®

Check for
updates

RESEM: Searching Regular Expression
Patterns with Semantics
and Input/Output Examples

Hiroki Takeshige®), Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan
{h-takesg,shinsuke,kusumoto}@ist.osaka-u.ac. jp

Abstract. Regular expression is widely known as a powerful and general-
purpose text processing tool for programming. Though the regular expres-
sion is highly versatile, there are various difficulties in using them. One
promising approach to reduce the burden of the pattern composition is
reuse by referring to past usages. Still, several source code-specialized
search engines have been proposed, they are not suitable for the scenario
of reusing regular expression patterns. The purpose of this study is the effi-
cient reuse of regular expression patterns. To achieve the purpose, we pro-
pose a usage retrieval system RESEM specialized in regular expression pat-
terns. RESEM adopts two key features: search by semantics and collecting
input /output examples. RESEM will smoothly connect what to do to how
to do in the implementation process of string manipulation.

Keywords: Regular expression + Pattern - Usage search -
Input/output example - Dynamic analysis + Semantics

1 Introduction

Regular expression is widely known as a powerful and general-purpose text pro-
cessing tool for programming. In regular expression, any strings can be expressed
in a special character sequence. This paper calls such a character sequence pat-
tern. An example of a pattern is \d+\.\d+! which accepts any version number
consisting of a major and a minor number.

Though the regular expression is highly versatile, there are various difficul-
ties in using them. One of the reasons is on non-intuitive metacharacters in a
pattern [4]. While metacharacters enable flexible text manipulation with only a
few characters, they do not intuitively represent what they mean. In addition, it
is difficult to analyze and generalize the string to be processed and manipulated
[4]. Wang et al. reported that 46% of regular expression-related bugs were caused
by incorrect behaviors of patterns [5].

1\q, +, and \. respectively means a single digit, one or more repetitions of the pre-
ceding character, and a single dot.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 511-517, 2022.
https://doi.org/10.1007/978-3-031-21388-5_35



512 H. Takeshige et al.

One promising approach to reducing the burden of the pattern composition is
reusing past pattern usages. Several source code-specialized search engines have
been proposed to support the reuse of program APIs [1,6] and code snippets
[2,3]. Although these engines can be used to retrieve usages of regular expression,
they are not suitable for the scenario of reusing regular expression patterns. The
reason is that the existing approach provides “how to use an API”, not “how to
compose a pattern using reqular expression literals”. Furthermore, although the
existing approach queries code snippets themselves (e.g., API names), we need
to query the meaning of the pattern.

The purpose of this study is the efficient reuse of regular expression patterns.
To achieve the purpose, we propose a usage retrieval system, RESEM, specialized
in regular expression patterns. RESEM adopts two key features: search by seman-
tics and collecting input/output examples. RESEM accepts patterns’ meaning or
purpose as a search query. This idea enables to query by the semantics of patterns
rather than their contents. In addition, multiple sets of input/output examples
corresponding to the usages are presented in the search result. The concrete I/0O
examples are powerful information that helps to understand the pattern. These
features reduce the user’s burden of analyzing the manipulation and reading
special characters. To evaluate the effectiveness of RESEM, we conducted an
experiment with 12 subjects. As a result, we confirm that RESEM decreased the
time required for describing patterns by 16%. Currently, prototype of RESEM is
available on https://tyr.ics.es.osaka-u.ac.jp/resem/.

2 RESEM

2.1 Overview

In order to alleviate the burden of composing regular expressions, this paper pro-
poses a usage retrieval system RESEM specialized in regular expression. RESEM
has the following two features. One is that it enables search by the meaning of
the pattern (F1). The other is to present an example of inputs and outputs of a
pattern (F2). These features make it possible for users who have little experience
in using regular expression to search for usages efficiently.

The appearance of RESEM is shown in Fig. 1. Users enter search queries in
the upper input area. The search queries are the meaning of the pattern they
want. In Fig. 1, “version” is entered to search for a pattern that accepts strings
representing a version number. As the first search result, a usage using with
the pattern \d+(\.\d+(\.d+)?7)7? is shown. One usage consists of a pattern,
semantics, I/O examples, and code snippet around an API call. The users select
the pattern that fits their purpose from the results and use it in their programs.

