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Abstract—Debugging is a costly process in software devel-
opment, and computer-aided debugging is expected to reduce
the cost. In debugging, fault localization is used to identify
the location of potentially faulty code. Spectrum-based fault
localization (SBFL) identifies program statements that contain
faults based on program spectra collected during the execution
of the test cases. Conventional SBFL treats all test cases as
having equal importance. A weighting technique that assigns
importance to test cases based on the similarity of program
spectra (where higher similarity indicates higher importance) has
been proposed. However, this technique does not significantly
improve fault localization accuracy. We attribute this lack of
improvement to the presence of sequential program statements,
which negatively affect the weighting. In this study, we apply
blocking and the weighting of spectra to improve accuracy. We
conduct experiments to compare the proposed technique with
conventional SBFL and a recent SBFL technique. We show that
the proposed technique identifies faulty program statements with
higher accuracy than previous SBFL techniques. Weighting based
on the similarity of spectra after blocking is thus effective.

Index Terms—Fault Localization, Weighting, Blocking Spec-
trum, Program Spectrum

I. INTRODUCTION

In software development, debugging is a very costly task.
It has been reported that debugging accounts for more than
half of software development costs [1], [2]. Computer-assisted
debugging is expected to reduce these costs.

In debugging, fault localization is used to identify the
location of potentially faulty code. Many fault localization
techniques have been proposed [3]–[5].

One of the most actively studied techniques is spectrum-
based fault localization (SBFL), which performs fault local-
ization based on program spectra [6]. A program spectrum
indicates which parts of a program are executed for a given
test case [7]. Compared to other fault localization techniques,
SBFL has shown the most promising results [8], [9]．In
SBFL, faulty program statements are identified based on the
idea that program statements executed in failed test cases are
more likely to be faulty and those executed in successful test
cases are likely to be less faulty. In conventional SBFL, all test
cases are treated as having equal importance. Given a faulty
program and test cases as input, SBFL outputs a suspicion
value for each statement in the program. The suspicion value
(usually in the range of 0 to 1) indicates the likelihood that the
statement contains a fault. A higher suspicion value indicates
a higher likelihood of a fault.

A weighting technique for SBFL based on the importance of
test cases has been proposed [10]. This technique determines
the importance based on the similarity of spectra. Successful

test cases whose spectra have high similarity to those of failed
test cases are given high weights. However, this technique does
not significantly improve the accuracy of identifying faulty
statements.

We attribute this lack of improvement to the presence of
sequentially executed program statements, which negatively
affect the weighting. To overcome this problem, we propose
the addition of a process called blocking, which combines a
sequence of program statements that do not include branches
that are executed consecutively into a single block. After
blocking, the proposed technique calculates the similarity of
blocked spectra and assigns a higher weight to successful test
cases that have a higher similarity to failed test cases.

In our experiments, we apply the proposed technique, con-
ventional SBFL, and a recent SBFL technique to a database of
faults in open-source software (Defects4J [11]) and compare
the ranking of suspicion attached to faulty statements in the top
percentile of all program statements. The results confirm that
the proposed technique improves the accuracy of identifying
faulty program statements compared to those for conventional
SBFL and a recent SBFL technique.

The main contributions of this paper are as follows.
• We propose an SBFL technique that weights test cases

based on the similarity of spectra with blocking.
• The proposed technique is applied to real faults in open-

source software. The results show that it is more effective
than existing SBFL techniques.

• We show that blocking effectively improves accuracy.
• We discuss faults for which the proposed technique is

ineffective, namely those in conditional predicates.

II. SPECTRUM-BASED FAULT LOCALIZATION

A. Basic Definition

SBFL techniques take a faulty program and its test cases
as input. All the given test cases are executed, and then
the suspicion value for each program statement is calculated
based on the success/failure and spectra for the test cases. The
suspicion value is based on the idea that program statements
executed in failed test cases are more likely to contain a
fault than those executed in successful test cases. The output
of SBFL techniques is the suspicion values for the program
statements.

Herein, we explain how to calculate the suspicion value for
a given program statement. ef i, nf i, epi, and npi for si are
defined as follows:
ef i number of failed test cases that execute si,
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Fig. 1: Flow of SBFL from input to output.

nf i number of failed test cases that do not execute si,
epi number of successful test cases that execute si, and
npi number of successful test cases that do not execute

si.

We obtain a scalar value of suspicion by putting the above
values into the formula for calculating suspicion. There are
many formulas for calculating suspicion. That proposed by
Ochiai [12] is shown below.

suspicion(si) =
ef i√

(ef i + nf i) ∗ (epi + ef i)
(1)

The rank of a faulty program statement is the index of
the fault program statement in a list in which all program
statements are sorted in descending order of their suspicion
value. If a faulty program statement has the same suspicion
value as that of other program statements, the rank of the faulty
program statement is set to be lower. For example, if a faulty
program statement and another program statement both have
the highest suspicion value, the faulty program statement is
ranked second.

