test
coverage metrics in the last three decades (1992-2022).

2.3 Paper Selection

We collected the papers for our study by using a specific set of keywords in some popular digital libraries.
This paper collection was performed at the beginning of May 2022.

We used the following ten keywords: fest coverage, coverage metrics, code coverage, testing strategies,
software testing strategies, oracle quality, test oracle quality, test suite quality, test suite effectiveness, and
insufficiently tested code. Since we intended to collect all papers related to our survey as much as possible,

Publication Count

Figure 1: Publications per year from 1992 to 2022

the set of keywords includes not only those directly related to coverage metrics but also those related to
testing strategy and test quality.

Using the ten keywords, we searched in the three digital libraries (ACM Digital Library, IEEE Xplore
and Google Scholar). For each query, we collected the top 200 publications in order of relevance. As a
result, we obtained 5,818 publications. (Note that a search for insufficiently tested code in IEEE Xplore
returned 18 publications.) After removing duplicate publications, we ended up with 4,459 publications.

Following our paper collection, we filtered the publications we obtained. We first quickly eliminated
papers that were obviously irrelevant to our study by manually checking the titles and abstracts of all the
collected publications. Two people performed this filtering to reduce the number of false negatives. This
process took two months and resulted in 237 papers. After quick filtering, we conducted a full-text analysis
of each selected paper. We reviewed whether each paper proposed test coverage metrics. At the end of
this process, we obtained 43 relevant papers. Finally, we performed the forward and backward snowballing,
i.e., analyzing publications citing or cited by the 43 papers. This activity took a month and produced 37
additional papers. Therefore, we ended up with a final set of 80 papers.

We analyzed the publication years and venues of selected papers. Figure 1 shows the number of published
papers that propose coverage metrics per year. Until 2004, the number of papers was one or less per year;
however, the number of published papers has increased since 2005.

Figure 2 shows the number of papers per venue. We explicitly reported venues where at least two
publications were published, while we grouped all venues with only one publication together in the Other
column. We found that many venues are related to software testing, software reliability, and software
engineering. We also noticed that 13 publications (16.25%) appeared in journals, and 67 (83.75%) appeared
in conferences/workshops/symposiums.

5
0
5
0
15
10

uno) uonedl|qngd

0

Venue

Figure 2: Publications per venue

3 Research Results

To answer RQ1, we examined the background of the proposed test coverage metrics for 80 studies. In
this section, we describe the results of surveying 80 studies proposing coverage metrics. It is arranged into
subsections according to the defined RQs.

3.1 RQI1: What are the objectives of the test coverage metrics proposals?
3.1.1 Backgrounds of Proposals for Coverage Metrics

To answer RQ1, we examined the backgrounds of 80 studies. The results show that a common reason
for proposing coverage metrics is to address the limitations of existing coverages. We also found that
each coverage can be divided into two groups: (1) general-purpose coverages that improve or complement
traditional coverages and (2) domain-specific coverages that are effective in particular domains. General-
purpose metrics were proposed in 20 studies, and 60 studies proposed domain-specific metrics. There are
12 domains, and the breakdown of the domains is summarized in Table 1.

3.1.2 Aims of General-purpose Coverages

This section explains the aims of the proposals for general-purpose coverage metrics.

Bug Detection. One of the aims of general-purpose coverages is to enhance the ability of tests to
detect bugs. For example, Aghamohammadi et al.[12] argued that incorporating the frequency of executed
statements into statement coverage leads to detecting faults more effectively. McMinn et al.[13] discussed
the test coverage criteria that are well correlated with real fault revelation.

Oracle Quality. It is perfectly possible to achieve 100% coverage and still not have any result checked
by even a single oracle. In the extreme case, a test code without any assertions at all that executes every
statement in the source code achieves 100% statement coverage. Some researchers tackled this problem. For
example, Schuler and Zeller[2, 14] proposed measuring the exhaustiveness of the verification of statements

by assertions.

Table 1: Domains

Category Domain # papers
Concurrent Programming 16
. . Object-Oriented Programming 10
Programming Paradigm . .
Multi-Staged Programming 1
Quantum Programming 1
Web Application 16
Service-Oriented Architecture 7
. Database Application 3
Application type —
GUI application 2
Android Application 1
Machine Learning Program 1
Fuzz Testing 1
Others i
Agile Development 1

Test Effort. Writing additional tests can be difficult and costly. According to a survey of practicing
software developers, a significant portion of this cost is due to the difficulty of identifying which parts of the
code should be tested[15]. Several coverage metrics have been proposed to effectively identify entities to be
tested. For example, Huo and Clause[16] proposed direct and indirect coverage that identify how entities are
covered by tests. The authors demonstrated that faults in code indirectly tested are significantly less likely
to be detected than those in code directly tested.

3.1.3 Aims of Domain-specific Coverages

In this section, we discuss the issues addressed by domain-specific coverage metrics.

Covering domain-specific entities. Most domain-specific coverage focuses on determining whether
the test covers domain-specific elements. Examples of domain-specific elements include thread synchro-
nization[17] and interleaving[18] in concurrent programs, inheritance[19] and polymorphism[20] in object-
oriented programs, and SQL statements[21] and DOM elements[22] in web applications.

More detailed information on the elements that each domain-specific coverage metric targets is provided
in Section 3.2.

Difficulty in Using Existing Coverages. In a few domains, it is difficult to take advantage of existing
coverage. For example, since multi-staged programs generate and run new program code at runtime, Kim
et al.[23] proposed to measure test coverage including generated code fragments detected by static analysis.
Ali et al.[24] focused on quantum programs. Testing quantum programs is challenging for several reasons,
such as the probabilistic nature and difficulties in estimating superposition states. The authors defined test
oracles to determine the passing and failing of test suites and proposed test coverage metrics based on the
inputs and outputs of a program.

3.2 RQ2: What kind of novel test coverage metrics are proposed?

This section describes the test coverage metrics proposed in the 80 studies we selected. We show the
characteristics of each metric according to the classification of the proposal backgrounds from our analysis
for RQI. Note that some studies presented multiple levels of coverage measurement granularity. Table
2 summarizes the characteristics of each test coverage, including effective domain, overview, information

required to measure coverage, and granularity of measurement.

3.2.1 General-purpose Coverage Metrics

Belli et al.[25] proposed a Test Segment Coverage as coverage that bridges the gap between branch
coverage and path coverage. Test segment coverage is the path coverage of each test segment (program
fragment composed of one statement or a sequence of statements). By adjusting the size of the test segments,
the thoroughness of the test coverage can be adapted to the needs of the tester.

Chen et al.[26] proposed a test coverage about variables. By calculating the program slice for a variable,
we can measure the test coverage for the code associated with that variable. In other words, the tester can
focus the test quality evaluation on important variables.

Koster et al.[27] proposed a State Coverage for test oracle assessment. This coverage measures whether
variables defined at code runtime are validated by assertions using control flow graphs and program slicing.

In the subsequent study by Vanoverberghe et al.[28], a general definition of State Coverage was proposed.

The authors’ definition does not require a specific structure for testing and allows more dynamic state update

identifiers (e.g., object identifiers) than nodes in the control flow graph.

Schuler et al.[2, 14] proposed a Checked Coverage. The concept of checked coverage is similar to state
coverage. This coverage metric requires testers to verify that statements that read or write variables or that
can affect the control flow of the program are checked by assertions. The authors consider statements on a
dynamic backward slice from an assertion as checked statements.

Zaraket et al.[29] proposed a property based coverage. This coverage derives from the hypothesis that
it is more effective to evaluate test suites based on their coverage of system properties than that of structural
program elements. The authors view a property as a logical expression in an assertion and annotation. By
using the property based coverage criterion, we can measure the test coverage for all the possible values that
variables in properties can take.

Whalen et al.[30] proposed an Observable Modified Condition/Decision Coverage (OMC/DC). OMC/DC
is a version of MC/DC that incorporates the concept of observability. The authors state that an expression
in a program is observable in a test case if we can modify its value leaving the rest of the program intact,
and observe changes in the output of the system. This coverage metric helps ensure that a fault encountered
when executing the decision propagates to a monitored variable.

Hassan et al.[31] proposed a Multi-Point Stride Coverage (MPSC). This coverage is equivalent to branch
coverage that incorporates the concept of dataflow coverage by taking into account the execution order of
each branch. By using a MPSC, we can more accurately predict the quality of a test suite than control flow
based coverage such as branch coverage. We can also more easily measure it than dataflow based coverage
such as def-use coverage[32].

Huo et al.[16] proposed Direct and Indirect coverage. The authors argue that it is useful in the man-
agement of testing resources to consider whether entities (e.g., functions, statements, and branches) were
covered directly or indirectly by tests. This is because indirectly covered entities are only peripherally
considered and are insufficiently tested[16].

McMinn et al.[13] proposed a fault coverage for software testing. Fault coverage is a concept in electronic
engineering that refers to the percentage of faults detected by tests out of a pre-defined list of faults. The
authors discuss the way to automatically generate fault coverage for software engineering by using a fault
database such as Defects4J[33].

