®

Check for
updates

Tidy Up Your Source Code! Eliminating
Wasteful Statements in Automatically
Repaired Source Code

Takumi Iwase®™), Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan
{tk-iwase,shinsuke,kusumoto}@ist.osaka-u.ac.jp

Abstract. Automated program repair (APR) is a concept of automat-
ically fixing bugs in source code to free developers from the burden of
debugging. One of the issues facing search-based APR is that repaired
code contains wasteful or meaningless statements that do not affect exter-
nal behavior. This paper proposes a concept named source code tidying
that eliminates wasteful statements in source code repaired by search-
based APR. Our proposed method applies pre-defined tidying rules to
repaired code and evaluates the effect of tidying using source code met-
rics such as lines of code. By repeating this process based on a genetic
algorithm, unnatural and full of wasteful source code is gradually brought
close to natural with preserving its behavior. Our method will be involved
in a process of APR by improving the readability of repaired code.

Keywords: Automated program repair - Source code tidying -
Wasteful statements - Dead code * Refactoring

1 Introduction

Automated program repair (APR) is a concept of automatically fixing bugs in
source code to free developers from the burden of debugging [5]. APR can be
broadly classified into search-based [6] and semantics-based [9] approaches. This
paper focuses on genetic algorithm-based APR (GA-APR), one search-based
APR that introduces bio-inspired evolution into program repair. GA-APR takes
as input source code containing one or more bugs and test cases. GA-APR
repeatedly applies tiny modifications to the buggy code until all test cases pass.
While the semantics-based approach is limited to a specific type of bug, such as
conditional bug [12], the search-based approach has the significant advantage of
generality in that it can theoretically fix any kind of bug.

One of the issues facing GA-APR is that repaired code contains wasteful or
meaningless statements that do not affect external behavior. Usually, GA-APR
repeatedly applies predefined modifications without considering semantic infor-
mation. Typical modifications include insertion/deletion/reuse of AST nodes
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 544-550, 2022.
https://doi.org/10.1007/978-3-031-21388-5_40

Tidy Up Your Source Code! 545

[6], insertion/deletion of method calls |2], and modification of variable names
or operators [1]. These blind and random modifications lead to a problem that
repaired source code tends to be far from the source code written by developers.
For example, repetitive insertion of AST nodes will generate wasteful statements
such as “n++; n--;”, which negate each other, or “n++; n=10;", in which the
former statement is overwritten. There is also a case where only an empty block
“{}’ is left due to repetitive deletion. The number of applied modifications will
increase if a bug is difficult to repair. Many modifications make repaired code
full of wasteful statements. As a result, overall repair performance (i.e., search
performance) will gradually decrease with increasing the generations because
wasteful statements affect the performance of compilation and test execution.

This paper proposes a concept named source code tidying that eliminates
wasteful statements in source code repaired by GA-APR. We define wasteful
statements as executable statements that do not affect external behavior. This
definition includes not only dead code [4,10], which is a well-known concept of
unused and unreachable code, but also used and reachable but unnecessary. Our
proposed method applies predefined tidying rules to repaired code and evaluates
the effect of tidying using source code metrics such as lines of code. By repeating
this process based on a genetic algorithm, unnatural and full of wasteful source
code is gradually brought close to natural with preserving its behavior. Our
method will be involved in a process of GA-APR by improving the readability
of repaired code.

P d
W AP o) . 2ld 3
Apply a predefined

tidying rule Evaluation i ’ IR
: j Selection &

4 ;

i (7 l
Repaired code —) ?¢ Cleaned code

Fig. 1. Overview of proposed method

2 Proposed Method

2.1 Overview

The purpose of the proposed method is to tidy source code that contains wasteful
statements. We define wasteful statements as executable statements that do
not affect external behavior and tidy as eliminating these wasteful statements.
Figure 1 shows an overview of the proposed method. The input is repaired source
code by GA-APR, and the output is tidied source code which is same behavior

546 T. Iwase et al.

as the input. The proposed method consists of three iterative processes using
genetic algorithm: tidying, evaluation, and selection. First, the source code is
partially tidied by a randomly selected rule from predefined tidying rules. At
this time, the decision on which rule to use is made several times. This results
in multiple tidied source codes from a single source code. Next, evaluate each
partially tidied source code. As fitness, we use metrics such as lines of code and
cyclomatic complexity. Then, good source codes are selected to the next tidying
based on fitness. If the fitness does not improve after repeating these processes,
the iteration finishes and the proposed method outputs source code with the
best fitness.

