HEEAN ETEHEET S
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

(CEEEe
TECHNICAL REPORT OF IEICE.

A Systematic Review of Source Code Coverage Metrics: Preliminary Results

Masayuki TANIGUCHI', Shinsuke MATSUMOTO, and Shinji KUSUMOTO'

1 Graduate School of Information Science and Technology, Osaka University
E-mail: {{m-tanigt,shinsuke,kusumoto} @ist.osaka-u.ac.jp

Abstract Software testing plays an essential role in software quality assurance. It helps developers to reveal and remove bugs
in software. Developers often use test coverage to measure the sufficiency of tests, find non-tested statements, and localize a
faulty statement. Traditional coverages, such as statement and branch coverage, are widely known and used. On the other hand,
researchers have proposed various metrics for measuring test coverage of source code. Because such novel coverage metrics
are not organized, it is impossible to understand and compare the benefits and limitations of each metric. This paper organizes
the characteristics of each coverage metric by surveying a body of 43 papers that propose coverage metrics. The survey results
showed that the novel metrics could be divided into two main groups: (1) metrics that improve or complement traditional coverage
and (2) metrics that are effective in specific domains, such as concurrent programming. We performed a comparative analysis to
identify the characteristics of each metric, such as benefits of use, effective domains, and information needed to measure coverage.

Furthermore, we provide a catalog of coverage metrics to help developers and researchers select the best metrics for their context.

Key words

1. Introduction

Software testing is an essential activity in software quality assur-
ance. Though software testing is a broad concept that includes vari-
ous verification activities such as review, walkthrough and inspection,
this paper focuses a validation activity especially in programmed test.
The programmed test means to confirm whether the given program
behaves as expected by the program execution. This paper refers it as
simply test or testing.

Developers usually evaluate the quality of test with many criterion.
One of the most well known criteria is test coverage that measures the
comprehensiveness of tests against source code based on execution
path. Test coverage can be used for measuring the sufficiency of tests,
finding non-tested statements, and localization of a faulty statement
[1].

Traditional coverages, such as statement and branch coverage, are
widely known and being used. The limitations of the coverage are
also well known. For instance, 100% traditional coverage does not
guarantee that the source code has no bugs [2][3]. To address their
drawbacks, researchers have proposed various test coverage metrics.
However, these novel metrics are not structured and organized yet. So,
it is impossible to understand and compare the benefits and limitations
of each metric. This lack of organization also prevents consideration
of the use of novel coverage metrics.

Our goal is to provide developers and researchers with a catalog of
novel test coverage metrics and to allow them to select suitable metrics

in their context. Hence, our research questions are, what kind of novel

Software testing, Test coverage, Coverage metrics, Systematic review

coverage metrics exist? and what are their characteristics?. In this
paper, we conduct a systematic review for 43 papers that proposed
novel coverage metrics to organize the characteristics of each metric.
In our analysis, we found that the proposal of coverage metrics was
primarily due to two reasons: (1) to improve or complement tradi-
tional coverage and (2) to effectively measure coverage in specific
domains. Based on this finding, we analyzed the characteristics of the

novel coverage metrics for each proposal reason and domain.
2. Paper Selection

In this section, we describe the procedure to select the papers for
our survey. First of all, we collected the papers for our study by us-
ing a specific set of keywords in some popular digital libraries. We
performed the paper collection at the beginning of May 2022.

We used the following ten keywords: fest coverage, coverage met-
rics, code coverage, testing strategies, software testing strategies,
oracle quality, test oracle quality, test suite quality, test suite effec-
tiveness, insufficiently tested code. Since we intended to collect all
papers related to our survey as much as possible, the set of keywords
includes not only those directly related to coverage metrics but also
those related to testing strategy and test quality.

Using the ten keywords, we searched in the three digital libraries
(ACM Digital Library, IEEE Xplore and Google Scholar). For each
query, we collected the top 200 publications in order of relevance.
As a result, we obtained 5,818 publications. (Note that a search for
insufficiently tested code in IEEE Xplore returned 18 publications.)
After removing duplicate publications, we ended up with 4,459 pub-

11—

lications.

Following our paper collection, we filtered the publications we
obtained. We first quickly eliminated papers that were obviously ir-
relevant to our study by manually checking the titles and abstracts of
all the collected publications. The first two authors performed this
filtering to reduce the number of false negatives. This process took
two months and resulted in 237 papers. After quick filtering, we
conducted a full-text analysis of each selected paper. We reviewed
whether each paper proposed test coverage metrics. At the end of this

process, we obtained 43 relevant papers.
3. Novel Test Coverage Metrics

By analyzing the 43 studies, we found that novel coverage metrics
can be divided into two groups: (1) those that improve or complement
traditional coverage metrics and (2) those that are specific to particular
domains. This section describes the overview and benefits of the 43
metrics according to this classification. Note that some metrics have
multiple levels of coverage measurement granularity. Table 1 sum-
marizes the characteristics of each metric, including effective domain,
feature, information required to measure coverage and granularity of
measurement.