Byun et al.[34] proposed a Flag-Use Object Branch Coverage (Flag-Use OBC). Object branch coverage
(OBC), branch coverage at the object code level, has the advantage of being programming language indepen-
dent and is amenable to non-intrusive coverage measurement techniques. However, OBC strongly depends
on differences in object code structure due to compilers and their optimizations. While OBC is a coverage
metric based only on jump instructions, Flag-Use OBC extends OBC to include many other instructions
involved in conditional behavior.

Someoliayi et al.[35] proposed a Program State Coverage. This coverage metric improves the ability
of line coverage to validate the effectiveness of the test suite. The authors consider the number of distinct
program states in which each line is executed. Program state coverage is calculated by the ratio of program
states executed in a line of tests to the maximum number of program states.

Subsequently, Aghamohammadi et al.[12] proposed a Statement Frequency Coverage. Program state
coverage has some limitations, such as the need to set a maximum number of states because we cannot
predict the number of possible states and the possibility of statements with infinite states during test execution.
Statement frequency coverage solves these problems by incorporating the frequency of executed statements

into the statement coverage.

Bollina and Gay[36] proposed a Bytecode-MCC, a new variant of Multiple Condition Coverage (MCC)
for bytecode. The authors focused on masking, which occurs when one condition prevents another from
influencing the output of a boolean expression. MCC is able to overcome masking within a single expression
but cannot do so when conditions are defined in multiple expressions. Bytecode-MCC groups related
Boolean expressions from the bytecode, reformulates the grouping into a single complex expression, and
calculates all possible combinations of conditions within the constructed expression.

Miranda et al.[37,38] proposed a Relative Coverage. This is a coverage measurement technique that
focuses on the test scope of testers. By focusing coverage measurement only on in-scope entities, we can
expect to improve the cost-effectiveness of testing. The authors also proposed four instances of relative
coverage: Operational Coverage[37], Social Coverage[37,39], Relevant Coverage[37,40], and Reachability
Coverage[38]. Operational coverage focuses on the operations performed by a specific user group. Relevant
coverage measures test coverage in the scope of testing reused code. Reachability coverage targets the input
domain that a specific user is expected to exercise. Social coverage is a coverage metric for Service-Oriented
Architecture (SOA) and will be described in Section 3.2.2.

Cox[41] proposed a Differential Coverage. This is a concept of classifying coverage information into 12
categories (newly added code is not tested, previously unused code is covered now, etc.) by comparing the
current version of the code with a baseline. Especially in large-scale development, the analysis of coverage
information is very costly. We can reduce the cost of coverage analysis by automatically classifying coverage
information using differential coverage.

Kolchin and Potiyenko[42] proposed a Required k-Use Chains Coverage. A k-use chain represents a
sequence of k-length def-ues pairs (pairs of variable definitions and uses). Existing dataflow coverages do
not directly require subpaths that pass a possible sequence of variable uses in conditions from a def-point
to a use-point directly associated with the def-use pair. The proposed metrics measure the test coverage of

sequences of def-use pairs.

3.2.2 Domain-specific Coverage Metrics

Concurrent Programming. Taylor et al.[43] pioneered a hierarchy of concurrency coverage criteria.
The authors extended the notion of structural testing coverage criteria to concurrent programs. The proposed
coverage metrics require tests to cover the paths of the concurrency state graph, in which the nodes represent
states of concurrent programs.

Cheer-Sun et al.[44] proposed All-du-path Coverage for parallel programs. This metric considers du-
pairs, triples (var, d, u) where var is a shared variable, d is a node in the parallel program flow graph (PPFG)
where the value of var is defined, and u is a node in the PPFG where the value is read. In other words, this
metric requires that a set of paths in which no node redefines the value of var is covered by tests.

Bron et al.[17] proposed a Synchronization Coverage. This is a practical coverage based on the idea that
coverage tasks should be well understood by users and be coverable by tests. This coverage is accepted by
IBM. Synchronization coverage has seven synchronous processes as coverage tasks.

Lu et al.[18] proposed five concurrent program interleaving coverage metrics. A fundamental problem
of concurrent program bug detection and testing is that the interleaving space is too large to be thoroughly
explored. These interleaving coverage metrics are practical and effective for systematically exploring
interleaving spaces and effectively finding concurrency bugs.

Trainin et al.[45] proposed coverage metrics for the detection of concurrent bugs. The proposed metrics

focus on the use of synchronization primitives (for example, synchronization processes defined using the

Java keyword synchronized) and do not directly consider thread interleavings. The authors referred to
two test coverage of synchronization block and synchronization pair.

Sherman et al.[46] proposed coverage metrics inspired by Synchronization Coverage[17]. These metrics
are designed for saturation-based testing in concurrent programs; hence there is no need to estimate the
executable domain of each metric. The authors use a combination of three basic concurrency metrics and
SiX contexts as coverage tasks.

Kfena et al.[47] proposed coverage metrics for saturation-based and search-based testing to reflect
concurrency behavior accurately. In previous work[46], the identification of elements was too rough
because Java types were used to identify threads. The proposed metrics more accurately distinguish the
behavior of objects and threads based on object identifiers and thread identifiers. The authors derived 11
coverage metrics from dynamic analysis designed for discovering bugs in concurrent programs.

Yu et al.[48] proposed a coverage metric based on a set of interleaving idioms. An interleaving idiom
is a pattern of inter-thread dependencies and the associated memory operations. In addition, interleaving
idioms can represent more general interleaving patterns.

Tasiran et al.[49] proposed a Location-Pairs Coverage for shared-memory concurrent programs. A
location-pair is a pair of two control locations that can access the same shared variable and can be executed
by two different threads. The test coverage of location-pairs directly corresponds to the atomicity and
refinement violations.

Steenbuck and Fraser[50] proposed a concurrency coverage metric. The authors focused on concurrent
executions of combinations of shared memory access points with different schedules. Therefore, this metric
requires covering all possible schedules for sets of threads, variables, and synchronization points.

Tasharofi et al.[51] proposed coverage metrics for concurrent programs based on the actor model[52]. In
actor programs, concurrent entities communicate asynchronously by exchanging messages. The proposed
metrics require covering all the sequence of receive events in the program execution at three levels.

Terragni et al.[53] proposed a Sequential Coverage. This coverage metric has a sequence of events
(write/read object fields, acquire/release locks and enter/exit methods) as a coverage task. We can measure
this coverage by a single thread execution of a call sequence.

Choudhary et al.[54] proposed a coverage metric based on the set of pairs of methods that execute
concurrently. Enumerating all possible interleavings (i.e., total orders of memory accesses) is practically
infeasible. Concurrent method pairs yield an effective approximation of possible and covered interleavings.
Therefore, this test coverage metric leads to efficient and practical interleaving coverage

Wang et al.[3] proposed a MAP-coverage. This coverage is based on memory-access patterns (MAP),
which are patterns of how shared variables are accessed by multiple threads[55]. MAP has often been shown
to be associated with the nature of multi-threaded bugs[55]. Thus, comprehensive testing of all MAP is
effective in finding bugs.

Guo et al.[56] proposed a All Synchronization Pairs Coverage. A synchronization pair is a pair of
synchronization statements, such as synchronize block, wait(), and notify() of an object instance.
The proposed metric measures the test coverage of synchronization pairs. Although there are too many
interleavings in a multi-thread program with a high number of threads, this coverage allows interleavings to
be checked efficiently.

Taheri and Gopalakrishnan et al.[57] proposed coverage metrics for concurrency in GO language. The
existing concurrency coverage metrics are primarily in the context of Java and C/Pthreads. They are

not necessarily applicable to languages like Go, as such languages have different concurrency primitives

and semantics. The authors proposed five coverage metrics that characterize the dynamic behavior of
concurrency primitives.

Object Oriented (OO) Programming. Hsia et al.[58] proposed coverage metrics based on Enumerate
Data Member (EDM). A class is said to satisfy EDM property if its state-related data members are of
enumerate type (e.g., type enum). The authors argued that each set of values assigned to the object should
be covered by at least one test for classes satisfying EDM property. They provided three levels of coverage
metrics.

Chen et al.[59] proposed Object-Flow Coverage criteria. The proposed metrics are based on binding
of the possible classes with the program variables and object def-use pairs (pairs of object definitions and
uses). We can identify object bindings and def-use pairs by using an object control flow graph whose nodes
are statements that define or use an object.

Alexander et al.[60] proposed Coupling-Based Coverage metrics at three levels. These metrics focus on
coupling relationships among procedures and measure the test coverage of coupling paths (paths between
definition and use of state variables) of objects having dynamic binding.

Fisher et al.[61] proposed Change-Based Coverage metrics. The authors focused on the impact of code
changes based on the assumption that a disproportionate number of faults are likely to be present in recently
modified codes. This study defines four test coverage metrics for changed and added entities (e.g., methods
and statements) in the context of OO.

Najumudheen et al.[20] proposed criteria for method call, inheritance, and polymorphic coverage of
OO programs. These metrics are defined on the Call-based Object-Oriented System Dependence Graph
(COSDG), a synthesis of the dependence graph, call graph, and flow graph. COSDG incorporates details
such as class, dependence, flow, call, inheritance, and polymorphism.

Baldini et al.[62] proposed coverage metrics based on the program dependencies of methods. The
authors introduced a Def/Use table that represents define-use pairs of methods based on the data members
of every class. The proposed metrics measure the test coverages of all elements in the Def/Use table at three
levels.