2.2 F1: Search by Semantics

RESEM accepts the meanings of a pattern as a search query. This feature allows
users to search by what they want to achieve rather than how to compose a pat-
tern. For example, considering searching for a pattern that matches the version



Resem: Searching Regular Expression Patterns 513

Search

< Search by semantics ]

re(sem)* ‘ version

\d+(\. \d+(\. \d+)?)? < Pattern ]

version valid acceptable < Semantics '

java.lang.String.matches I/0 examples
Input Output

1.0.0 true
2.31.100 true
1E3HE false

1033212022 false
GitHub pro-owner/pro-name/src/main/java/VersionChecker.java

¢ acceptableVersion, actualVersion) {
(actualVersion. (SEMANTIC_VERSION_REGEX)) {
(actualVersion, (acceptableVersion));

\d(\.\d)*

Fig. 1. A screenshot of RESEM

number of software that uses semantic versioning. The users can enter words
such as “version” or “semantic” without having to think about how to express
numbers or repetitions in regular expression.

In order to realize this feature, RESEM collects meanings of patterns by static
analysis. The meanings are collected from identifiers around use of a regular
expression API. We assumed that variables storing patterns and input strings,
and names of the methods that make API calls are set concerning the meaning
of the patterns.

2.3 F2: Presentation of I/0 Examples

RESEM outputs usages of regular expression with I/O examples. The examples
enable users to imagine easily what the set of strings the pattern accepts with-
out interpreting the special characters it contains. This feature improves the
efficiency when the user selects a reference pattern from the search result.

The I/O examples are gathered by dynamically analyzing patterns given to
the regular expression API, input strings, and their outputs when the program
is tested. The flow of I/O analysis is as follows. First, an instrumentation code
is embedded in the regular expression APIs call detected by Sect. 2.2. When the
instrumentation code is executed, it writes out the patterns given to the API,
input strings, and outputs of the API to a file. Next, the embedded code is
executed by software test. Finally, the inputs and the outputs for the patterns
are collected by analyzing the output file of the embedded code.

2.4 Collecting from Open Source Projects

We collected usages from public Java projects on GitHub. Because RESEM uses
Gradle, a build automation tool, to run test suite, we selected target projects



514 H. Takeshige et al.

Scenario

You want to validate a string as a version number. The number consists of
major, minor, and patch numbers. Create a pattern to be passed for
String#matches.

1/0 examples

input output
2.10.3 - true

11.2 - false
3.0.a - false
(empty string) - false

Expected answer
\d+\.\d+\.\d+

Fig. 2. An example of tasks

which contain the word “gradle” in their README.md. The target regular
expression APIs are String class, Pattern class, and Matcher class. As a result,
3,120 usages were collected from 68 projects. The other projects did not output
any examples, or failed in running their tests.

3 Experiment

We carried out experiment with subjects to evaluate the effect of presenting
usages by our system on pattern description, and to investigate the impression
of subjects using the system.

We design the experiment to answer the following questions:

Qa Can RESEM reduce the time to describe patterns?
Qb Can search by semantics (F1) make creating patterns easy?
Qc Can presenting I/O examples (F2) help to select a usage?

To answer Qa, we ask the subjects to perform a string processing task and
compare the time required depending on whether RESEM is used. In addition,
to answer Qb and Qc, subjects’ impressions about RESEM are collected.

3.1 Experiment Design

In this experiment, subjects are asked to perform a task of string processing.
The task consists of a scenario for the process and I/O examples.

One of the tasks is shown in Fig. 2. The scenario asks to verify that the input
string follows the format of the version number, and provides input examples
and expected output to assist in understanding the scenario. The subject cre-
ates a pattern according to this scenario. The expected answer for this task is
\d+\.\d+\.\d+.

We prepare the scenarios under the following conditions. First, be generic
and independent of specific applications. Second, some usages in the RESEM
database can be used for reference.



Resem: Searching Regular Expression Patterns 515

3005 = "/ Resen X Time limit (300s)
“E’ Ow/o REsem
g 2005 Strongly disagree © Disagree  Neutral ' Agree mStrongly agree
‘5 Presented usages are userful 2 6 -
g for describing patterns
¥ 100s - Search by semanticsis |, 6 -
@ easy to find usages
v
Z 1/0 examples are helpful 2 5 _
0 to grasp behaviors of patterns
* 1 2 3 4 5 6 7 8 9 10 The order of usages 4 4 > -
Task ID in search result is appropriate
Fig. 3. Average required time for each Fig. 4. Result of questionnaire

task

The first condition is set because a scenario that depends on a specific appli-
cation is inappropriate for evaluation. Such scenarios can confirm the useful-
ness only when RESEM is used with the application. To conduct the experiment
assuming general situations, we do not make a scenario which depends on spe-
cific applications. The second condition is set to focus on the effectiveness of the
usage presentation. The aim of RESEM is reuse patterns in past usages. When no
usage is useful for a scenario, we cannot evaluate the utility of proposing usages.
Therefore, the scenarios are created based on the collected usages.