3.1 Maetrics that improve or complement traditional coverage

Belli et al. [4] proposed Test Segment Coverage as a coverage that
bridges the gap between branch coverage and path coverage. Test
segment coverage is the path coverage of each test segment (program
fragment composed of one statement or a sequence of statements).
By adjusting the size of the test segments, the thoroughness of the test
coverage can be adapted to the needs of the tester.

Chen et al. [5] proposed test coverage about variables. By calculat-
ing the program slice for a variable, we can measure the test coverage
for the code associated with that variable. In other words, the tester
can focus the test quality evaluation on important variables.

Koster et al. [6] proposed State Coverage for test oracle assessment.
This coverage measures whether variables defined at code runtime are
validated by assertions, using control flow graphs and program slicing.

In the subsequent study by Vanoverberghe et al. [7], a general
definition of State Coverage was proposed. The authors’ definition
does not require a specific structure for testing and allows more dy-
namic state update identifiers (e.g., object identifiers) than nodes in
the control flow graph.

Schuler et al. [2][8] proposed Checked Coverage. The concept of
checked coverage is similar to state coverage. This coverage metric
requires testers to verify that statements that read or write variables or
that can affect the control flow of the program are checked by asser-
tions. The authors consider statements on a dynamic backward slice
from an assertion as checked statements.

Zaraket et al. [9] proposed Property Based Coverage. This cover-
age derives from the hypothesis that it is more effective to evaluate
test suites based on their coverage of system properties than that of

structural program elements. The authors view a property as a log-

ical expression in an assertion and annotation. By using property
based coverage criterion, we can measure the test coverage for all the
possible values that variables in properties can take.

Whalen et al. [10] proposed Observable MC/DC (OMC/DC).
OMC/DC is a version of MC/DC that incorporates the concept of
observability. The authors state that an expression in a program is
observable in a test case if we can modify its value, leaving the rest
of the program intact, and observe changes in the output of the sys-
tem. This coverage metric helps ensure that a fault encountered when
executing the decision propagates to a monitored variable.

Hassan et al. [11] proposed MultiPoint Stride Coverage. This cov-
erage is equivalent to branch coverage that incorporates the concept of
dataflow coverage by taking into account the execution order of each
branch. By using this coverage, we can more accurately predict the
quality of a test suite than control flow based coverage such as branch
coverage. We can also more easily measure it than dataflow based
coverage such as def-use coverage.

Huo et al. [12] proposed Direct/Indirect Coverage. The authors ar-
gue that it is useful in the management of testing resources to consider
whether entities (e.g., functions, statements and branches) were cov-
ered directly or indirectly by tests. This is because indirectly covered
entities are only peripherally considered and are insufficiently tested
[12].

McMinn et al. [13] proposed fault coverage for software testing.
Fault coverage is a concept in electronic engineering that refers to
the percentage of faults detected by tests out of a pre-defined list of
faults. The authors discusses the way to automatically generate fault
coverage for software engineering by using a fault database such as
Defects4] [14].

Byun et al. [15] proposed Flag-Use Object Branch Coverage. Ob-
ject Branch Coverage (OBC), branch coverage at the object code level,
has the advantage of being programming language independent and is
amenable to non-intrusive coverage measurement techniques. How-
ever, OBC strongly depends on differences in object code structure
due to compilers and their optimizations. While OBC is a coverage
metric based only on jump instructions, Flag-Use OBC extends OBC
to include many other instructions involved in conditional behavior.

Someoliayi et al. [16] proposed Program State Coverage. This
coverage metric improves the ability of line coverage to validate the
effectiveness of the test suite. The authors considers the number of
distinct program states in which each line is executed. Program state
coverage is calculated by the ratio of program states executed in a line
of tests to the maximum number of program states.

Subsequently, Aghamohammadi et al. [17] proposed Statement
Frequency Coverage. Program state coverage has some limitations,
such as the need to set a maximum number of states because we cannot
predict the number of possible states, and the possibility of statements
with infinite states during test execution. Statement frequency cover-
age solves these problems by incorporating the frequency of executed

statements into the statement coverage.

Miranda et al. [18] [19] proposed Relative Coverage. This is a cov-
erage measurement technique that focuses on the test scope of testers.
By focusing coverage measurement only on in-scope entities, we can
expect to improve the cost-effectiveness of testing. The authors also
proposed four instances of relative coverage: Operational Coverage
[18], Social Coverage [18] [20], Relevant Coverage [18] [21], Reach-
ability Coverage [19]. Operational coverage focuses on the operations
performed by a specific user group. Relevant coverage measures test
coverage in the scope of testing reused code. Reachability coverage
targets the input domain that a specific user is expected to exercise.
Social coverage is a coverage metric for Service-Oriented Architecture
(SOA) and will be described in Section 3. 2.

Cox [22] proposed Differential Coverage. This is a concept of clas-
sifying coverage information into 12 categories (newly added code
is not tested, previously unused code is covered now, etc.) by com-
paring the current version of the code with a baseline. Especially in
large-scale development, the analysis of coverage information is very
costly. We can reduce the cost of coverage analysis by automatically
classifying coverage information using differential coverage.