Biswas[19] proposed Control Dependence Inheritance Coverage metrics based on JSysDG (Java System
Dependency Graph). Each time a tested class is reused through inheritance, we must retest it under a
new usage context[63]. Therefore, the cost of testing OO software can significantly exceed that of testing
procedural programs. By using these metrics, we can effectively measure the test coverage of control
dependencies associated with inheritance.

Mukherjee et al.[64,65] proposed coverage metrics in response to the fact that structural coverage metrics
for integration testing of OO programs have been scarcely reported. These coverage metrics are based on
data and control dependencies in the classes being integrated defined on JSysDG.

Mukherjee[66] also focused on testing safety-critical software, such as nuclear power plants, in the OO
paradigm. Safety-critical software requires thorough testing; however, traditional coverage metrics suffer
from several shortcomings. The authors proposed test coverage metrics that cover program dependencies
more robustly and can detect faults at inter-object data dependencies.

Multi-Staged Programming. Kim et al.[23] proposed a New Decision Coverage for multi-staged
language. Multi-staged language is a programming language that can generate and execute new program
codes in execution time. Because it is hard to estimate what code fragments would be generated and
executed in multi-staged language, traditional coverage is not suitable for multi-stage languages. New

decision coverage metric measures the test coverage of both branches that already exist in the program and

10

those generated at runtime. In the study, this metric is designed for a two-staged language.

Quantum Programming. Ali et al.[24] proposed input/output coverage metrics for the quantum
program. Testing quantum programs is difficult due to the inherent characteristics of quantum computing,
such as the probabilistic nature and computations in superposition. However, automatic and systematic
testing is necessary to guarantee the correct operation of quantum programs. These proposed metrics are
based on the inputs and outputs of the quantum program and measure the comprehensiveness of tests without
destroying the superpositions of the quantum program.

Web Application. Sampath et al.[67] proposed coverage criteria intended for testing web applications
at a page level. The authors defined URL coverage at nine levels. A URL consists of a base address and
possible pairs of input field names and their values as per the RFC definition <protocol>://<host> [:<port>]
[<path> [? <query>]][68]. The coverages report the static pages (URLs) visited during test execution for a
given web application by using a user session.

Bai et al.[69] proposed test metrics based on Web Service Description Language (WSDL)[70] elements.
The authors considered that testing of web services should cover four elements: parameters, messages (input
and output), operations, and operation flows.

Smith et al.[21] proposed a SQL statement coverage for SQL injection input validation testing. Tra-
ditional coverage metrics cannot highlight how well the system protects itself through validation. SQL
statement coverage metrics measure the test coverage of SQL statements or input variables of SQL state-
ments. Coverage data based on these metrics can provide specific information about insufficient or missing
input validation.

Jokhio et al.[71] proposed two specification based coverage metrics: boundary coverage and transition
rules path coverage. Boundary coverage refers to boundary conditions such as minimum and maximum
values for parameters. Transition rules path coverage refers to the different execution paths that the program
may follow when receiving a given request. These are based on the goal specification that specifies the user
objectives.

Dao et al.[72] proposed coverage metrics for security testing of web applications. In many real web
applications, security sensitive sinks (e.g., functions that write data) are wrapped by wrapper functions and
called indirectly through these wrappers. The authors proposed three levels of coverage metrics for security
sinks.

The authors also proposed a Security Sensitive Data Flow Coverage[73]. They considered that test
cases should cover as many security sensitive data flows as possible to get high vulnerability detection
effectiveness. This metric measures the test coverage of security sensitive branches that contain calls to
security sensitive sinks or propagation of the values of security sensitive variables through assignments.

Alalfi et al.[74] proposed coverage metrics for dynamic web applications. Faults in web applications
are often caused by insufficient test coverage of complex interactions between components. These coverage
metrics are based on the client and database interactions and require testing server pages, SQL statements,
and server environment variables.

Alshahwan and Harman[75] proposed coverage metrics based on HTML output uniqueness. The authors
considered that raising the diversity of the output could lead to test suites that are more effective at exposing
faults. The proposed metrics measure the test coverages of unique outputs at four levels. In a subsequent
study[76], the authors extended their previous work[75] and proposed three additional coverage metrics.

Sakamoto et al.[77] proposed a Template Variable Coverage for a web application that is generated using

template engines. Template variable coverage focuses on the variables and expressions for embedding in

11

HTML templates, which are important for testing a web application’s functionality related to the dynamic
content of an HTML document. This metric measures the test coverage of template variables.

Zou et al.[78] proposed a Hybrid Coverage criteria, which combines HTML element coverage with
statement coverage of the code. The authors focused on richer iterations between client-side and server-side
in dynamic web applications. Thus, the key idea of hybrid coverage is to combine the runtime client-side
and server-side features of the web application. This coverage metric requires that tests cover all HTML
elements and statements.

Zou et al.[79] also proposed a Virtual DOM (V-DOM) Coverage. This coverage metric is based on a
V-DOM tree produced by a server script, a logical aggregation of all the possible DOM trees that represent
pages on the client side. By measuring the test coverage of the V-DOM element in the V-DOM tree, we can
consider executions on both server-side and client-side.

Mirzaaghaei et al.[22] proposed DOM Coverage metrics. Web application tests generally interact with
the DOM. The authors argued that the DOM itself should be considered as an important structure of the
system that needs to be adequately covered by tests. Based on this idea, this paper proposed six coverage
metrics related to the DOM state.

Ed-douibi et al.[80] proposed coverage metrics for REST API. REST APIs are commonly described using
languages such as the OpenAPI! Specification (OAS). The proposed metrics measure the test coverages of
API elements based on the OAS at four levels.

Martin-Lopez et al.[81] proposed coverage metrics for RESTful API because there are no standardized
coverage criteria for black-box testing of RESTful API. These metrics measure the test coverage of elements
related to API requests/responses. The paper provides four levels of coverage metrics for each of the API
requests and responses.

Nguyen et al.[82] proposed coverage metrics for output-oriented testing of a dynamic web application.
These coverage metrics measures test coverage of string literals output and decisions that affect the output.
Using these metrics helps to identify presentation faults such as HTML validation errors and spelling errors.

Service-Oriented Architecture (SOA). Mei et al.[83] proposed coverage metrics for WS-BPEL[84]
applications (a kind of service-oriented application). WS-BPEL applications use XPath extensively to
integrate loosely-coupled workflow steps. The authors presented test coverage of the XPath query at three
levels. These metrics aim to identify defects in service compositions that are caused by faulty (or ambiguous)
XPath expressions selecting a different XML element at runtime than the one that the composition developer
intended to be selected.

Bartolini et al.[85, 86] developed the notion of Relative Coverage that takes into consideration how the
service is used by the client. Relative coverage adapts to a tester’s context and measures the ratio between the
covered entities and those that are considered relevant in the given situation and environment. The authors
also proposed WSDL[70] based coverage metrics at three levels[87]. An interface of SOA is generally
specified in WSDL. These metrics measure the test coverages of service interfaces.

Hummer et al.[88] proposed a k-Node Dataflow Coverage to significantly reduce the search space of
service combinations in the integration test of dynamic composite Service-Based Systems (SBSs). This
metric is based on the dataflow of service composition. By restricting the paths for coverage measurement
to all k-length paths in the dependency tree, where a service composition is considered as a node, we can
reduce the number of dataflows to be covered by tests.

In 2014, Miranda et al.[37, 38, 39] proposed a Social Coverage. This is the instance of relative cov-

thttps://www.openapis.org/

12

erage[37,38]. Social coverage was conceived for black-box environments having some notion of testing
community (i.e., several users/programs using/testing the service under test). This metric measures test
coverage for the in-scope entities identified by information about the entities invoked by similar users in the
same test community. The authors assume that the service provider will measure this coverage and provide
it to the customers.

Sneed et al.[89] proposed coverage metrics based on the structure and content of the service interface.
These are test coverage of input/output parameters or combinations of parameters in input/output messages.
Using these metrics, testers can evaluate test quality without considering the source code in SOA, where
they cannot access the source code of the service under test.

Database Application. Cabal et al.[90] proposed test coverage of SQL SELECT queries. This coverage
metric requires a coverage tree built from each SELECT statement encoding the conditions specified by the
where and join clauses of the query. This means that 100% coverage is achieved when the entire coverage
tree is covered.

Willmor and Embury[91] proposed eight test coverage metrics for database applications. These coverage
metrics focus on the structural and data-oriented elements of database systems. By using the proposed
metrics, we can check the test coverage of the structural aspects of the database application (e.g., operations,
transaction statements, and entities represented in the database) and the possible def-use pairs of database
system operations.

Halfond and Orso[92] proposed a Command-Form Coverage that is focused on the application-database
interactions. Most database applications dynamically generate commands in the database language (usually
SQL), pass these commands to the database for execution and process the results returned by the database.
Thus, this coverage metric measures the test coverage of all the possible SQL command forms that can be
issued at each database interaction point.

GUI Application. Memon et al.[93] proposed coverage metrics for GUI testing. The input to a GUI
consists of a sequence of events. The proposed metrics thus focus on events in the structure of the GUI and
measure the comprehensiveness of testing for events and event sequences.