B. Weighting Test Cases

In conventional SBFL (see Subsection II-A), all test cases
are treated equally. A previous study proposed weighting test
cases to improve fault localization [10]. Weighting works well
for the element tie problem [13]. In this problem, two or
more program statements have the same suspicion value [14].
Developers thus do not know which statement to look at
first [15], [16]. Assigning unique weights to the test cases
would eliminate the element tie problem because the ranking
ties would be split.

Studies have proposed SBFL techniques for weighting test
cases [10], [17]–[21]. In the present study, we refer to the
work of Bandyopadhyay and Ghosh [10], where test cases are
weighted based on the similarity of their spectra.

Their techniques, referred to as the BG (Bandyopadhyay
and Ghosh) techniques hereafter, assign a weight of below 1
to a successful test case and a weight of 1 to a failed test case.

To compute the weight of a successful test case ts, the
similarity sim(ts) between ts and the set of all failed test
cases is calculated as shown below, where St is the set of

program statements executed in test cast t, T f is the set of all
failed test cases, and |S| is the number of elements in set S.

sim(ts, tf ) =
|Sts ∩ Stf |
|Sts ∪ Stf |

(2)

sim(ts) =
1

|T f |
∑
t∈Tf

sim(ts, f) (3)

The similarity sim(ts, tf ) between a given successful test case
ts and a failed test case tf is represented by the Jaccard
coefficient for the set of program statements executed in ts
and the set of program statements executed in tf . Then,
the similarity sim(ts) is calculated as the average of the
similarities between ts and each failed test case. By using
sim(ts) and thresholds thldL and thldH (thldL ≤ thldH),
the weight of ts is calculated as follows.

w(ts) =


1− sim(ts) (0 ≤ sim(ts) < thld)

sim(ts) (thldL ≤ sim(ts) ≤ thldH)

1− sim(ts) (thldH < sim(ts) ≤ 1)

(4)

thldL is one of the following three values:
• 0,
• the value of the first quartile in the boxplot of the

similarity of all successful test cases, or
• the value of the lower tail in the boxplot.

thldH is one of the following three values:
• 1,
• the value of the third quartile in the boxplot, or
• the value of the upper tail in the boxplot.
Table I shows the codes used for the BG techniques based

on the thldL and thldH values. These codes are used in the
experiments in Section V.

C. Issues of Prior Work and Key Ideas for Improvement

In the BG techniques, the similarity of the spectra for
failed and successful test cases is calculated using the Jaccard
coefficient, and the successful test cases are weighted based
on the similarity. However, this does not significantly improve
the accuracy of fault localization, as shown in experiments. We
consider that this lack of improvement is due to the following
reasons.

• In the calculation of similarity based on a simple com-
parison of spectra, consecutively executed program state-
ments that do not contain branches can have an excessive
contribution to the similarity of test cases. In other

TABLE I: Codes for the BG techniques for various threshold value
combinations

(thldL, thldR) name
(0, 1) NoThresh
(lower quartile, 1) LQ
(lower quartile, upper quartile) LQ-UQ
(lower tail, 1) LT
(lower tail, upper tail) LT-UT
(lower tail, upper quartile) LT-UQ
(lower quartile, upper tail) LT-UT



words, inappropriate weights may be assigned because
they depend more on the length of consecutively executed
statements than on branches. Instead of consecutively
executed statements, we consider that branches should
be given importance in weighting.

• Successful test cases whose spectra have low similarity to
those for failed test cases are also weighted. We consider
that successful test cases with low similarity should not
be weighted.

We now discuss why branches are important. In a simple
comparison of spectra, the similarity of test cases is greatly
affected by the existence of program statements that are exe-
cuted consecutively without branches. In SBFL, the length of
consecutive program statements that do not contain branches
is not important, but the existence of branches is important.
The reason for this is that in SBFL, the coverage information
changes only due to branches, and the suspicion value is
calculated based on the coverage information. Therefore, we
consider that branches should be considered important in the
weighting of test cases.

We discuss why weights should not be assigned to success-
ful test cases whose spectra have low similarity to those for
failed test cases. We believe that the differences in spectra of
failed and successful test cases contain the cause of the success
or failure of the test cases. In other words, the fault location
is narrowed down by using the differences. A low similarity
between a failed test case and a successful one indicates
many differences in their spectra, and the fault location is
not narrowed down. In such a case, weighting is a noise that
reduces the accuracy on the contrary. Therefore, successful
test cases with low similarity to failed ones should not be
weighted.

III. PROPOSED TECHNIQUE

A. Overview

To improve SBFL, the proposed technique assigns weights
to test cases based on the idea that a successful test case
whose spectra are similar to those for failed test cases is
more important. In our technique, the similarity of spectra
is obtained after a process called blocking is performed on
the target program. Blocking combines a sequence of program
statements that do not contain branches into a single block. As
described in Subsection II-C, a simple comparison of spectra
does not provide a weighting that emphasizes branching.
Blocking solves this problem.