3.2 Domain Specific Metrics

Concurrent Program. Bron et al. [23] proposed Synchronization
Coverage. This is a practical coverage based on the idea that cov-
erage tasks should be well understood by users and be coverable by
tests. This coverage is accepted by IBM. Synchronization coverage
has seven synchronous processes as coverage tasks.

Sherman et al. [24] proposed coverage metrics inspired by synchro-
nization coverage. These metric are designed for saturation-based
testing in concurrent programs, hence there is no need to estimate the
executable domain of each metric. The authors use a combination of
three basic concurrency metrics and six contexts as coverage tasks.

Kfena et al. [25] proposed coverage metrics for saturation-based
and search-based testing to reflect concurrency behavior accurately.
In previous work [24], the identification of elements is too rough be-
cause Java types were used to identify threads. The proposed metrics
more accurately distinguish the behavior of objects and threads based
on object identifier and thread identifier. The authors derived 11 cov-
erage metrics from dynamic analyses designed for discovering bugs
in concurrent programs.

Terragni et al. [26] proposed Sequential Coverage. This cover-
age metric has a sequence of events (write/read object fields, ac-
quire/release locks and enter/exit methods) as a coverage task. We
can measure this coverage by a single thread execution of a call se-
quence.

Wang et al. [3] proposed MAP-coverage. This coverage is based
on memory-access patterns (MAP), which are patterns of how shared
variables are accessed by multiple threads [27]. MAP have often been
shown to be associated with the nature of multi-threaded bugs [27].
Thus, comprehensive testing of all MAP is effective in finding bugs.

Object Oriented (OO) Program. Hsia et al. [28] proposed cov-

erage metrics based on Enumerate Data Member (EDM). A class is

said to satisfy EDM property if its state-related data members are of
enumerate type. The authors argued that each set of values assigned to
the object should be covered by at least one test for classes satisfying
EDM property. They provided three levels of coverage metrics.

Fisher et al. [29] proposed change-based coverage metrics. The
authors focused on the impact of code changes based on the assump-
tion that a disproportionate number of faults are likely to be present in
recently modified codes. This study defines four test coverage metrics
for changed and added entities (e.g., methods and statements) in the
context of OO.

Biswas [30] proposed Control Dependence Inheritance Coverage
metrics based on JSysDG (Java System Dependency Graph). Each
time a tested class is reused through inheritance, we must retest it
under new usage context [31]. Therefore, the cost of testing OO soft-
ware can significantly exceed that of testing procedural programs. By
using these metrics, we can measure effectively the test coverage of
control dependencies associated with inheritance.

Mukherjee et al. [32] proposed coverage metrics in response to the
fact that structural coverage metrics for integration testing of OO pro-
grams has been scarcely reported. These coverage metrics are based
on data and control dependencies in the classes being integrated de-
fined on JSysDG.

Mukherjee [33] also focused on testing safety-critical software,
such as nuclear power plant, in the OO paradigm. Safety-critical soft-
ware requires thorough testing; however, traditional coverage metrics
suffers from several shortcomings. The authors proposed test cover-
age metrics that cover program dependencies more robustly and can
detect faults at inter-object data dependencies.

Web Application. Alalfi et al. [34] proposed coverage metrics for
dynamic web applications. Faults in web applications often caused
by insufficient test coverage of complex interactions between compo-
nents. These coverage metrics are based on the client and database
interactions and require testing server pages, SQL statements and
server environment variables.

Mirzaaghaei et al. [35] proposed DOM Coverages. Web applica-
tion test generally interact with the DOM. The authors argue that the
DOM itself should be considered as an important structure of the sys-
tem that needs to be adequately covered by tests. Based on this idea,
this paper propose six coverage metrics related to the DOM state.

Nguyen et al. [36] proposed coverage metrics for output-oriented
testing of dynamic web application. These coverage metrics measures
test coverage of string literals output and decisions that affect the out-
put. Using these metrics help to identify presentation faults such as
HTML validation errors and spelling errors.

Service-Oriented Architecture (SOA). Hummer et al. [37] pro-
posed k-Node Dataflow Coverage to significantly reduce the search
space of service combinations in integration test of dynamic compos-
ite Service-Based Systems (SBSs). This metric is based on dataflow
of service composition.By restricting the paths for coverage measure-

ment to all k-length paths in the dependency tree, where a service

3

composition is considered as a node, we can reduce the number of
dataflows to be covered by tests.

In 2014, Miranda et al. [18][19][20] proposed Social Coverage.
This is the instance of relative coverage [18] [19]. Social coverage was
conceived for black-box environments having some notion of testing
community (i.e., several users/programs using/testing the service un-
der test). This metric measures test coverage for the in-scope entities
identified by information about the entities invoked by similar users
in the same test community. The authors assume that the service
provider will measure this coverage and provide it to the customers.

Sneed et al. [38] proposed coverage metrics based on the structure
and content of the service interface. These are test coverage of in-
put/output parameters or combinations of parameters in input/output
messages. Using these metrics, testers can evaluate test quality with-
out considering the source code in SOA where they cannot access to
the source code of the service under test.