Zhao and Cai[94] proposed GUI coverage metrics based on the event handlers in the source code of GUI
applications. The authors focused on data interaction relationships between event handlers and defined two
coverage metrics. These metrics measure the test coverages of event handlers and definition-use handler
pairs (pairs of a handler that sets a variable and one that uses its variable.).

Android Application Jabbarvand et al.[95] proposed an eCoverage. This study aims to reduce the num-
ber of tests in energy testing of Android applications. eCoverage takes into account the energy consumption
of segments (methods or system APIs). By using this metric, we can measure test coverage of energy-greedy
segments that highly contribute to the energy consumption of the application.

Machine Learning Program. Nakajima et al.[96] proposed a Dataset Coverage for Machine Learning
(ML) programs. The control structure of the ML program is so simple that any execution of the program takes
all control paths if the input training dataset is not trivial. Dataset coverage focuses on the characteristics of
the population distribution in the training dataset in metamorphic testing.

Fuzz Testing. Tsankov et al.[97] proposed a Semi-Valid Input Coverage for fuzz testing. Traditional
coverage metrics do not measure what fuzz testing is all about, namely, executing the system with semi-valid
inputs. Semi-valid input coverage metric measures to what extent the tests cover the domain of semi-valid
inputs, where an input is semi-valid if and only if it satisfies all the constraints but one.

Agile Development. Rott et al.[98] proposed a Ticket Coverage for agile development. This coverage

13

unveils which of the changes made in the course of a ticket are left untested. This metric measure test
coverage of the methods that were added and changed during the implementation of a given ticket and helps

to systematically focus testing efforts on changed code.

14

aeIs

sared asn-Jop jo aouanbag

«Kuy

AUy

AUy

wAuy

AUy

uonipuo)

juow

-311)S YOr JO UONNIaXa Jo Aouanbaig

Jre)s werdoid

uononnsuy
oo pajerauas-oine uo spuado(g

wAuy

soyoueIq Jo dduanbag

UOISIOdp PUE UONIPUO))

Kyradoid ur opqerrea jo anfep
SUOT)IASSE AQ UOTEPI[BA JUSWID)BIS
SUOTIASSE AQ UOTIEPI[BA [QBLIBA
SUOT}IASSE AQ UOIEPI[BA Q[QBLIBA
ped

ped

ydeisd 9e)s Aouarmnouo)

sared asn-Jap Jo seouanbas Jo Jog
K10)S1Y UOTSIOA

Pas1019x2 3q 0} pajdadxa urewop nduy
sjurensuod urewop indug

9[yoid [euoneradp

adoos a3es

9p0o9)4q ut suorssardxe uesjoog
JUSWIAJE]S OB JO UONINIAXI JO JOqUINN

QUI[YOBA JO UOTINIIXD JO JOqUINN

9p0d 193[qO
aseqeiep J[neyq

spoylow pue §1s9) 03 sannud Jurddejy

SQUOURIq JO JOPIO UOTINOAXF

suorssardxe uea[00q Jo ANIQEAIISqQO

sanradoad ur sajqerrea jo sanfea a[qissod [y
SQOI]s JrwreuAq

s901]s weagoid pue ydei3 moy [onuo)
s9011s wieaSoad pue ydei3 moy jonuo))
$901[s weidoid

ydei3 mopy jonuo)

swreagoid juarmnouod 0y swerdord feinp
-9001d 10} 95819409 159 JO UOTIOU AY) PUAXH
93eI0A0D MO BIRp

3unsIxe ur paropIsuod jou syjedqns 10a0D
S911039)8D

1 OJUI UOBULIOJUT 95BIIA0D 90D AJISSR[D
195N YO

-ods © Aq pasrorox? urewop jndur uo sndoq
1X9JU09 (9SNAI)

MIU Ul 9POd PISNAI JO SONNUS UO SNO0]
dnoi3 1osn

oyroads e £q pawrioyred suonerodo uo snooq
sonnud 9dods-ur uo snooq

DDA uey) wajqoid Sunysew 9y} SWOOIAQ
[S¢]oTeI10A00 Q30)S

wel3oid Jo SSUI09)I0YS [BI9ARS QWOIIAAQ
S0 UONNIIXD

0] I 93LI0A00 QUI] UeY) K[OATIOO]J QIO
1monns 1[Idwod

U0 20uapuadap MO YIIm [9AJ] 9p0d 103[q0 1Y
sSnq [enjoe YIIm aUI[UT SOLIIOW 958I9A0D)
spoyjow

PaIsal Apuarorgnsur - AJnuapr A[oAnoayyg
sayoueIq Jo I9p

-I0 UONNJ9Xd SULIOPISUOD dFBIIA0D YourIg
K)1[1qeAIasqo

SurapIsuod £4q DA/DIN UeY) SNOoIOSLI IO
uonejouue

pue suonuasse ur sanradoid Jo 93e10A00 189,
Kyenb o1ovI10 159) SSISSY

[£z]98e10A00 93E1S JO UOIUYIP [BISUID)
Kyipenb 9ovI0 159) SSISSY

so[qerTeA juelsodwr uo snoo,j

98810909 159) JO ssauy3noloy Isnlpy

*3o1d yuarmouo)

asodind-[erouan
9sodind-[erouan
osodind-erouan
asodind-[erouan
9sodind-[erouan
asodind-[erouan
asodind-erouan
asodind-[erouan

asodind-[erouan

asodind-[ersuan
asodind-[erouan

asodind-[ersuan

asodand-[erouan

osodind-erouan

asodind-[ersuan
osodind-erouan
9sodind-[erouan
asodind-[ersuan
9sodind-erouan
9sodind-[erouan

[¢4]198eI10A00 KoUa1INOUO))

[2#]oSe10400 sureyd asn-y parmbay

[1+]98e10A00 [ETIURIRYIQ

[8¢]o3e10A00 ANITIqRYOBYY

[0t ‘L €]98e10A00 JURAS[OY

[£¢]o8eI10A00 TRUONIEINAO
[8¢ ‘L€]o8r10A00 dATIRIOY
[9€]DDN-opodaIkg

[z1]1e8e10A00 Kouanbaiy juowoier§

[G¢]oTe10A00 9383S WeIS01d

[1¢]98e10A00 yourlg 109[qO 9sn-3e[d
[€1] @8e109A00 3N

[91]98®10A09 J0311pU/A02II

[1¢]98e10A00 9p1ns Jutod-nnA

[0€1DA/OIN s1qeA1sqO

[6Z]95e10A00 paseq Ky1adoig
[#1 ‘z]oe10A00 pRNOAYD
[8Z]95e10A00 301G
[£Z]o8e10A00 93035
[9z]sa1qeLrea ;noqy
[cz]o8eI10A00 JUuowIFas 159,

Kre[nueln)

uonewIONUT paImbay

MITATOAQ)

urewo(q

Eriaeitle)

$a3eI19A0)) 1591, pesodoid :7 d[qe],

15

Kouapuadap [onuo)
1red osn-Joq

1183 POyISIN

xAuy

yied Suridno)

ared asn-Jop 10 Surpurg
juowugisse 192[q0
aantwd £ouarmnouo))
ared uoneZIUOIYOUAS
[sg]uroned ssaoor-A10WRA
Ired poyiow JUALINOUOD)

SJU2AQ JO ouanbag

SIUOAD SAT0AI JO douanbag
SurABa[UI peAIY],

ared-uoneso]

woIpt SurABIIUL
JIOTABYQq UONBZIUOIYOUAS
IOTARYQQ UOTJBZIUOIYOUAS
aantwd uoneziuoIyouks
Suraeopuy

JOTARYQQ UOTIRZIUOIYOUAS

yed

DAsAse

QIqeI 3s(1/J=d

DASOD

KIOISIY UOISIOA

ydei3 moy jonuo)

ydei3 mop [0nuod 103[qQ
sjuawugIsse 199[qo 9[qIssod
soAnIwLId A5UQIINOU0D JO 1S
ydei3 peaiyy Ired uoneziuoIyouks
[ss]suraned sseooe-AI0WwWI 9[qISSOJ
sared poyjow JULLINOUOD JO JO 19§

soouanbas [[eo poyjow AqIssoq

SJUQAQ QATAOAI Jo seouanbas o[qrssod [Ty
SSUIABS[IAIUT PRAIY) JO 10§

sared-uonesof Jo 198

SWOIPI SUIABI[ISIUT PEAIY) JO 125
$109(q0 pue SpEAIY) JO JOTABYAQ SWIUMY
SPEAIY) JO IOTARYSQ SWNUMY

SPeaIY) JO JIOTARYAQ dWNUMY

SPeAIY) JO IOTARYIQ SWNUNY

SPeaI) JO IOTARYAQ dWNUMY

ydei3 mopy wesoad [o1ered

QoueLIdYUI y3noay) serouspuadap Iopisuo))
SOSSEB[O Ul

SIOqUIOWI BJEP JO 9SN PUB QUYSP UO SN0
sweidord QO 01

anbrun are jeyy serouspuadap Yy 19pIsuo)
s)[ney uors

-591321 SUI[BOAQI UI QATIOYJR 9q 0} Pajoadxyg
SoINpad

-01d Suowre sdiysuonjear Surdnod uo snooq
§109[qo JO InolAeyaq OIUIRU

-Ap pue wstydiowA[od ‘9oue)LIaYUI UO SN0
so1e1s 109[qO 0] PAB[aI SINEJ [BAAY
d3en3ue] OO UI ADUALINOUOD UO SNIO]
APUaloLya sSUIABI[IUI PLAIY) oY)