Figure 2 shows the procedure for the proposed technique.
The proposed technique takes a faulty program and its test
cases as input, and outputs a suspicion value for each program
statement. The proposed technique consists of the following
four steps.

STEP-1: The faulty program is run through the test cases
to obtain spectrum information.

STEP-2: Blocks of acquired spectra are made.
STEP-3: The weights for successful test cases are cal-

culated based on the similarity of blocked spectra.

STEP-4: The suspicion value is calculated with the
weighting of successful test cases.

The major differences between the BG techniques [10] and
the proposed technique are as follows.

• In determining the similarity of spectra, the proposed
technique performs blocking, whereas the BG techniques
do not.

• In the BG techniques, successful test cases with low
similarity are also assigned weights; this is not done in
the proposed technique.

Subsection III-B to Subsection III-E describe each step
in detail. The proposed technique does not use the Jaccard
coefficient for the similarity calculation in STEP-3. The reason
for this is given in Subsection III-F. Because our weighting
technique is based on blocking, we call the proposed tech-
nique Blocked Weighting Spectrum-Based Fault Localization
(BWSBFL).

B. STEP-1: The faulty program is run through the test cases
to obtain spectrum information.

Spectrum information is obtained using the library JaCoCo
[22]. This library is used to obtain a coverage report for a
program when passed through the test cases. The spectrum
for each test case is obtained by executing each test case one
by one and obtaining a coverage report for each execution.

C. STEP-2: Blocks of acquired spectra are made.

Blocking combines statements that are executed consecu-
tively by only certain test cases into a single block. In Figure 3,
lines 2-3 are executed consecutively and the set of test cases
executing lines 2-3 matches {ta, tb}.Therefore, the blocking
process combines lines 2-3 into one block (B2). The test cases
that execute the seventh and ninth lines in Figure 3 match at
ta, tb, and tc. However, the eighth line is executed between
the seventh and ninth lines (i.e., the seventh and ninth lines
are not performed consecutively), so these lines are grouped
into different blocks (B5 and B7, respectively).

D. STEP-3: The weights for successful test cases are calcu-
lated based on the similarity of blocked spectra.

In STEP-3, the similarity between the failed and successful
test cases is calculated and the weights of the successful test
cases are calculated using this similarity. A threshold thld is
set for the similarity. A weight of 1 is assigned when the
similarity is below the threshold and a weight of above 1
is assigned when the similarity is greater than the threshold,
increasing monotonically as the similarity increases.

In the following, the set of failed test cases is denoted by
F. The number of elements in the set F is denoted by |F|.
only(ti → tj) and both(ti → tj) are defined as follows.
only(ti → tj)

Number of program elements executed in test case
ti and not executed in test case tj .

both(ti → tj)
Number of program elements executed in both test
cases ti and tj .
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int CloseToZero(int n){ ta tb tc Block

1: if(n>0) ● ● ● B1

2: print(“n > 0”); ● ●
B2

3: n--; ● ●

4: if(n<0) ● ● ● B3

5: print(“n < 0”); ●
B4

6: n++; ●

7: if(n==0) ● ● ● B5

8: print(“n == 0”); ● ● B6

9: return n; ● ● ● B7

} Result F S S

●
F
S

means executed by the test case.
means the test case failed.
means the test case successed.

Fig. 3: Example of blocking.

The program elements used in the definition are the blocks
described in STEP-1 in BWSBFL.

As an example, we obtain only(ta → tb) and both(ta →
tb) in Figure 3. The set of blocks executed in test case ta is
{B1, B2, B3, B5, B6, B7} and that executed in test case tb is
{B1, B2, B3, B5, B7}. Therefore, the set of blocks executed
in ta and not executed in tb is {B6}. Therefore, only(ta →
tb) = 1. The set of blocks executed by both ta and tb is
{B1, B2, B3, B5, B7}. Therefore, both(ta → tb) = 5.

The similarity of the spectrum of tj to ti, sim (ti → tj),
is defined as follows. We do not use the Jaccard coefficient
to compute the similarity between the two sets for the reason
given in Subsection III-F.

sim (ti → tj) =
both(ti → tj)

only(ti → tj) + both(ti → tj)
(5)

The weight w(tj) for the successful test case tj is obtained
using these values. Let w(ti → tj) be the weight for successful
test case tj relative to failed test case ti, as defined in equation
(6). w(ti → tj) takes 1 when the similarity sim (ti → tj) are
less than a certain threshold thld, and greater than 1 otherwise.
The threshold thld is in the range of 0 - 1.

w(ti → tj) = (6)
1 (sim (ti → tj) < thld)

both(ti → tj)√
only(ti → tj) + both(ti → tj)

(thld ≤ sim (ti → tj))

Because a small weight is assigned when the similarity is
lower than the threshold and a large weight is assigned when
the similarity is higher, the sigmoid function [23], which is
often used in machine learning, can be used as a reference in
the weighting. In the range thld ≤ x ≤ 1, the rate of increase
of this function becomes smaller as the similarity increases.
We added a root to the denominator of the similarity because
the weight then takes values similar to the sigmoid function.
Note that the function (6) is not the sigmoid function.