Others. Memon et al. [39] proposed coverage metrics for GUI
testing. The input to a GUI consists of a sequence of events. The
proposed metrics thus focus on events in the structure of the GUI
and measure the comprehensiveness of testing for events and event
sequences.

Smith et al. [40] proposed SQL statement coverage for SQL in-
jection input validation testing. Traditional coverage metrics cannot
highlight how well the system protects itself through validation. SQL
statement coverage metrics measure the test coverage of SQL state-
ments or input variables of SQL statements. Coverage data based on
these metrics can provide specific information about insufficient or
missing input validation.

Kim et al. [41] proposed New Decision Coverage for multi-staged
language. Multi-staged language is a programming language which
can generate and execute new program codes in execution time. Be-
cause it is hard to estimate what code fragments would be generated
and executed in multi-staged language, traditional coverage is not
suitable for multi-stage languages. New decision coverage metric
measures the test coverage of both branches that already exist in the
program and those generated at runtime. In the study, this metric is
designed for a two-staged language.

Tsankov et al. [42] proposed Semi-Valid Input Coverage for fuzz
testing. Traditional coverage metrics do not measure what fuzz test-
ing is all about, namely executing the system with semi-valid inputs.
Semi-valid input coverage metric measures to what extent the tests
cover the domain of semi-valid inputs, where an input is semi-valid if
and only if it satisfies all the constraints but one.

Jabbarvand et al. [43] proposed eCoverage. This study aims to
reduce the number of tests in energy testing of Android applications.
eCoverage takes into account the energy consumption of segments
(methods or system APIs). By using this metric, we can measures
test coverage of energy-greedy segments that highly contribute to the
energy consumption of the application.

Nakajimaetal. [44] proposed Dataset Coverage for Machine Learn-

ing (ML) programs. The control structure of ML program is so simple
that any execution of the program takes all control paths if the input
training dataset is not trivial. Dataset coverage focuses on the char-
acteristics of the population distribution in the training dataset in
metamorphic testing.

Rott et al. [45] proposed Ticket Coverage for agile development.
This coverage unveils which of the changes made in the course of
a ticket are left untested. This metric measure test coverage of the
methods that were added and changed during the implementation
of a given ticket and helps to systematically focus testing efforts on
changed code.

Martin-Lopez et al. [46] proposed coverage metrics for RESTful
API because there is no standardized coverage criteria for black-box
testing of RESTful API. These metrics measure test coverage of el-
ements related to API requests/responses. The paper provides four
levels of coverage metrics for each of the API requests and responses.

Ali et al. [47] proposed coverage metrics for quantum program.
Testing quantum programs is difficult due to the inherent character-
istics of quantum computing, such as the probabilistic nature and
computations in superposition. However, automatic and systematic
testing is necessary to guarantee the correct operation of quantum
programs. These proposed metrics are based on inputs and outputs
of the quantum program and measure the comprehensiveness of tests

without destroying superpositions of the quantum program.
4. Conclusion and Future Work

In this paper, we conducted a survey of papers proposing novel test
coverage metrics. After analyzing 43 papers, we found that coverage
metrics can be classified into two categories: (1) those that aim to
improve or complement traditional coverage metrics and (2) those that
are specific to a particular domain. We also identified and organized
the characteristics of each metric. A catalog of novel coverage met-
rics would help developers and researchers to select suitable metrics
in their context.

In future work, we plan to perform backward and forward snow-
balling to make the survey as much comprehensive as possible. We
will examine whether coverage metrics are proposed in each publica-
tion cited by or citing any of the papers we have analyzed.

Acknowledgments
JSPS KAKENHI Japan (Grant Number: JP21H04877, JP20H04166,
JP21K18302, and JP21K11829)

References

[1] H. Zhu, P.A.V. Hall, and J.H.R. May, “Software Unit Test Coverage
and Adequacy,” ACM Comput. Surv., vol.29, no.4, pp.366—427, 1997.

[2] D. Schuler and A. Zeller, “Checked coverage: an indicator for oracle
quality,” Softw.: Testing, Verif. and Reliab., vol.23, no.7, pp.531-551,
2013.

[3] Z.Wang, Y.Zhao, S.Liu, J. Sun, X. Chen, and H. Lin, “MAP-Coverage:
A Novel Coverage Criterion for Testing Thread-Safe Classes,” Proc.
IEEE/ACM Int’l Conf. Autom. Softw. Eng., pp.722-734, 2019.

[4] F. Belli and J. Dreyer, “Program Segmentation for Controlling Test
Coverage,” Proc. Int’l Symp. Softw. Reliab. Eng., pp.72-83, 1997.