s3nq popeaiyl-ninw puy djog

93eI0A00

Suraeapour feonoeld pue JUADLS 0) SPLAT
uon

-NO9Xa pealy) [3uIs & AQ 93BIA0D AINSLIN
Sliene]

oFessowr SUIATOOAI JO SO[NPAYDS UO SNOO
SO[NPaYDS UONINIIXD JUSLINOUOD UO SNI0]
SUONE[OIA JUSWIAUYAI

pue Ajrwole Yy 0} spuodsariod Apoarqg
uroned

Suraeapo)uI [RIOUAS 210W B 0) spuodsalrio))
[9p]110m snoradxd

uey) SpeaIy) Jo Jolaeyaq AJ1uapl A[o1eInody
JLIoW Yoed Jo

Urewop 9[qejnoaxd Y} JLWISI 0} PISU ON
SoATIT

-wid UONEBSIUOIYIUAS JO SN AY) UO SISNI0,]
93.10A09 SUIABI[IAIUL QATIOR pUB [BONORI]
swei3oid JuaLIou0d 10J 93BIA0D [Bo1dRI]
sweagoxd [orered 0y sweidoid feinp

-9201d 10} 9319409 159) JO UONIOU A} PUAIXH

3oxd 0O

‘Soxd 0O

‘3oxd 0O

‘3oxd 0O

‘3oxd 0O

‘3oxd 0O
‘3oxd OO

‘So1d juarmouo))
‘Soad yuarmouo)
‘3o1d yuarmouo))
‘Soad yuarmouo))

‘3o1d yuarmouo)

*3o1d yuarmouo)
‘3oad yuarmouo))

*3o1d yuarmouo)
‘Soad yuarmouo)
‘3oad juarmouo))
*3o1d yuarmouo)
‘Soad yuarmouo)
‘3o1d yuarmouo)

*3oad juarmouo))

‘3o1d yuarmouo)

[61]98e10A00 QoUR)LIOYU]

[29]98e10A00 1red 9sn-Jog

[0Z]98e10A00 [[B0 POyl

[19]93e10A00 paseq-a3uey)

[09]93e10A09 paseq-3urdno)

[6S]98®10A00 MOY-192[q0
[8S]roquuiaw Bjep S)RISWNUS UO Paseq

[L§]Sue 0D 104
[96]98e10A00 sared uONLZIUOIYOIUAS [[V

[¢]98e10A00-dVIN

[$S]o8e10A00 sired poyjow JuaLINOUOD)

[¢G]oSeI10A00 [ETIUSONDAS

[16]weadod 10108 10,
[0S]98e10A00 AdUa1INOUOD)

[617]93e10A09 sired-uoneoo]
[817]98eI10A00 SurAvaIAIU]

[L]ee10A00 J0TABYRq AOULIINOUOD)
[9¥7]98e10A00 paseq-uoneInies
[S]oSeI10A0 2AnTWILIA UOTJBSTUOIYIUAS
[81]28e10A00 SurAa[IIU]

[£1]9319A00 UONRZIUOIYIUAS

[$t]98eI10A00 Yed-np-11y

Ajrenuein

uoneuLIojur parmboy

MITAIAQ

urewo(]

a3e1an0))

16

SIOLId UONEPIEA TINLH

UOISIOAP 1O [e1)I Sulng s[erayn| Surns woij paonpoid indino 9[qissod se yons syney uonejuasaid Aynuopr djog ‘dde qopmy [z8]95e10000 IndinQo
sasuodsax sasuodsax sasuodsar pue

pue sisonbal [y 0] paje[al sannuyg pue sisanbal [y 01 paje[al sANNUQ JO 19§ $1sanbal [V 01 Paje[al SJUSWI[O UO SNJ0] ‘dde qom [18]98e10A00 osuodsaisonbar [y
suoneoyroads

JUQWOLR [V JUQWO [dV JO 1S IV Uuo Surkfer Sunse) [Jy LSHY UO Snooq -dde qom [08]eSe10400 JUOWId[e [V
Sunsay uoneord

JUWISA 10 kIS INOA ydei3 mopg a1e3s WO -de qam ur WO IN0qe UOTBULIOJUT 9PIAOL] ‘dde qom. [zZ]98e10000 INOQ
opIS-JuaId

INOd-A 90 ZNOd-A PUE 9PIS-IOAIDS 0] UO SUOTINIAXA JIPISUOD) ‘dde qom [61]9310405 NOQ [EMIIA
OPIS-IOAIOS PUE IPIS

JUQWeIE)S PUE JUAW[TINLH SJUOWIAIL)S PUB SJUOWA[TIALH JO 10§ -JUAI[O U0dM]aq SUOIILIN JOUILI UO 9SNO0 -dde qom [8/ 198100 PLIQAH
S}[NSAI UONNJIXD dY) 0} Sul

J[qerea ayerdwiay, sa[qeriea 9)e[dwa) Jo 105 -puodsariod SJUANUOD JIWRUAP Y} JBPI[BA ‘dde qom. [£L]98e10A00 9[qeLIeA e[dway,
ndino oy Jo Ays1on

anpea ndinQ syndjno jo sonjea 9[qIssod -Ip Yy Juisrer Aq synej asodxa AfpAndepyg ‘dde qom [9£ ‘G]e8e10A00 ssaunbrun ndinQ
Jrqrssod se

[oueIq SAT)ISUS KJLINOAS SOUOULIq QAT)ISUSS AJIINDAS JO 1S SMOY BIep QATISUQS AJLINOS AUBW SE JOA0D) ‘dde qopn [£/]0510A00 MO BIEp QATISUSS AJLINOAS
aseqelep pue

SUONoBIANUI 0) PAje[al AINug UOIRULIOJSURT} UONBJUSWINISU] JUSI[O Ud9M)Qq SUONORIANUI XI[dWwod 19A0D) ‘dde qom [19310405 UONORIAIUT
SANI[IqeIdUINA AJLINOAS Sur

yurs A11noas SYUIS AJLINDJS JO 1S -[BAAI UL 9)Ins 159) © Jo Ayfenb ay) ojenfeay ‘dde qom [z ,]98e10A00 NuIs Ayubog
yied opna S9AT}03[qO Tasn Yy

uonisuel} 10 UONIPUOd Arepunog uoneoyroads [eon sayroads Jeyy uoneoyroads (o3 ay) uo paseq ‘dde qop [1L]98e10A00 paseq-uoneoyroads
uonepifea Jndur SurssIu 1o Judrd

J[qerea ndur 1o Juswaje)s [bg so[qetea jndur Jo syuowaless [bs Jo 30§ -iynsur noqe uoneurIojur dydads IpIAoIg ‘dde qopm. [1Z]98e10A02 Juowaiels 1OS

JUSWAT TASM SIUQWAL TASM JO 198 SJUQWIALO TS UO SN0, ‘dde qom [69]98e10A00 Paseq-TASM
suoneord

(TdN) 23ed gop uoIssas 1osn) -de qam JO SONSLIAIORIBYD IIWERUAP UO SNO0] ‘dde qom. [£9]oSeI10A00 a3eg
swei3ord wmuenb jo suon

anfea ndinQndug son[ea ndino/ndur prfea Jo 30§ -1sodiadns Surkonsap noyym aFeIdA09 s3], ‘So1d wnueng) [#Z]98e10400 IndinQ/Andug
Qwinuni e

uoIsIq uonNNOIX Ul pAJeIouasd sJudwdesy 9po) PoIeIAUAZ ApOJ Ul papN[oul sAYouelq d[puey ‘Sue[paeis-om], [£2]23e10A00 UOISIOOP MON

ared asn-Joq DASAST Apsnqoz serouspuadap werdord 1040 ‘3oxd 0O [99]a1eMIJOS [BONLID-A)QFes 10
Sunse) uoness

Kouapuadop [onuood pue vleq DJSAS[-9)ul PIseq-OLIBUIIS Ul passiwt s3nq 19932 ‘3oxd 0O [S9 ‘49]3unsa) uoner3aur 10

Ajrenuein uoneuLIojur parmboy MITATIAQ urewo(a3e1an0))

17

juowrdoeaap = “dojaaap ‘Sururea surydep = A ‘uonesrjdde = ‘dde ‘SurwrwerSord = ‘Soxd

(*919 ‘poyrow ‘yourlIq ‘JuUIWA)LIS) AJLIe[nueIs AUB JOI[S UBD IM

PO

nduy

sjasejep Jo AJoLIep

JuowFas Apaaig-A31ouyg

Io[puey JUAYg

9ouanbas 1uAd 10 JuaAyq

puewitaod aseqered

bﬁ& 9SN-Jap IO JudWI[3 [eInidnng

K1enb 1597T4S 10S

101} B 0) PAYR[AI SITWWO))

sjurensuod nduy

jasejep d[qeredas Apreaur|

syuow3as jo ydeis [re)