The weight w(tj) for test case tj is the value obtained by
averaging w(ti → tj). It is given as follows.

w(tj) =

∑
ti∈F w(ti → tj)

|F|
(7)

As an example, let us calculate w(tc) when 0.8 is used as
the threshold thld in Figure 3. First, we find w(ta → tc).
Because only(ta → tc) = 1 and both(ta → tc) = 5, the
similarity of ta and tc is as follows.

sim(ta → tc) =
5

1 + 5
≒ 0.83

Because the similarity is above the threshold, w(ta → tc)

is 5√
1+5

≒ 2.04. Because F = {ta}, w(c) = w(ta→tc)
|F| = 2.04.

E. STEP-4: The suspicion value is calculated with the
weighting for successful test cases.

ep
′i and np

′i are defined as follows.
ep

′i Sum of weights for successful test cases that execute
statement SI .

np
′i Sum of weights for successful test cases that do not

execute statement SI .
The suspicion value in the proposed technique is calculated

by replacing epi and npi in conventional SBFL with ep
′i and

np
′i. For example, the formula for calculating the suspicion

value in the proposed technique, in which epi in Ochiai’s
formula (1) is replaced by ep

′i, is as follows.

suspicion(si) =
ef i√

(ef i + nf i) ∗ (ep′i + ef i)
(8)



F. Reasons for not Using Jaccard Coefficient for Calculating
Similarity

The reasons for not using the Jaccard coefficient, which is
often used as a similarity measure, are given below. In the
following explanation, tf is a failed test case and ts is a
successful test case. The Jaccard coefficients for tf and ts are
expressed as follows using only(ti → tj) and both(ti → tj)
defined in Subsection III-D.

both(tf → ts)

only(tf → ts) + only(ts → tf ) + both(tf → ts)
(9)

Jaccard coefficients incorporate elements of program state-
ments that are executed only in successful test cases (i.e.,
only(ts → tf )). The element only(ts → tf ) in equation
(9) represents the number of program statements executed
in the successful test case ts and not executed in the failed
test case tf . Because fault localization is based on the idea
that the program statements executed in the failed test case
contain faults, incorporating features that do not appear in
the failed test case into the similarity adds noise. Renieres
et al. applied this concept to calculate the similarity between
failed and successful test cases [24]. They used the Hamming
distance when measuring the similarity between failed and
successful test cases. They ignored the fact that the Hamming
distance is increased by features that appear in the successful
test case but not in the failed test case because these features
are undesirable for fault localization. Therefore, in the present
study, the elements of the program statements executed only in
the successful test case are ignored in calculating the similarity.

IV. EXPERIMENTAL SETUP

The purpose of this experiment is to evaluate whether SBFL
is more effective in localizing faults when successful test
cases are weighted using the similarity of blocked spectra.
To evaluate the proposed technique, some existing SBFL
techniques are also used. The SBFL techniques used in this
experiment are listed below.

BG: The BG techniques [10]. See Subsection II-B for
details.

Basic: The basic SBFL technique without weighting [6].
See Subsection II-A for details.

BWSBFL: The proposed technique. Blocking is used to
weight successful test cases.

WSBFL: Same as BWSBFL but successful test cases are
weighted without blocking.

The differences between the techniques are summarized in
Table II. In this experiment, we compare the fault localization
accuracy of BWSBFL to those of Basic and BG, evaluate
the effect of blocking on fault localization accuracy and the
effect of the suspicion value formula on the accuracy of
fault localization in BWSBFL, and compare BWSBFL and
Basic in terms of execution time. Fault localization techniques
are also used for automated program repair (APR). Various
APR techniques have been proposed [25]–[27]. Some APR
techniques perform fault localization many times before fixing

faults [27]. In these techniques, the increase in the execution
time for fault localization is related to the increase in the
execution time for APR. Therefore, the effect of execution
time was examined.

A. Benchmark

In this experiment, we use Defects4J (V1.2.0) [11] as a
benchmark. Defects4J is a dataset that includes 395 faults
found during the development of six open-source projects
written in Java. It is widely used as a benchmark in the
study of fault localization [28], [29]. This study uses the Lang,
Math, and Time projects included in Defects4J as experimental
targets because our tool supports their build tool (Maven).
Some of the faults could not be executed, namely ID101-106
(Math), ID41-65 (Lang), and ID22 (Time). The total number
of faulty statements in the projects that could be executed was
561 and the number of these statements that were detectable
by SBFL was 360. 201 faulty statements were not detectable
by SBFL because they are not executed in the failed test case
and thus their suspicion value is 0.