This research was partially supported by

(010 “poyjou ‘youelq ‘yuowle)s) AjLre[nueIs Aue 100[0S ULD IM «

anfea dinonduy
sasuodsay/sisanbal [y 01 paje[al sannuyg
POy

S)0SEIEp JO KJOLIEA

JuowSas Apaard-A3rouyg

nduy

uoIsTq

9[qerrea indur 1o juowess [bg
9ouanbas JuoAd 10 JuAT
sagessow ur I9joweIed
uoneradp

mopere

UOISIOAp 10 [eIN] SuLnNg
JUQWIDYD 10 IS WO
suondrIAUI 0} paje[al Anug
ared asn-Joq

Kouapuadaop jonuod pue eleq
Kouapuadap [onuo)

wAuy

juowugisse 192[qQ

[£2] uroned ssodoe-LI0WAN
SJUQAD JO 9oudnbag

J01ARYQq UOTIRZIUOIYIUAS
JOTARYq UOTBZIUOIYOUAS
JIOIABUQq UONRZIUOIYIUAS

Aoy

wKuy

wAuy

«Auy

wAuy

juauraje)s gyoes Jo uonnoddxa jo %UEM:TOH,W
dels werdold

uononnsuy

oLjow pajerauas-one uo spuadoq
wKuy

soyouelq jo douanbog

UOISIOdP puUE UONIpPUO))

Ky1odoxd ur saqerrea Jo sanfep
SuoTIASSE £Q UONBPI[EA JUIWA)LIS
SUOTIIASSE AQ UOTIEPITRA S[QBLIBA
SUONJIAsSE AQ UOIEPI[BA J[QBLIBA
ped

ped

sanyea ndino/ndur prjea jo 18
sasuodsai/sjsanbar [y 01 paje[ar sannua Jo 108
1901} © 0) PaJe[aI SIIWWO))

jasejep o[qeredas Apreaur|

syuawsos jo ydeis [jen

sjurensuod nduy

uonNoOAX? U pajesauad syuswsely apo)
so[qerre Jndur Jo syuowye)s [bs jo 108
ydeis mop Juoag

901AI3S Jo surewop jndino pue ndur gordwo)
Ayunwwod 1S9,

SIOIAIAS UIM]AQ sATouapuadap BIep JO $921],
speadn) Surns woiay paonpoid ndino 9[qrssoq
ydeid moy a1e1s WOQ

UOTJBULIOJSUEI} UOTIBIUSUINI)SU]

OasAs(

Oasisr

OasAsr

KI0)STY UOTSIOA

sjuawugIsse 102[qo 2[qIssoq

[£7] suzoned ssadoe-K1owour 9[qIssod
soouanbas [eo poylow 9[qIssod

$100(qO pue SpeaIy) JO JOIABYAQ dWINUNY
SPEAIY) JO JOIABYQQ SUINUMY

SPeIL) JO JOIARYAQ duNUNY

KI0ISTY UOISIOA

PasIoIAXa 2q 0) pajoadxe urewop nduy
sjurensuod urewop nduy

9[youd reuonerad

adoos a3esn

JUQWIA)BIS YOBD JO UOTINOAXA JO JAQUINN

QUI] o JO UONNIAX JO JIOqUINN

9p02 192[qO

aseqejep Jneq

spoyjaw pue s)s?) 03 sennua Surddey
SOUIURIQ JO JOPIO UONNOIXT

suoIssardxa ueajooq Jo AN[IQeAIIsqQ
sonodoxd ur saqerrea jo sonfea a[qissod oy [y
$901]S drwreukq

soo11s werSoxd pue ydeid mop jonuo)
soo11s weiSoxd pue ydeiS moy jonuo)
$01]s weISolg

ydei3 moy jonuo)

swerSoxd wmuenb jo suonisodiadns Surdonsap noyim 93810400 159,
sasuodsai/sjsanbar [y 01 paje[ar S)uSW[d JO dFLIGA0D 1S3,

J[O1 B U 9pod pagueyd uo syroye Sunsd) snooy djog

KjarreA jaseiep Jo suiia) ur K)ienb 1s9) gjenreaq

(SIdV WalsAs 10 spoyiowr) syuawidas jo uondumnsuod A319us oY) JopIsuo)
syndur pIeA-1wos JO UTRWOp Y} SISA0D SISA) [[oM MOY QINSEIA!
QuInunI & PajeIauas apod Ul papn[oul saydouelq J[pueH

uonepife Jndur SurssTu Io JUSIDLYNSUT INOqe UOTIRULIONUT OY1dads opIAoId
QP09 UBY) 1OBIISQE 2IOUW YINW e Jey) saouanbas Juard [N D d[pueH
VOS Ul 9pod 901n0s ay) Suriopisuod noyim Aienb 1sa) ojenjeag
SWISAS Paseq-yOS JO S191sd) 03 Isa19)uT Jo suonerado uo snoog
159) UONEIZIUT UI SUONBUIGUIOD JDIAIDS JO douds [oIeas ay) 2onpay
SIOLI9 uonepifeA TINLH St yons syjnej uonejuasaid Aynuopr djog
Sunsa) uonesridde gom ur O INOQE UOHBULIOJUT PIAOI]
aseqejep pue JUSI[O UIIMIAq SUOT)ORIAIUT X[dWO0D 1oA0D)