SIOTPUBT] JUAAD JO 128

ydei3 mop juoag

SVAN [oAQ[-IajorIeyD)

ydeid moy jonuo)

913 a8e19A0))

Q01A

101 © Ur
9pod padueyd uo syIohe Sunsdy snoojy djoH
syndur prjeA-1was jo

UTewop 9y} SI9A0D SIS} [[om MOY QINSEBIJA]
Kou

-BA JaseIep JO suld) ur Afenb 1s9) Sjenfeaq
(SIdV WR)sAS 10 spoyjour) sjuowa

-3os jo uondwnsuod ASIoue Y} IAPISUOD)
SIO[pURY JUSAD UIIM)

-0q sdIysuone[aI UOIOBISIUT BIEP UO ISNO0,]
9po9 uey]) 10BNSqR AI0W

yonw aJe Jey) saouanbas Jueas 1[N0 [pueH
suon

-oeIouI 9seqejep-uonesrdde ay) uo snooq
Nlielie]

-]0 PAIUSLIO-BIEP PUB [EINJONI)S Y} UO SNOO,]
SIUOWIA)R)S

LOATHS JO [9A3]) 1e s)[nej 1003ap 0} d[oH
VOS UI 9p0d 90I1n0S

‘dojoaap 913y

3unsay, zzng

sweadoxd A

‘dde proipuy

‘dde 10D

dde 10D

‘dde aseqereq

‘dde oseqereq

‘dde aseqeie(q

[86]95eI10A02 Ja3jO1],

[L6]98e10A00 Indur pryea-TwWOg

[96]98e10A00 Jasereq

[S6]o8eI10A0D0

[6]93e10A09 J19[pURY JUAAD 1D

[£6]98.10A00 JU2Ad [ND

[26]93110A00 WLIOJ-pUBWIWO))

‘dde oseqejep 104

[06]98e108000 TOS

sagessow ur I)owWeIed -I19s Jo surewop jndino pue indur 9)o[dwo) 9y SULIOPISUOD JnoYIM AJifenb 1s9) djenjear] vOS [68]95e10A00 a3essow ndinQndug
SWASAS paseq-yOS

uonerado Aunuwwod 3s9], JO $12)$9) 03 1SAIAUL JO suonerado uo sndoq VvOS [6€ ‘8¢ ‘L £]o8RI10A00 [B100S
159) UONRIZAIUI Ul SUONBU

mopeIe(SOOIAIDS U9IM]AQ SAIOUIpUAdop BIEP JO SI], -IqUIOD JITAIAS JO 90eds UoIeds ay) aonpay vOS [88]98e10A00 mopyeIep 9PON-Y

Q0BJIOIUT QOTAIS uoneoyroads TASM SOOBJIIUI AOTAIOS UO SN0, vOS [£8]98e10A00 Paseq-TASM

wAuy adoos 189, 2d00s 159} UT SANIIUS UO SN0, vOS [98 ‘G8loSe10A00 dATIE[OY
suorssaidxo yjedx Aq pasned

K1anb yregx ydei3 Sunumarypedx synej uonisodwod 901A1ds Surkynuopy VvOS [¢g8]o8eI10A00 K190b YegX

Ajrenuein uoneuLIojur parmboy MITATIAQ urewo(a3e1an0))

18

4 Discussion

This section takes a high-level view of the studies covered in our survey. Through this activity, we

discuss future directions for research on test coverage metrics.

4.1 Domains of Studies

As shown in Section 2.3, the number of studies that propose test coverage metrics tends to increase
after 2005. We consider that the cause of this is the recent increase in the scale and complexity of software
development and the diversity of software (e.g., the emergence of new programming paradigms).

We identified the domains of coverage proposal studies in our analysis for RQ1 and summarized them
in Table 1. The results show that the research field is well-established in concurrent programming, object-
oriented programming, web applications, and service-oriented architecture. On the other hand, there are
a few studies in some domains, such as quantum programming and android applications. This analysis
suggests that there are many domains in need of effective coverage metrics.

4.2 Available Tools

Many tools for test coverage measurement were developed in selected papers. However, most of them
were created for the evaluation of proposed coverage metrics and are not available. As of January 2023, only
nine tools are available. These tools are listed in Table 3. This makes it difficult for developers to actually
use the proposed coverage metrics or for researchers to evaluate the coverage. Therefore, it is desirable to

build available tools for coverage measurement.

4.3 Evaluation of Coverage

The 13 studies did not evaluate their proposed coverage metrics [13,19,23,29,38,41,42,58,64,66,69,71,
91]. Although the theoretical definitions of coverage metrics were discussed, it is challenging to determine
their actual effectiveness without evaluation. From a practical standpoint, it is necessary to evaluate each
metric to accurately assess their effectiveness, including their ability to measure test effectiveness and the
cost of using them.

Table 3: Available Coverage Measurement Tools

Tool Coverage URL

no name[34] Flag-use OBC https://github.com/tj-byun/object-coverage-criteria
gendiffcov[41] Differential coverage https://github.com/henry2cox/lcov/tree/diffcov_initial
Maple[48] Interleaving coverage https://github.com/jieyu/maple

CovCon[54] Concurrent method pairs coverage https://github.com/michaelpradel/ConTeGe/tree/CovCon
MAPTest[3] MAP-coverage https://github.com/sail-repos/Map-Coverage

GOATI[57] For GO language https://github.com/staheri/goat

DomCovery[22] DOM coverage https://github.com/saltlab/DomCovery

no name[80] API element coverage https://github.com/opendata-for-all/api-tester
WebTest[82] Output coverage https://github.com/git1997/VarAnalysis

19

5 Conclusion and Future Work

In this paper, we conducted a survey of papers proposing test coverage metrics in the last three decades.
We analyzed 80 papers and answered two research questions to organize proposed coverage metrics. Our
first research question considered the backgrounds of proposals for each metric. We investigated the
problems that each coverage aims to address. As a result, we found that proposed coverage metrics can
be classified into two categories: (1) general-purpose metrics that improve or complement traditional
coverage and (2) domain-specific metrics that are effective in particular domains. Both metrics aim to
address the limitations of existing coverage. Generic coverage aims to improve or complement traditional
coverage in a domain-independent context, while domain-specific coverage focuses on testing domain-
specific elements. Our second research question set out to identify and organize the characteristics of
proposed test coverages. To that end, we examined and summarized the overview, the domain, the necessary
information for measurement, and the granularity of measurement for each coverage metric. A catalog of
novel coverage metrics would help developers and researchers to select suitable metrics in their context.

Our future work includes the following:

Development of coverage measurement tools. We found that only nine of the 80 studies disclosed
the tools to the public. We consider that it is important to develop and publish the coverage measurement
tool. Creating tools and explaining their design and implementation will help developers and researchers.
Furthermore, making the tools available will assist in the actual development and facilitates the comparison
of coverage metrics.

Evaluation of coverage metrics. Thirteen studies did not perform the evaluation of the proposed
coverage metric. It is difficult to consider the use of coverage metrics without assessing their ability
to measure test effectiveness and the costs of using them. Therefore, we plan to evaluate the proposed
coverages from a practical standpoint. We also intend to identify the advantages and disadvantages of each
metric by conducting a comparative evaluation. This analysis will result in the determination of the optimal

coverage from multiple perspectives.

20

Acknowledgements

I am deeply grateful to Shinsuke Matsumoto, Assistant Professor, for his careful support and guidance
throughout the entire process of this study. He provided enthusiastic and attentive guidance from the
consultation stage to the writing of my thesis. In addition, I was also provided with valuable advice that will
be beneficial to my future career outside of my research.

I would like to extend my sincere thanks to Professor Shinji Kusumoto. During my undergraduate years,
he served as the head of my major. As a result, I was taken care of by him throughout my entire university
life.

I would also like to express my gratitude to Professor Yoshiki Higo for his invaluable insights and
guidance. His expertise and experience have been instrumental in shaping the study.

Iam also thankful to all the members at Kusumoto Laboratory for their support and encouragement. I had
many enlightening conversations and discussions with them that deepened my understanding of information
technology and many other areas. I learned so much from them and am grateful for the opportunities to
grow together.

I am grateful to the professors at the Graduate School of Information Science and Technology, Osaka
University, for their help in lectures and exercises leading up to this research.

Finally, I would like to express my deepest gratitude to my family for their support and encouragement
over the past 25 years.

21

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software Unit Test Coverage and Adequacy. ACM
Computing Surveys, 29(4):366-427, 1997.

David Schuler and Andreas Zeller. Checked coverage: an indicator for oracle quality. Software:
Testing, Verification and Reliability, 23(7):531-551, 2013.

Zan Wang, Yingquan Zhao, Shuang Liu, Jun Sun, Xiang Chen, and Huarui Lin. MAP-Coverage:
A Novel Coverage Criterion for Testing Thread-Safe Classes. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pages 722-734, 2019.

Michael Harder, Benjamin Morse, and Michael D Ernst. Specification coverage as a measure of test
suite quality. MIT Lab for Computer Science, 2001.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. Mutation
Testing Advances: An Analysis and Survey. 2018.

Joan C. Miller and Clifford J. Maloney. Systematic Mistake Analysis of Digital Computer Programs.
Communications of the ACM, 6(2):58-63, 1963.