B. Formulas for calculating Suspicious Value to be used

To calculate the suspicion value, we use the following
formulas: Ochiai [12], DstarN [8], Jaccard [30], Zoltar [31],
and Tarantula [32]. These formulas are given below. We set
N to 5 for Dstar (11) in this experiment.

Ochiai

suspicion(si) =
ef i√

(ef i + nf i) ∗ (epi + ef i)
(10)

DstarN

suspicion(si) =
ef iN

nf i + epi
(11)

Jaccard

suspicion(si) =
ef i

ef i + nf i + epi
(12)

Zoltar

suspicion(si) =
ef i

ef i + nf i + epi +
10000 ∗ nf i ∗ epi

ef i

(13)
Tarantula

suspicion(si) =

ef i

ef i + nf i

ef i

ef i + nf i
+

epi

epi + npi

(14)

C. Metric

In this experiment, we use TopN% as an evaluation metric.
TopN% indicates the rank of a fault in the top percentile of
all statements with suspicion values. Let rank(s) be the rank
of a faulty program statement and |SfailureExecuted| be the
number of statements that the failed test cases executed. Then,



TopN% is expressed as following formula (15). A smaller
value indicates higher fault detection accuracy.

TopN% =
rank(s)

|SfailureExecuted|
(15)

V. RESULTS AND DISCUSSION

The results for Math, Lang, and Time obtained using
Ochiai’s formula are shown in Figure 4, Figure 5, and Figure 6,
respectively. The vertical axis represents the TopN% value and
the horizontal axis represents the threshold value in BWSBFL
and WSBFL. The solid blue line represents BWSBFL, the
solid black line represents WSBFL, the dashed line represents
Basic, and the dash-dotted lines represent the BG techniques.
NoThresh, LQ, LQ-UQ, LT,... in the legend are the name of
the BG techniques shown in Table I. Ochiai’s formula is used
because Abreu et al. compared several SBFL formulas and
concluded that Ochiai’s formula is the best [12].

A. Comparison of BWSBFL and Basic

As shown in Figure 4, Figure 5, and Figure 6, Basic tends
to show a better TopN% than that for BWSBFL with a low
threshold but a worse TopN% than that for BWSBFL with
a high threshold. In the proposed technique, a significant
weight is given only to successful test cases whose spectra
are highly similar to those for failed test cases. Therefore, a
high threshold makes BWSBFL outperform Basic.

A comparison of BWSBFL (with a threshold of 0.85) and
Basic in terms of detected faults is shown in Table III. The
second and third columns show the number of faults for which
BWSBFL/Basic was superior to each other. The fourth column
indicates the number of faults BWSBFL and Basic gave the
same TopN%. For all projects, the number of faults detected
by BWSBFL more accurately is higher than that for Basic. In
particular, for Lang, the TopN% value for BWSBFL is equal
to or greater than that for Basic for all faults. BWSBFL thus
outperforms Basic.

B. Comparison of BWSBFL and the BG Techniques

The TopN% results for the various techniques are shown
in Figure 4, Figure 5, and Figure 6. The solid blue line
represents BWSBFL and the dash-dotted lines represent the
BG techniques. BWSBFL with a threshold value of 0.85 shows
a better TopN% value than that for the BG techniques for

all projects. The BG techniques with some threshold values
shows a worse TopN% value than that for Basic. In contrast,
BWSBFL with a high threshold value achieves a better TopN%
value than that for Basic. For example, BWSBFL with a
threshold value of 0.85 is superior to Basic for all projects.
These results indicate that BWSBFL has more accurate fault
localization than that for the BG techniques.

C. Effect of Blocking on Accuracy of Fault Localization

The TopN% values of BWSBFL and WSBFL for various
thresholds are shown in Figure 4, Figure 5, and Figure 6.
BWSBFL and WSBFL have the best TopN% values at differ-
ent thresholds. We use the threshold at which each technique
performed best. The threshold at which each technique ob-
tained the best TopN% value and the corresponding TopN%
value are shown in Table IV. For Math and Time, BWSBFL
has a better TopN% value. For Lang, WSBFL has a better
TopN% value.

Table V shows the number of faults for which BWSBFL or
WSBFL is superior to each other for the thresholds shown in
Table IV. For all projects, BWSBFL has a larger number of
correctly detected faults. These results confirm that blocking
is effective.

D. Effect of Suspicion Formula on Accuracy of Fault Local-
ization for BWSBFL

The TopN% values for various thresholds were obtained
using Jaccard [12], Dstar [8], Zoltar [31], Tarantula [32], and
Ochiai [12].