Apsnqoz serouspuadap weidord 19a00)

Sunsa) uoneISAIUI Paseq-oLIBUAIS Ul PIssI s3nq 19910
douejrroyur ySnoay saroudpuadop I9pIsuo)

s)[ney uorssaISar SUI[eAAdI UT dATIOYS 9q 0) pajoadxyg

$111S 109[q0 03 Paje[aI S)NEJ [BOANY

sSnq papeaiy-nnw puy djoyq

uonNOAXa pealy) dASuIs e Aq 9FLISA0D AINSBIA

[#2] YoM snoraaid uey) speaiy) Jo J01ABYaq AJIUapl A[e1eInooy
SLIOW YOB3 JO UTRWOP J[INJIXA) LIS 0) PAU ON
swerSord JuarImouo0d 10§ a3LIA0D [B1I0RIJ

$911089)80 7| OJUI UONEULIOJUT AFRIOA0D 9POd AJISSeD)

1980 oyr1oads © £q PasIoraxa aq 03 pajoadxa st jey) urewop jndur uo snooJ
JX2JU0J (ISNAT) MAU UT IPOO PISNAI JO SANNUD UO SN0

dnoui3 1osn oyroads e £q pawioyrad suonerado uo snooq

sannue 2doos-ur uo sndoj

[91] 93e10405 9335 Wero1d Jo STUTWO9)IOYS [BIIAS QUIOIIA(Q)
1500 UONNIAXS MO] [IIM 9FIIA0D UI] Uy} A[OATIONN QIOJA!
rmonns 19[1dwod uo douspuadap MO[UM [9AI] 9POD 199(q0 1y
s3nq [enjoe YIIM SUI| UT SOLIIOW ATBISA0D)LD

spoyjou pajsa) Apuarorynsur AJnuapr A[ARodYg

SAUIURIQ JO JOPIO UOTINIAXS FULIOPISUOD dFLIIA0D ourIg

DA/DIN UBY) SNOJOSLI A0

uonejouUE pue suoniasse ur sonradord jo 95e10400 159,

Kyenb 91010 159) SSASSY

[9] 98©19A00 9JBIS JO UONIUYIP [BISUID)

Kypenb 9[orIO0 159 SSOSSY

sa[qerrea jueyzodw uo snooq

93e10A00 159) JO ssauySnoioy) Isnlpy

swesdoxd wmueng)
IdV [N1SFd
JuowrdofaAap 9ISy
Surures] auIyoRIA
uoneordde proipuy
Surzzng

sagen3ue| pagels-omJ,
‘pifea ndur rids
1noS

VOS

YOS

VOS

uoneorjdde qopp
uoneordde qopy
uonesrjdde qopp
swerdoxd OO
swesoxd 0O
swesoxd 0O
swerdoxd OO
swerdoxd 0O
swerSoid juarmouo)
swerSoid juarmouo)
swerdoid Juarmouo)
swergod juarmouo)
swerSod juarmouo)
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN
oy10ads urewop-uoN

oy10ads urewop-uoN

[£¥] sweaSoxd wmuenb 104

(9] 1dV M 1SHY 1o

[S¥] 98e10A00 303017,

[#+] 23e10000 J0sBIRQ

[¢] @8e1080D2

[2#] @8e10000 Indur pryeA-rwes
[14] 98e10A00 UOISIOAP MON

[07] 23e10A00 JUSWRIR)S TOS

[6¢] 2810400 JUAAd [ND

[8¢] saSessow ur sivjowrered 10
[0zl [611(81] 28e19400 [EO0S

[L€] 2310400 mopjeIEp 9PON-Y
[9¢] srexan Suwns ndino 104

[s¢] a8e10400 INOQ

[+¢] uoneoridde qom orwreukp 104
[¢€] a1BMIJOS [BONII-AIDJES 10
[z¢] Sunsay uoneiSayur 1o

[0g] 98e10A00 dour)LIOYUT doudpuadap [onuo))
[62] 2310400 paseq-a5uey)

[827] I9quIdw eIEP 9JLISWNUD UO PIseyq
[£] 9Se10000-gVIN

[92] @8e10000 [enyUONDAG

[s2] sisATeue orwreukp woi

[$Z] Sunsa) paseq-uoneines 104
[¢Z] 9810400 UONBZIUOIYIUAS
[z] @3e10009 [enUAIRYIQ

[61] 2310400 K)i[Iqeyoeay
[12]1[81] 95610400 JUBAI[OY

[81] 93e10400 [eUONEIAO
[61]1[81] a5e10A00 2AnE[Y

[£1] 2310405 Kouanbaiy Juower§
[91] 93e10A00 Q)35 WeIS01d

[S1] @3e10400 youelg 102(qQ 9asn-Selq
[€1] Sunsay, aremijos 10y 95eI0A00 J[Ne
[Z11 2310405 10211pUT A0

[11] 9310405 9p11IS JUIOJNNIA
[011 DA/ON 2198A1SqO

[6] @3e10000 paseq K1radoig

[8] [¢] @8e19A02 payoay)

[L] 93e10A00 NBIS

[9] 95e10000 A)EIS

[G] sajqerea 1noqy

[] 2310400 JUSWTs 153,

Kyure[nueln

uonewriojur pasmnbay

AImeaq

urewo(y

LN

SOITRIA] 95BISA0D) 9PO)) 90INOS [SAON :T 9[qBL

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Z. Chen, B. Xu, H. Yang, and H. Chen, “Test Coverage Analysis Based
on Program Slicing,” Proc. IEEE Workshop on Mobile Comput. Sys-
tems and Applications, pp.559-565, 2003.