The proposed method has two features: tidying rules can be added, and the
source code is tidied based on GA. Even if the proposed method fails to tidy
some source codes, the proposed method will be able to tidy them by adding
rules. GA-based tidying enables natural tidying as humans do.

2.2 Tidying Rules

Table 1 shows the tidying rules adopted in this paper. If rule affects the behavior
of source codes when applying, it does not apply. For example, the swap rule for
D1 in Table 1 does not apply to “n++; m=n;”. Tidying rules are broadly classified
into two. One is “direct rules”, which directly eliminate wasteful statements. The
other is “detour rules”, which add or swap statements in the opposite direction
to wasteful statements elimination. Wasteful statements in repaired source codes
may not be adjacent. Direct rules eliminate adjacent wasteful statements and
cannot eliminate nonadjacent wasteful statements. Therefore, we adopted detour
rules in the role of gathering scattered wasteful statements. Detour rules are
a major difference from related works, and we believe it works effectively for
tidying of repaired source codes.

Step1: Inject a bug by Step2: Repair by APR to retrieve ¢ Step3: Tidy by the T
mutation analysis code containing wasteful stmts O proposed method
| A [
14 14 & 14 ¢¢

Compare the
K ¥ effect of tidying /)

Fig. 2. Overview of experiment

3 Preliminary Experiment

3.1 Overview

We conduct a preliminary experiment using a programming contest as the sub-
ject. Figure 2 shows an overview of the experiment. This experiment consists of
three steps. First, we inject bug into bug-free source codes (S,rigin) and obtain

Tidy Up Your Source Code! 547

bug-injected source codes (Siutated). Next, we repair Syuytated by APR and obtain
bug-repaired source codes (Syepaired)- Finally, we tidy Syepaired Dy the proposed
method and obtain tidied source codes (Stigied). We compare Siigieq With Sorigin
and Syepaired to confirm effectiveness of tidying.

3.2 Experimental Procedure

Table 2 shows a list of the experimental settings and each step is described below.
Stepl: Bug injection. Sorigin are correct answers for twenty 100-point tasks

of the past AtCoder Beginner Contest (ABC), held at AtCoder!. We inject bug
into these correct answers. Mutation analysis [8] is used for the bug injection. In

Table 1. Tidying rules (Rn: direct rule, Dn: detour rule)

1D Rule Before After 1D Rule Before After
R1 Eliminate p++; D1 Swap two n++; m--;
unary oo stmts m--; n++;
operator that have
stmts that no order
negate depen-
each other dence
R2 Eliminate pn++; n=1; D2 Inline if (m>0) { if (m>0) {
overwrit- n=1; a stmt n--; n--;
}elsed{ n++;
ten stmts located ! Jeleef
R3 Eliminate { n++; %} n++; below n++; n++;
a block control }
without stmt
having D3 Inline n++; if (m>0){
control a stmt 1if (m>0){ n++;
n--; n--;
stmt located }elsed{ Yelse{
R4 Eliminate p++; o above con- e
an empty {3 n--; trol stmt }
block stmt ™7 7? that has
- no depen-
R5 Omit & if(true){ n++; dence on
control }n i condition
stmt whose
condition D4 Copy if (m>0) { if (m>0){
. 1 return n++; n++;
18 always stmt } return n;
true or return n; }
false located return n;
below
R6 Merge a if(m>0){ if (m>0){ control
duplicate I;:urn . }n++, stmt
return } return n;
stmt

return n;

! https://atcoder.jp/.

548 T. Iwase et al.

Table 2. Experimental settings
Table 3. Mutation operations

Parameter Setting
Sorigi ABC? 100-point tasks Operation Before After

origin
Number of tasks 20 Replace +and - |n=a+b |[n=a-b
Applied mutations 5 operations (see Table 3) Replace * and / |n =a *b |n = a/b
Used APR tool kGenProg [7] Replace % to * n=a%b n=a*xb
Number of Srepaired 76 Negate condition |if (n > 0) [if (n <= 0)
Fitness in prop. method | Lines of code Change boundary |if (n > 0) |[if (n >= 0)

“https://atcoder.jp/

mutation analysis, a single line in source code is modified by mutation. Table 3
shows the mutations adopted in this experiment. There are multiple operators
and conditions that can be modified in a source code. We use all candidates and
one candidate is used to generate one S,,,tqteq- Therefore, multiple S,,utateq are
generated from one Sorigin. A total of 76 Sy,utated are generated from 20 Sorigin-

Step2: Apply APR. The APR tool to repair Syutated is kGenProg [7]. Source
codes of programming contest are simple and unlikely to contain wasteful state-
ments when repaired. This makes it difficult to confirm effectiveness of the pro-
posed method. Therefore, we generated multiple bug-repaired source codes from
a single S,,utated- This increases the probability of generating source code with a
lot of wasteful statements. The most wasteful source code is selected as Srepaired
among these multiple bug-repaired source codes.