For all projects, the TopN% value decreases when the
threshold is around 0.95. For Math and Time, the optimal

TABLE III: Comparison of BWSBFL (threshold: 0.85) and Basic
in terms of detected faults

BWSBFL is superior Basic is superior Same
Math 27 21 161
Lang 10 0 83
Time 15 13 30

TABLE IV: Threshold at which BWSBFL and WSBFL show best
TopN%

Threshold TopN%
BWSBFL WSBFL BWSBFL WSBFL Diff

Math 0.85 0.90 51.22 52.34 1.12
Lang 0.40 0.45 69.35 68.71 -0.64
Time 0.85 0.95 22.01 22.62 0.61

TABLE II: Summary of techniques used in experiment

Name Blocking Similarity Weighting to Test Cases
Basic always 1

BG Jaccard


1− sim(ti) (0 ≤ sim(ti) < thld)

sim(ti) (thldL ≤ sim(ti) ≤ thldH)

1− sim(ti) (thldH < sim(ti) ≤ 1)

BWSBFL ✓
arranged
Jaccard


1 (sim (ti → tj) < thld)

both(ti → tj)√
only(ti → tj) + both(ti → tj)

(thld ≤ sim (ti → tj))

WSBFL
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Fig. 6: TopN% comparison results in Time

threshold value is 0.85, and for Lang, it is around 0.55. The
TopN% value has a similar trend for all calculation formulas.

E. Comparison of BWSBFL and Basic in Terms of Execution
Time

Both Basic and BWSBFL have the following two processes.

TABLE V: Number of faults for which BWSBFL and WSBFL
outperform each other

BWSBFL is superior WSBFL is superior Same
Math 32 14 163
Lang 4 3 86
Time 10 7 41
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Fig. 9: TopN% obtained using various formulas (Time).

1) Obtain spectra by running the program through the test
cases.

2) Calculate suspicion value from acquired spectra.

The first process is the same for the two techniques, but
the second process is different. Therefore, for comparing the
execution time, only the second process is compared. A box-
and-whisker diagram of the execution time for each technique
is shown in Figure 10.

The average runtime for Basis was 56.4 ms and that for
BWSBFL was 67.3 ms. The increase in execution time was
thus negligible.
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Fig. 10: Execution time for Basic and BWSBFL.

F. Limitations of BWSBFL

We investigated the types of faults for which BWSBFL
outperforms Basic. For Defects4J Math, faults that differ
in ranking between BWSBFL and Basic are summarized in
Table VI. The threshold value for BWSBFL is 0.85. Column 2
indicates the type of statement that contains the fault. Column
3 indicates the modification pattern of the fault. Columns
4 and 5 show the TopN% values for BWSBFL and Basic,
respectively. Column 6 shows the difference between the
TopN% values of BWSBFL and Basic. A positive (negative)
value indicates that BWSBFL (Basic) is superior. The top and
bottom parts of the table show the faults for which BWSBFL
and Basic are better, respectively. BWSBFL is superior for 27
faults and Basic is superior for 21 faults.

The faults are classified into two types depending on
the program statement type: faults in compound statements
(While, If, and For Statements) and simple statements.

Of the 27 faults for which BWSBFL is superior, 6 are in
compound statements. In contrast, of the 21 faults for which
BWSBFL is inferior, 13 are in compound statements. This
indicates that BWSBFL tends to not be able to detect faults
existing in a compound statement more effectively than Basic.

This is because when there is a fault in the compound
statement, the spectrum for the failed test case and that for
the successful test case that executes the fault tend to have
high similarity. This is clarified using Math 37 as an example.

1 public Complex tan(){
2 - if(isNaN){
3 + if(isNaN || Double.isInfinite(real)){
4 return NaN;
5 }
6 ...
7 return createComplex(FastMath.sin(real2)/d,

FastMath.sinh(imaginary2)/d);
8 }

This code shows the location of the fault in Math 37. The
second line is the faulty code and the third line is the correct
code. When the variable real is Infinite, the return statement
on line 4 is not executed, and the test case fails. In this case,
the spectrum for the failed test case is similar to that for the
successful test case when real takes values other than NaN
and Infinite, so we consider the spectra to be similar.

To support this consideration, we surveyed faults in the
Math project that differed in TopN% between BWSBFL and
Basic. We compare the percentage of weighted successful test
cases among all with the percentage of weighted test cases
among the successful test cases that run the fault locations.

There are a total of 557 successful test cases in the Math
project in Table VI, of which 167 (30.0%) are weighted
successful test cases. There are 557 successful test cases, 100
of which execute faults in the compound statements. Weighted
test cases account for 70.0% of these 100 test cases.

This indicates that the test cases that succeed in passing
the faults in the compound statement tend to be more similar
to the failed test cases. Therefore, the accuracy of BWSBFL
for faults in compound statements is lower than that of Basic
because the suspicion value for the fault location is lower.