After completing all tasks, we ask the subjects to answer a questionnaire.

The subjects were 12 people, one graduate school teacher and 11 students.
In this experiment, we pay attention to the difference in required time between
RESEM users and non-users. The subjects are divided into two groups. One group
uses RESEM and the other does not for each task. Both groups can use Web search
throughout the experiment. In the grouping, we avoid bias in programming and
regular expression skills. In addition, whether a group can use RESEM is switched
in half of the tasks so that the experiment results are not affected by the skill
difference between the two groups.

3.2 Results and Discussion

The average time required for each task by each group is shown in Fig. 3. The
horizontal axis is the number of tasks, and the vertical axis is the average time
required for each task. Blue is the group in which the RESEM was available,
and gray is the group in which the use was prohibited. The required time for
subjects who made an incorrect answer or reached the time limit is treated as
300s, which is the same as the time limit.

The average required time of the group using RESEM was short for all tasks
except for Task 4. The average reduction rate of all tasks was about 16%. Though
no person gave the correct answer on task 10 in the group which did not use
RESEM, two of six people answered correctly in the group which used it. The task
cannot be solved without using lookahead and lookback. Therefore, we expected
that some knowledge of these functions was necessary to answer this task by Web
search. On the other hand, subjects who used RESEM and correctly answered
this task found the effective usage using “alphabet num” as a search query. From



516 H. Takeshige et al.

this, it can be said that RESEM allows users with little knowledge of regular
expression to search for usages that use advanced features.

The questionnaire result is shown in Fig. 4. More than half of the respondents
answered that the presented usages were useful, therefore it was revealed that
the description support by the usage retrieval was effective. In addition, RESEM’s
characteristics (F1, F2) were useful because there were many favorable answers
to the retrieval by the meaning and the presentation of I/O examples.

On the other hand, more than half of the subjects answered that the order in
which search results were displayed was undecided or inappropriate. Therefore,
it can be said that the order needs to be improved.

From the results of the subject experiment, we answer Qa, RESEM can shorten
the time required for the description of the pattern. The large difference in the
difficult tasks suggests that this method can contribute to creating complex
patterns that take a long time to be composed in actual development.

As for Qb and Qc, we judged RESEM’s features facilitate searching for and
selecting usages because of two reasons. First, there were many favorable answers
on the retrieval by the meanings and presenting I/O examples. Second, it was
effective for the creation of patterns which is difficult to search from the Web.

4 Conclusion

In this paper, we propose a search system RESEM, which realizes semantic search,
to support regular expression pattern description. The evaluation experiment
was carried out. As a result, RESEM can collect regular expression usages from
public projects. We confirmed that the time required for the description of the
patterns was reduced by our method.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Japan (Grant Number: JP21H04877, JP20H04166, JP21K18302, JP21K11829,
JP21K11820, JP22H03567, and JP22K11985).

References

1. Asyrofi, M.H., Thung, F., Lo, D., Jiang, L..:. AUSearch: accurate API usage search
in GitHub repositories with type resolution. In: Proceedings of International Con-
ference on Software Analysis, Evolution and Reengineering, pp. 637-641 (2020)

2. Chatterjee, S., Juvekar, S., Sen, K.: Sniff: A search engine for java using free-form
queries. In: Proceedings of International Conference on Fundmental Approaches to
Software Engineerng, pp. 385-400 (2009)

3. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer:
mining and searching internet-scale software repositories. IEEE Trans. Data Mining
Knowl. Discov. 18(2), 300-336 (2009)

4. Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
Decision-making, difficulties, and risks in programming regular expressions. In: Pro-
ceedings of International Conference on Automated Software Engineering, pp. 415—
426 (2019)



Resem: Searching Regular Expression Patterns 517

5. Wang, P., Brown, C., Jennings, J.A., Stolee, K.T.: An empirical study on regular
expression bugs. In: Proceedings of International Conference on Mining Software
Repositories, pp. 103-113 (2020)

6. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
api usage patterns. In: Proceedings of European Conference on Object-Oriented
Programming, pp. 318-343 (2009)