Step3: Apply proposed method. The proposed method is applied to 76
Srepaired- As mentioned earlier, source codes for programming contest are simple.
With metrics other than the lines of code (LOC), it is difficult to make a differ-
ence before and after tidying. Therefore, we use LOC as fitness in the proposed
method.

~
o

N
o

T
L Srepaired F Q
1 Stidied -
@ -
© Sorigin

i
Byt

Lines of code

?
?
?
—
o gy "B
b
(055
-1
-

10 11 12 13 14 15 16 17 18
Subject #

Fig. 3. Number of lines before and after tidying per subject

Tidy Up Your Source Code! 549

3.3 Results and Discussion

The Effect of Tidying: We confirm how many wasteful statements have been
eliminated by the proposed method. Figure 3 shows LOC before and after tidying
for each subject. The horizontal axis represents each subject, and the vertical
axis represents LOC. The red dots represent LOC of S, igin. LOC decreased
in all subjects, and we confirmed some source code tidied to LOC of S,ygin.
Next, manual check was carried out for each Sy;g;cq. In 66 of the 76 source codes,
wasteful statements were completely eliminated. Some source code had a differ-
ent number of lines from S,rigin, but no wasteful statements. This is because
structure of conditional branches changed due to repair by APR. In the remain-
ing 10 source codes, wasteful statements were not eliminated completely. The
reason is the lack of tidying rules. By adding rules, we can eliminate wasteful
statements in these source codes. From the above results, we consider that the
proposed method can eliminate wasteful statements of source code.

4 Conclusions and Future Work

In this paper, we proposed the method to tidy APR-generated unnatural source
code into natural source code. The proposed method tidies source code based on
GA. We devised detour rules that do not directly eliminate wasteful statements.
We conducted experiment using programming contest as subject. The obtained
results showed that the proposed method could eliminate wasteful statements.
In future work, we expand tidying rules to improve the generality of the
proposed method. This paper only focuses on fundamental arithmetic operators
and basic control statements. Tidying rules for method invocation are necessary
to apply our method to more practical source code. We consider that the key is
checking the program dependences [3]| and side-effect [11] of each statement.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Japan (Grant Number: JP21H04877, JP20H04166, JP21K18302, JP21K11829,
JP21K11820, JP22H03567, and JP22K11985).

References

1. Assiri, F.Y., Bieman, J.M.: An assessment of the quality of automated program
operator repair. In: Proceedings of International Conference on Software Testing,
Verification and Validation, pp. 273-282 (2014)

2. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anoma-
lies. In: Proceedings of International Conference on Automated Software Engineer-
ing, pp. 550-554 (2009)

3. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. on Program. Lang. Syst. 9(3), 319-349 (1987)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Boston (1999)

550

10.

11.

12.

T. Iwase et al.

Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. on Softw. Eng. 45(1), 34-67 (2019)

Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. on Softw. Eng. 38(1), 54-72 (2012)

Higo, Y., et al.: kGenProg: a high-performance, high-extensibility and high-
portability APR system. In: Proceedings of Asia-Pacific Software Engineering Con-
ference, pp. 697-698 (2018)

Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. on Softw. Eng. 37(5), 649-678 (2010)

Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Proceedings of International Conference on Software
Engineering, pp. 772-781 (2013)

Romano, S., Vendome, C., Scanniello, G., Poshyvanyk, D.: A multi-study investi-
gation into dead code. IEEE Trans. on Softw. Eng. 46(1), 71-99 (2020)

Rountev, A.: Precise identification of side-effect-free methods in java. In: Proceed-
ings of International Conference on Software Maintenance, pp. 82-91 (2004)
Xuan, J., Martinez, M., et al.: Nopol: automatic repair of conditional statement
bugs in java programs. IEEE Trans. Softw. Eng. 43(1), 34-55 (2017)