VI. RELATED WORK

Studies on program slicing [33], [34], weighting test
cases [17], [18], learning-based fault localization [35]–[37],
and fault localization based on the similarity of spectra [24]
are summarized below.

A. Program Slicing

Program slicing [33] is used to localize faults. This tech-
nique reduces the number of program statements that need
to be checked during debugging by eliminating program
statements that are irrelevant to the variable of interest. Pro-
gram slicing can be divided into two main categories. Static
slicing [33] analyzes the source code and extracts program
statements that may be related to a certain variable. However,
static slicing cannot remove program statements that are not
actually executed due to branching or other reasons and have
no effect on the variable of interest. Dynamic slicing [34]
extracts only program statements that affect variables among
program statements that are actually executed during program
execution. Dynamic slicing takes more time to generate results,
but it removes more irrelevant program statements than does
static slicing. Program slicing does not assign priorities to
program statements in the slice to be examined after irrelevant
statements are eliminated. Therefore, it is necessary to go
back to the point where the fault is thought to have occurred
and examine each program statement one by one and check
whether it contains a fault, which may require a lot of effort
depending on the program size.

B. Weighting Test Cases

Here, we review some studies that assign weights to test
cases. Zhang et al. proposed PRFL, which uses the PageRank
algorithm for weighting test cases [17]. The PageRank algo-
rithm determines the importance of a node in a graph based
on how it is connected to other nodes. It is based on the idea
that nodes that are connected to more nodes and nodes that are
connected to nodes of higher importance are more important.
In PRFL, each node is a function in the source code. A node
has directed edges to the nodes of other functions called within
the function. SBFL is performed using the weights assigned



to the test methods as test case weights. PRFL is significantly
different from BWSBFL; the former is based on the invocation
information between methods, whereas the latter is based on
the similarity of spectra. Feature-FL was proposed by Lei et
al. [18]. Feature-FL is an SBFL technique that takes into
account the probability that each program statement inside
conditional predicates is executed. In their technique, program
statements that are executed at a higher (lower) probability in
failed test cases have higher (lower) suspicion values.

C. Learning-Based Fault Localization

Learning-based fault localization uses machine learn-
ing [35]–[37]. This technique uses features such as program
invariance and source code complexity in addition to the

suspicion value obtained from SBFL to estimate the locations
of faults. These features are assigned appropriate weights
using a learning-to-rank algorithm [38], a supervised machine
learning algorithm often used in search engines.

D. Fault Localization Based on Similarity of Execution Paths

Reiss et al. [24] localized faults based on the similarity of
the effective paths for the test cases. In their technique, which
is a type of program slicing, the successful test case whose
spectrum has the highest similarity to that for the failed test
case is first selected. Next, slices of the two test cases (failed
and successful) are created and compared. Program statements
that only exist in the slice of the failed test case are given to the
user as suspicious statements. This technique is not effective