J. R. Brown and R. H. Hoffman. Evaluating the Effectiveness of Software Verification: Pratical
Experience with an Automated Tool. In Proceedings of the Fall Joint Computer Conference, Part I,
pages 181-190, 1972.

John B. Goodenough and Susan L. Gerhart. Toward a Theory of Test Data Selection. SIGPLAN
Notices, 10(6):493-510, 1975.

Martin R. Woodward Michael A. Hennell and David Hedley. On program analysis. Information
Processing Letters, 5(5):136-140, 1976.

Martin R. Woodward, David Hedley, and Michael A. Hennell Hennell. Experience with Path Analysis
and Testing of Programs. IEEE Transactions on Software Engineering, SE-6(3):278-286, 1980.

Phyllis Frankl and Elaine J. Weyuker. An applicable family of data flow testing criteria. IEEE
Transactions on Software Engineering, 14(10):1483-1498, 1988.

Alireza Aghamohammadi, Seyed-Hassan Mirian-Hosseinabadi, and Sajad Jalali. Statement frequency
coverage: A code coverage criterion for assessing test suite effectiveness. Information and Software
Technology, 129:106426, 2021.

Phil McMinn, Mark Harman, Gordon Fraser, and Gregory M. Kapfhammer. Automated Search
for Good Coverage Criteria: Moving from Code Coverage to Fault Coverage through Search-Based
Software Engineering. In Proceedings of the International Workshop on Search-Based Software
Testing, pages 43—44, 2016.

David Schuler and Andreas Zeller. Assessing Oracle Quality with Checked Coverage. In Proceedings
of the IEEE International Conference on Software Testing, Verification and Validation, pages 90-99,
2011.

22

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Ermira Daka and Gordon Fraser. A Survey on Unit Testing Practices and Problems. In Proceedings
of the IEEE International Symposium on Software Reliability Engineering, pages 201-211, 2014.

Chen Huo and James Clause. Interpreting Coverage Information Using Direct and Indirect Coverage.
In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation,
pages 234-243, 2016.

Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, and Shmuel Ur. Applications of Synchronization
Coverage. In Proceedings of the ACM SIGPLAN Symposium Principles and Practice of Parallel
Programming, pages 206-212, 2005.

Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A Study of Interleaving Coverage Criteria. In Proceed-
ings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, pages 533-536, 2007.

Sourav Biswas. Proposal for Control Dependency White-Box Test Coverage Metrics for Inheritance. In
Proceedings of the International Conference on Data Science and Business Analytics, pages 155160,
2018.

E. S. F. Najumudheen, Rajib Mall, and Debasis Samanta. Test Coverage Analysis Based on an Object-
Oriented Program Model. Journal of Software Maintenance and Evolution: Research and Practice,
23(7):465-493, 2011.

Ben Smith, Yonghee Shin, and Laurie Williams. Proposing SQL Statement Coverage Metrics. In
Proceedings of the International Workshop on Software Engineering for Secure Systems, pages 49-56,
2008.

Mehdi Mirzaaghaei and Ali Mesbah. DOM-Based Test Adequacy Criteria for Web Applications. In
Proceedings of the International Symposium Software Testing and Analysis, pages 71-81, 2014.

Taeksu Kim, Chunwoo Lee, Kiljoo Lee, Soohyun Baik, Chisu Wu, and Kwangkeun Yi. Test Coverage
Metric for Two-Staged Language with Abstract Interpretation. In Proceedings of the Asia-Pacific
Software Engineering Conference, pages 301-308, 2009.

Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. Assessing the Effectiveness of Input and Output
Coverage Criteria for Testing Quantum Programs. In Proceedings of the IEEE Conference on Software
Testing, Verification and Validation, pages 13-23, 2021.

Fevzi Belli and Javier Dreyer. Program Segmentation for Controlling Test Coverage. In Proceedings

of the International Symposium on Software Reliability Engineering, pages 72-83, 1997.

Zhengiang Chen, Baowen Xu, Hongji Yang, and Huowang Chen. Test Coverage Analysis Based
on Program Slicing. In Proceedings of the IEEE Workshop on Mobile Computing Systems and
Applications, pages 559-565, 2003.

Kenneth Koster and David C. Kao. State coverage: a structural test adequacy criterion for behavior
checking. In Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium Foundations of Software Engineering, pages 541-544,
2007.

23

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Dries Vanoverberghe, Jonathan de Halleux, Nikolai Tillmann, and Frank Piessens. State Coverage:
Software Validation Metrics beyond Code Coverage. In SOFSEM 2012: Theory and Practice of
Computer Science, pages 542-553, 2012.

Fadi Zaraket and Wes Masri. Property Based Coverage Criterion. In Proceedings of the International
Workshop on Defects in Large Software Systems: Held in Conjunction with the ACM SIGSOFT
International Symposium Software Testing and Analysis, pages 27-28, 2009.

Michael Whalen, Gregory Gay, Dongjiang You, Mats P. E. Heimdahl, and Matt Staats. Observable
Modified Condition/Decision Coverage. In Proceedings of the International Conference on Software

Engineering, pages 102-111, 2013.

Mohammad Mahdi Hassan and James H. Andrews. Comparing Multi-Point Stride Coverage and
Dataflow Coverage. In Proceedings of the International Conference on Software Engineering, pages
172-181, 2013.

S.Rapps and E.J. Weyuker. Selecting software test data using data flow information. IEEE Transactions
on Software Engineering, SE-11(4):367-375, 1985.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of Existing Faults to Enable
Controlled Testing Studies for Java Programs. In Proceedings of the International Symposium Software
Testing and Analysis, pages 437-440, 2014.

Taejoon Byun, Vaibhav Sharma, Sanjai Rayadurgam, Stephen McCamant, and Mats P. E. Heimdahl.
Toward Rigorous Object-Code Coverage Criteria. In Proceedings of the International Symposium
Software Reliability Engineering, pages 328338, 2017.

Khashayar Etemadi Someoliayi, Sajad Jalali, Mostafa Mahdieh, and Seyed-Hassan Mirian-
Hosseinabadi. Program State Coverage: A Test Coverage Metric Based on Executed Program States. In
Proceedings of the IEEE International Conference on Software Analysis, Evolution and Reengineering,
pages 584-588, 2019.

Srujana Bollina and Gregory Gay. Bytecode-Based Multiple Condition Coverage: An Initial Investi-
gation. In Search-Based Software Engineering, pages 220-236, 2020.

Breno Miranda and Antonia Bertolino. Testing Relative to Usage Scope: Revisiting Software Coverage
Criteria. ACM Transactions on Software Engineering Methodology, 29(3):1-24, 2020.

Breno Miranda. A Proposal for Revisiting Coverage Testing Metrics. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pages 899-902, 2014.

Breno Miranda and Antonia Bertolino. Social Coverage for Customized Test Adequacy and Selection
Criteria. In Proceedings of the International Workshop on Automation of Software Test, pages 22—28,
2014.

Breno Miranda and Antonia Bertolino. Improving Test Coverage Measurement for Reused Software.
In Proceedings of the Euromicro Conference on Software Engineering and Advanced Applications,
pages 27-34, 2015.

24

[41] Henry Cox. Differential coverage: automating coverage analysis. In Proceedings of the IEEE Confer-
ence on Software Testing, Verification and Validation, pages 424-429, 2021.

[42] Alexander Kolchin and Stepan Potiyenko. Extending Data Flow Coverage to Test Constraint Refine-
ments. In Integrated Formal Methods, pages 313-321, 2022.

[43] Richard N. Taylor, David L. Levine, and Cheryl D. Kelly. Structural testing of concurrent programs.
IEEE Transactions on Software Engineering, 18(3):206-215, 1992.

[44] Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollock. All-Du-Path Coverage for Parallel Programs.
In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
153-162, 1998.

[45] Ehud Trainin, Yarden Nir-Buchbinder, Rachel Tzoref-Brill, Aviad Zlotnick, Shmuel Ur, and Eitan
Farchi. Forcing Small Models of Conditions on Program Interleaving for Detection of Concurrent
Bugs. In Proceedings of the Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, pages 1-6, 2009.

[46] Elena Sherman, Matthew B. Dwyer, and Sebastian Elbaum. Saturation-Based Testing of Concurrent
Programs. In Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium Foundations of Software Engineering, pages 53—62, 2009.

[47] Bohuslav Kiena, Zden¢k Letko, and Tomas§ Vojnar. Coverage Metrics for Saturation-Based and
Search-Based Testing of Concurrent Software. In Runtime Verification, pages 177-192, 2012.

[48] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. Maple: A Coverage-Driven Testing
Tool for Multithreaded Programs. ACM SIGPLAN Notices, 47(10):485-502, 2012.

[49] Serdar Tasiran, M. Erkan Keremoglu, and Kivan¢ Muslu. Location Pairs: A Test Coverage Metric for
Shared-Memory Concurrent Programs. Empirical Software Engineering, 17(3):129-165, 2012.

[50] Sebastian Steenbuck and Gordon Fraser. Generating Unit Tests for Concurrent Classes. In Proceedings
of the International Conference on Software Testing, Verification and Validation, pages 144-153, 2013.

[51] Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson. Bita: Coverage-guided, automatic
testing of actor programs. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, pages 114—124, 2013.