K. Koster and D.C. Kao, “State coverage: a structural test adequacy
criterion for behavior checking,” Proc. Joint Meeting of the European
Softw. Eng. Conf. and the ACM SIGSOFT Int’l Symp. Foundations of
Softw. Eng., pp.541-544, 2007.

D. Vanoverberghe, J. deHalleux, N. Tillmann, and F. Piessens, “State
Coverage: Software Validation Metrics beyond Code Coverage,” SOF-
SEM 2012: Theory and Practice of Computer Science, pp.542-553,
2012.

D. Schuler and A. Zeller, “Assessing Oracle Quality with Checked
Coverage,” Proc. IEEE Int’'l Conf. Softw. Testing, Verif. and Valid.,
pp-90-99, 2011.

F. Zaraket and W. Masri, “Property Based Coverage Criterion,” Proc.
Int’l Workshop on Defects in Large Softw. Systems: Held in Conjunc-
tion with the ACM SIGSOFT Int’l Symp. Softw. Testing and Anal.,
pp-27-28, 2009.

M. Whalen, G. Gay, D. You, M.P.E. Heimdahl, and M. Staats, “Observ-
able Modified Condition/Decision Coverage,” Proc. Int’l Conf. Softw.
Eng., pp.102-111, 2013.

M.M. Hassan and J.H. Andrews, “Comparing Multi-Point Stride Cover-
age and Dataflow Coverage,” Proc. Int’l Conf. Softw. Eng., pp.172-181,
2013.

C. Huo and J. Clause, “Interpreting Coverage Information Using Di-
rect and Indirect Coverage,” IEEE Int’l Conf. Softw. Testing, Verif. and
Valid., pp.234-243, 2016.

P. McMinn, M. Harman, G. Fraser, and G.M. Kapfhammer, “Auto-
mated Search for Good Coverage Criteria: Moving from Code Cover-
age to Fault Coverage through Search-Based Software Engineering,”
Proc. Int’l Workshop on Search-Based Softw. Testing, pp.43—44, 2016.
R. Just, D. Jalali, and M.D. Ernst, “Defects4]: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” Proc.
Int’l Symp. Softw. Testing and Anal., pp.437—440, 2014.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M.P.E. Heim-
dahl, “Toward Rigorous Object-Code Coverage Criteria,” Proc. Int’l
Symp. Softw. Reliab. Eng., pp.328-338, 2017.

K.E. Someoliayi, S. Jalali, M. Mahdieh, and S.-H. Mirian-
Hosseinabadi, “Program State Coverage: A Test Coverage Metric
Based on Executed Program States,” IEEE Int'l Conf. Softw. Anal.,
Evolution and Reengineering, pp.584-588, 2019.

A. Aghamohammadi, S.-H. Mirian-Hosseinabadi, and S. Jalali, “State-
ment frequency coverage: A code coverage criterion for assessing test
suite effectiveness,” Info. and Softw. Technology, vol.129, p.106426,
2021.

B. Miranda and A. Bertolino, “Testing Relative to Usage Scope: Revis-
iting Software Coverage Criteria,” ACM Trans. Softw. Eng. Methodol.,
vol.29, no.3, pp.1-24, 2020.

B. Miranda, “A Proposal for Revisiting Coverage Testing Metrics,”
Proc. IEEE/ACM Int’l Conf. Autom. Softw. Eng., pp.899-902, 2014.
B. Miranda and A. Bertolino, “Social Coverage for Customized Test
Adequacy and Selection Criteria,” Proc. Int’l Workshop on Autom. of
Softw. Test, pp.22-28, 2014.

B. Miranda and A. Bertolino, “Improving Test Coverage Measure-
ment for Reused Software,” Proc. Euromicro Conf. Softw. Eng. and
Advanced Applications, pp.27-34, 2015.

H. Cox, “Differential coverage: automating coverage analysis,” Proc.
IEEE Conf. Softw. Testing, Verif. and Valid., pp.424-429, 2021.

A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, “Applications of Syn-
chronization Coverage,” Proc. ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming, pp.206-212, 2005.

E. Sherman, M.B. Dwyer, and S. Elbaum, “Saturation-Based Testing
of Concurrent Programs,” Proc. Joint Meeting of the European Softw.
Eng. Conf. and the ACM SIGSOFT Symp. Foundations of Softw. Eng.,
pp.53-62, 2009.