TABLE VI: Type of fault location and TopN% value for Basic and BWSBFL

Subject ID Statement Type Modification Patterns Basic BWSBFL Diff
Math 6 Simple Statement (Assignment) Modify Function Argument 42.01 41.97 0.04
Math 6 Simple Statement (Assignment) Remove Statement 66.26 65.90 0.36
Math 6 Simple Statement (Function Call) Modify Increment Statement 66.26 65.90 0.36
Math 6 Simple Statement (Assignment) Remove Statement 98.35 95.24 3.11
Math 6 Simple Statement (Function Call) Modify Increment Statement 98.35 95.24 3.11
Math 29 Simple Statement (Assignment) Remove Statement 44.38 8.28 36.10
Math 29 Compound Statement (While statement) Modify Conditional Expression 44.38 8.28 36.10
Math 29 Simple Statement (Function Call) Remove Statement 44.38 8.28 36.10
Math 29 Simple Statement (Function Call) Modify Function Argument 44.38 8.28 36.10
Math 31 Simple Statement (Variable Declaration) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Variable Declaration) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Variable Declaration) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Variable Declaration) Modify Assignment 52.04 39.33 12.71
Math 31 Compound Statement (If statement) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Variable Declaration) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Assignment) Remove Statement 52.04 39.33 12.71
Math 31 Simple Statement (Assignment) Modify Right-hand Code of Assignment 41.73 29.02 12.71
Math 31 Simple Statement (Assignment) Remove Statement 41.73 29.02 12.71
Math 31 Simple Statement (Assignment) Remove Statement 41.73 29.02 12.71
Math 31 Simple Statement (Assignment) Modify Left-hand Code of Assignment 41.73 29.02 12.71
Math 31 Simple Statement (Assignment) Modify Left-hand Code of Assignment 41.73 29.02 12.71
Math 37 Compound Statement (If Statement) Modify Conditional Expression 15.52 12.93 2.59
Math 37 Compound Statement (If Statement) Add If Statement 5.60 3.88 1.72
Math 42 Compound Statement (If Statement) Add If Statement 26.52 9.68 16.84
Math 64 Simple Statement (Assignment) Add Assignment Expression 33.99 6.18 27.81
Math 86 Compound Statement (If Statement) Remove Statement If Statement 52.17 33.15 19.02
Math 98 Simple Statement (Variable Declaration) Modify Array Index 44.19 23.26 20.93
Math 6 Compound Statement (If Statement) Modify Conditional Expression 47.22 47.46 -0.24
Math 6 Simple Statement (Increment Statement) Modify Increment Statement 47.22 47.46 -0.24
Math 6 Simple Statement (Variable Declaration) Remove Statement 90.44 98.10 -7.66
Math 6 Simple Statement (Function Call) Modify Increment Statement 90.44 98.10 -7.66
Math 16 Compound Statement (If Statement) Add Else Branch 16.74 100.00 -83.26
Math 18 Simple Statement (Assignment) Modify Right-hand Code of Assignment 3.43 4.65 -1.22
Math 18 Simple Statement (Assignment) Modify Right-hand Code of Assignment 3.43 4.65 -1.22
Math 19 Compound Statement (For Statement) Add For Statement 11.64 19.50 -7.86
Math 28 Compound Statement (If Statement) Add If Statement 6.94 15.77 -8.83
Math 33 Compound Statement (If Statement) Modify Conditional Expression 16.99 17.97 -0.98
Math 37 Compound Statement (If Statement) Modify Conditional Expression 15.52 41.81 -26.29
Math 37 Compound Statement (If Statement) Add If Statement 5.60 14.66 -9.06
Math 39 Compound Statement (If Statement) Add If Statement 76.57 81.64 -5.07
Math 83 Simple Statement (Function Call) Modify Method Call 27.80 28.29 -0.49
Math 83 Simple Statement (Function Call) Modify Method Call 27.80 28.29 -0.49
Math 86 Compound Statement (If Statement) Add If Statement 14.67 16.85 -2.18
Math 88 Simple Statement (Assignment) Add Assignment Expression 18.59 19.60 -1.01
Math 88 Compound Statement (If Statement) Add If Statement 18.59 19.60 -1.01
Math 88 Compound Statement (If Statement) Remove Statement 18.59 19.60 -1.01
Math 88 control statemnet (For Statement) Remove Statement 18.59 19.60 -1.01
Math 88 Compound Statement (If Statement) Remove Statement 18.59 19.60 -1.01
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Fig. 11: Defect location for Math 6.

for faults that are located in program statements executed in
both failed and successful test cases. In many real-world cases,
program statements that contain faults are also executed in
successful test cases. An example is ID-6 (Math) in Defects4j.
The spectrum information for ID-6 is shown in Figure 11.

s1 and s4 are faulty program statements, ta is a failed test
case, and tb and tc are successful test cases1. Test case tb
is the test case whose spectrum is most similar to that for
failed test case ta. Because tb executes all program statements
from s1 to s4, these faults cannot be found by Reiss et al.’s
technique. In addition, the output of their technique is the
difference between the failed and successful test cases, which
does not provide guidance on where to look first. In contrast,
our technique provides a suspicion value that indicates which
statements should be examined first.

VII. THREATS TO VALIDITY

Internal Validity: we implemented the tools, Basic, BWS-
BFL, WSBFL, and BG. We take great care to ensure that
the tools do not contain flaws. However, there is a possibility
that undetected implementation flaws may have affected the
results.
External Validity: we used Defects4J (V1.2.0) as a bench-
mark. Defects4J is a dataset of hundreds of bugs during real-
world software development. However, of the six projects
in Defects4j (V1.2.0), only three were used as experimental
targets. It is also possible that different results would be
obtained when the experiment was conducted on the other
projects.

VIII. CONCLUSION

In this study, we proposed a technique that improves the
accuracy of SBFL. Our technique uses blocking, and weights
successful test cases based on the similarity of their spectra
to those for failed test cases. Existing SBFL techniques and
the proposed technique were compared in terms of execution
time and TopN%.

We confirmed that the TopN% value is improved by the
proposed technique at the cost of a slight increase in execution
time.

We also investigated the effects of weighting and block-
ing on accuracy. The results confirm that blocking increases

1Some parts of the source code have been changed due to space limitations
and some test cases are omitted.

accuracy. The experimental results show that the proposed
technique is more effective than existing SBFL techniques.

Our future research includes the followings.
• Our future research will focus on improving accuracy in

cases where compound statements contain faults.
• We will optimize the weighting formula (6).
• Using more programs to further enhance the experimental

results would be worthwhile.
• We will investigate how blocking and weighting we

proposed affects other state-of-the-art SBFL techniques,
such as PRFL [17], Feature-FL [18], or learning-based
fault localization [35]–[37].
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