[52] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. USA: MIT Press,
2004.

[53] Valerio Terragni and Shing-Chi Cheung. Coverage-Driven Test Code Generation for Concurrent
Classes. In Proceedings of the International Conference on Software Engineering, pages 1121-1132,
2016.

[54] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient Detection of Thread Safety Violations via
Coverage-Guided Generation of Concurrent Tests. In Proceedings of the IEEE/ACM International
Conference on Software Engineering, pages 266277, 2017.

25

[55] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. UNICORN: A Unified Approach for Localizing
Non-Deadlock Concurrency Bugs. Software Testing, Verification and Reliability, 25(3):167-190,
2015.

[56] JunXia Guo, Zheng Li, CunFeng Shi, and RuiLian Zhao. Thread Scheduling Sequence Generation
Based on All Synchronization Pair Coverage Criteria. International Journal of Software Engineering
and Knowledge Engineering, 30(01):97-118, 2020.

[57] Saeed Taheri and Ganesh Gopalakrishnan. GoAT: Automated Concurrency Analysis and Debugging
Tool for Go. In Proceedings of the IEEE International Symposium on Workload Characterization,
pages 138-150, 2021.

[58] Pei Hsia, Xiaolin Li, and David C. Kung. Class Testing and Code-Based Criteria. In Proceedings of
the Conference of the Centre for Advanced Studies on Collaborative Research, page 14, 1996.

[59] Mei-Hwa Chen and H.M. Kao. Testing Object-Oriented Programs - An Integrated Approach. In
Proceedings of the International Symposium on Software Reliability Engineering, pages 73—82, 1999.

[60] Roger Alexander, Jeff Offutt, and Andreas Stefik. Testing Coupling Relationships in Object-Oriented
Programs. Software Testing, Verification and Reliability, 20:291-327, 2010.

[61] Marc Fisher, Jan Wloka, Frank Tip, Barbara G. Ryder, and Alexander Luchansky. An Evaluation
of Change-Based Coverage Criteria. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools, pages 21-28, 2011.

[62] Fabrizio Baldini, Giacomo Bucci, Leonardo Grassi, and Enrico Vicario. Test Coverage Analysis
for Object Oriented Programs - Structural Testing Through Aspect Oriented Instrumentation. In

Proceedings of the International Conference on Software and Data Technologies, 2016.

[63] Dewayne E. Perry and Gail E. Kaiser. Adequate Testing and Object-Oriented Programming. Journal
of Object-Oriented Programming, 2(5):13—-19, 1990.

[64] Debashis Mukherjee, Dibyanshu Shekhar, and Rajib Mall. Proposal for A Structural Integration Test
Coverage Metric for Object-Oriented Programs. SIGSOFT Software Engineering Notes, 43(1):1-4,
2018.

[65] Debashis Mukherjee and Rajib Mall. An integration test coverage metric for Java programs. Interna-
tional Journal of System Assurance Engineering and Management, 10(4):576-601, 2019.

[66] Debashis Mukherjee. A Novel Test Coverage Metric for Safety-Critical Software. In Proceedings of
the TENCON - IEEE Region 10 Conference, pages 486—491, 2019.

[67] Sreedevi Sampath, Emily Hill, Sara Sprenkle, and Lori Pollock. Coverage Criteria for Testing Web
Applications. Computer and Information Sciences, University of Delaware, pages Technical Report
2005-17, 2005.

[68] RFC 1738: Uniform resource locators (url).

[69] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen. WSDL-based automatic test case
generation for Web services testing. In Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering, pages 207-212, 2005.

26

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

WWW Consortium. WSDL version 2.0., 2007.

M. Shaban Jokhio, Gillian Dobbie, and Jing Sun. Towards Specification Based Testing for Semantic
Web Services. In Australian Software Engineering Conference, pages 54-63, 2009.

Thanh Binh Dao and Etsuya Shibayama. Coverage Criteria for Automatic Security Testing of Web
Applications. In Information Systems Security, pages 111-124, 2010.

Thanh Binh Dao and Etsuya Shibayama. Security Sensitive Data Flow Coverage Criterion for Au-
tomatic Security Testing of Web Applications. In Engineering Secure Software and Systems, pages
101-113, 2011.

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automating Coverage Metrics for Dy-
namic Web Applications. In Proceedings of the European Conference on Software Maintenance and

Reengineering, pages 51-60, 2010.

Nadia Alshahwan and Mark Harman. Augmenting test suites effectiveness by increasing output
diversity. In Proceedings of the International Conference on Software Engineering, pages 1345-1348,
2012.

Nadia Alshahwan and Mark Harman. Coverage and Fault Detection of the Output-Uniqueness Test
Selection Criteria. In Proceedings of the International Symposium on Software Testing and Analysis,
pages 181-192, 2014.

Kazunori Sakamoto, Kaizu Tomohiro, Daigo Hamura, Hironori Washizaki, and Yoshiaki Fukazawa.
POGen: A Test Code Generator Based on Template Variable Coverage in Gray-Box Integration Testing
for Web Applications. In Fundamental Approaches to Software Engineering, pages 343-358, 2013.

Yunxiao Zou, Chunrong Fang, Zhenyu Chen, Xiaofang Zhang, and Zhihong Zhao. A Hybrid Coverage
Criterion for DynamicWeb Testing (S). In Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, 2013.

Yunxiao Zou, Zhenyu Chen, Yunhui Zheng, Xiangyu Zhang, and Zebao Gao. Virtual DOM Coverage
for Effective Testing of Dynamic Web Applications. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 60-70, 2014.

Hamza Ed-douibi, Javier Luis Cénovas Izquierdo, and Jordi Cabot. Automatic Generation of Test Cases
for REST APIs: A Specification-Based Approach. In Proceedings of the International Enterprise
Distributed Object Computing Conference, pages 181-190, 2018.

Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. Test Coverage Criteria for RESTful
Web APIs. In Proceedings of the ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, pages 15-21, 2019.

Hung Viet Nguyen, Hung Dang Phan, Christian Késtner, and Tien N. Nguyen. Exploring output-based
coverage for testing PHP web applications. Automated Software Engineering, 26(1):59-85, 2019.

Lijun Mei, W.K. Chan, and T.H. Tse. Data Flow Testing of Service-Oriented Workflow Applications.
In Proceedings of the International Conference on Software Engineering, pages 371-380, 2008.

27

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Charlton Barreto, Vaughn Bullard, Thomas Erl, John Evdemon, Diane Jordan, Khanderao Kand, Dieter
Konig, Simon Moser, Ralph Stout, Ron Ten-Hove, Ivana Trickovic, Danny V. D. Rijn, and Alex Yiu.

Web services business process execution language version 2.0: Primer. In OASIS, 2007.

Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti. Whitening SOA Testing.
In Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, pages 161-170, 2009.

Marcelo Medeiros Eler, Antonia Bertolino, and Paulo Cesar Masiero. More testable service compo-
sitions by test metadata. In Proceedings of the IEEE International Symposium on Service Oriented
System, pages 204-213, 2011.

Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. WS-TAXI: A WSDL-based
Testing Tool for Web Services. In Proceedings of the International Conference on Software Testing
Verification and Validation, pages 326335, 2009.

Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar. Test Coverage
of Data-Centric Dynamic Compositions in Service-Based Systems. In Proceedings of the IEEE

International Conference on Software Testing, Verification and Validation, pages 40-49, 2011.

Harry M. Sneed and Chris Verhoef. Measuring test coverage of SoA services. In Proceedings of
the International Symposium the Maintenance and Evolution of Service-Oriented and Cloud-Based
Environments, pages 59-66, 2015.

Maria José Sudrez-Cabal and Javier Tuya. Using an SQL Coverage Measurement for Testing Database
Applications. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 253-262, 2004.

David Willmor and Suzanne Embury. Exploring test adequacy for database systems. UK Software
Testing Research Workshop, pages 123—-133, 2005.

William G.J. Halfond and Alessandro Orso. Command-Form Coverage for Testing Database Applica-
tions. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,
pages 69-80, 2006.

Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage Criteria for GUI Testing. In
Proceedings of the European Software Engineering Conference Held Jointly with ACM SIGSOFT
International Symposium Foundations of Software Engineering, pages 256267, 2001.

Lei Zhao and Kai-Yuan Cai. Event Handler-Based Coverage for GUI Testing. In Proceedings of the
International Conference on Quality Software, pages 326-331, 2010.

Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. Energy-Aware Test-Suite
Minimization for Android Apps. In Proceedings of the International Symposium Software Testing and
Analysis, pages 425-436, 2016.

Shin Nakajima and Hai Ngoc Bui. Dataset Coverage for Testing Machine Learning Computer Pro-

grams. In Proceedings of the Asia-Pacific Software Engineering Conference, pages 297-304, 2016.

28

[97] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. Semi-Valid Input Coverage for Fuzz
Testing. In Proceedings of the International Symposium Software Testing and Analysis, pages 56—60,
2013.

[98] Jakob Rott, Rainer Niedermayr, Elmar Juergens, and Dennis Pagano. Ticket Coverage: Putting Test
Coverage into Context. In Proceedings of the Workshop on Emerging Trends in Software Metrics,
pages 2-8, 2017.

29