B. Kfena, Z. Letko, and T. Vojnar, “Coverage Metrics for Saturation-
Based and Search-Based Testing of Concurrent Software,” Runtime
Verif., pp.177-192, 2012.

(26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

(35]

[36]

[37]

(38]

[39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

V. Terragni and S.-C. Cheung, “Coverage-Driven Test Code Generation
for Concurrent Classes,” Proc. Int’l Conf. Softw. Eng., pp.1121-1132,
2016.

S. Park, R. Vuduc, and M.J. Harrold, “UNICORN: A Unified Approach
for Localizing Non-Deadlock Concurrency Bugs,” Softw. Test. Verif.
Reliab., vol.25, no.3, pp.167-190, 2015.

P. Hsia, X. Li, and D.C. Kung, “Class Testing and Code-Based Cri-
teria,” Proc. Conf. the Centre for Advanced Studies on Collaborative
Research, p.14, 1996.

M. Fisher, J. Wloka, F. Tip, B.G. Ryder, and A. Luchansky, “An Eval-
uation of Change-Based Coverage Criteria,” Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Anal. for Softw. Tools, pp.21-28,
2011.

S. Biswas, “Proposal for Control Dependency White-Box Test Cov-
erage Metrics for Inheritance,” Proc. Int'l Conf. Data Science and
Business Analytics, pp.155-160, 2018.

D.E. Perry and G.E. Kaiser, “Adequate Testing and Object-Oriented
Programming,” J. Obj. Oriented Prog., vol.2, no.5, pp.13-19, 1990.
D. Mukherjee, D. Shekhar, and R. Mall, “Proposal for A Structural
Integration Test Coverage Metric for Object-Oriented Programs,” SIG-
SOFT Softw. Eng. Notes, vol.43, no.1, pp.1-4, 2018.

D. Mukherjee, “A Novel Test Coverage Metric for Safety-Critical Soft-
ware,” IEEE Region 10 Conf., pp.486—491, 2019.

M.H. Alalfi, J.R. Cordy, and T.R. Dean, “Automating Coverage Met-
rics for Dynamic Web Applications,” Proc. European Conf. Softw.
Maintenance and Reengineering, pp.51-60, 2010.

M. Mirzaaghaei and A. Mesbah, “DOM-Based Test Adequacy Criteria
for Web Applications,” Proc. Int’l Symp. Softw. Testing and Anal.,
pp.71-81, 2014.

H.V. Nguyen, H.D. Phan, C. Kistner, and T.N. Nguyen, “Explor-
ing output-based coverage for testing PHP web applications,” Autom.
Softw. Eng., vol.26, no.1, pp.59-85, 2019.

W. Hummer, O. Raz, O. Shehory, P. Leitner, and S. Dustdar, “Test
Coverage of Data-Centric Dynamic Compositions in Service-Based
Systems,” IEEE Int’l Conf. Softw. Testing, Verif. and Valid., pp.40-49,
2011.

H.M. Sneed and C. Verhoef, “Measuring test coverage of SoA ser-
vices,” Proc. Int’l Symp. the Maintenance and Evolution of Service-
Oriented and Cloud-Based Environments, pp.59—66, 2015.

AM. Memon, M.L. Soffa, and M.E. Pollack, “Coverage Criteria for
GUI Testing,” Proc. European Softw. Eng. Conf. Held Jointly with
ACM SIGSOFT Int’l Symp. Foundations of Softw. Eng., pp.256-267,
2001.

B. Smith, Y. Shin, and L. Williams, “Proposing SQL Statement Cover-
age Metrics,” Proc. Int’l Workshop on Softw. Eng. for Secure Systems,
pp.49-56, 2008.

T. Kim, C. Lee, K. Lee, S. Baik, C. Wu, and K. Yi, “Test Coverage
Metric for Two-Staged Language with Abstract Interpretation,” Asia-
Pacific Softw. Eng. Conf., pp.301-308, 2009.

P. Tsankov, M.T. Dashti, and D. Basin, “Semi-Valid Input Coverage for
Fuzz Testing,” Proc. Int’l Symp. Softw. Testing and Anal., pp.56-66,
2013.

R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-Aware
Test-Suite Minimization for Android Apps,” Proc. Int’l Symp. Softw.
Testing and Anal., pp.425-436, 2016.

S. Nakajima and H.N. Bui, “Dataset Coverage for Testing Ma-
chine Learning Computer Programs,” Asia-Pacific Softw. Eng. Conf.,
pp-297-304, 2016.

J. Rott, R. Niedermayr, E. Juergens, and D. Pagano, “Ticket Coverage:
Putting Test Coverage into Context,” Proc. Workshop on Emerging
Trends in Softw. Metrics, pp.2-8, 2017.

A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test Coverage Cri-
teria for RESTful Web APIs,” Proc. ACM SIGSOFT Int’1 Workshop on
Automating TEST Case Design, Selection, and Evaluation, pp.15-21,
2019.

S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the Effectiveness
of Input and Output Coverage Criteria for Testing Quantum Programs,”
Proc. IEEE Conf. Softw. Testing, Verif. and Valid., pp.13-23, 2021.

66—

