Classification of Changes based on API

Masashi Iriyama!, Yoshiki Higo!, and Shinji Kusumoto®

Graduate School of Information Science and Technology, Osaka University, Japan
{m-iriyam, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract. In software maintenance process, software libraries are occa-
sionally updated, and their APIs may also be updated. API changes can
be classified into two categories: changes that break backward compati-
bility (in short, breaking changes) and changes that maintain backward
compatibility (in short, maintaining changes). Detecting API changes
and determining whether each is a breaking or maintaining change is
useful for code reviews and release note generations. Since it is burden-
some to check API changes manually, research on automatic detection
of API changes has been conducted. APIDiff is a tool that automatically
detects API changes and classifies the detected changes into breaking
and maintaining ones. APIDIff takes two versions of a Java library as in-
put, and it detects API changes based on the similarity of the input code.
Each detected change is classified into the two kinds of changes. However,
since APIDiff identifies breaking changes for each type of change, it tends
to fail to correctly classify changes if multiple changes were conducted to
a single API. On the other hand, our proposed technique in this paper
groups changes by APIs and checks whether each group contains changes
that break backward compatibility. Classifying API changes more cor-
rectly by our technique will be helpful for release note generations in
maintenance process. We conducted experiments on eight open-source
software and confirmed that our technique could detect API changes
more correctly than APIDiff. We also confirmed that the proposed tech-
nique could classify API changes more correctly into breaking and main-
taining ones than APIDiff.

Keywords: API Evolution - Breaking Changes - Mining Software Repos-
itories

1 Introduction

Libraries have been used in many software applications [6]. Libraries provide
functionality through application programming interfaces (in short, APIs). In
software maintenance process, software libraries are occasionally updated, and
their APIs may also be updated; API changes may include additions of new
features, removals of unnecessary features, or refactoring to improve maintain-
ability [4]. Those changes can be categorized as those that break backward
compatibility (in short, breaking changes) and those that maintain backward

MPChartLib/src/main/java/com/github/mikephil/charting/components/YAxis.java

public class YAxis extends AxisBase {

- public void setValueFormatter(YAxisValueFormatter f) {
- if (f == null)
- mYAxisValueFormatter = new DefaultYAxisValueFormatter(mDecimals);
- else
- mYAxisValueFormatter = f;
- ¥
}
MPChartLib/src/main/java/com/github/mikephil/charting/components/AxisBase.java
public abstract class AxisBase extends ComponentBase {

+ public void setValueFormatter(AxisValueFormatter f) {
+ if (f == null)

+ mAxisValueFormatter = new DefaultAxisValueFormatter(mDecimals);
+ else

+ mAxisValueFormatter = f;

+

¥

)i
https://github.com/PhilJay/MPAndroidChart/commit/1482f9331e6d47c2e255belcb95b3e91133aabco

Fig.1: An example of an issue in APIDiff

compatibility (in short, maintaining changes). Detecting API changes and de-
termining whether the changes maintain backward compatibility of the API is
useful for code reviews and release note generations [7].

Since manually detecting API changes is burdensome, research has been con-
ducted on automatically detecting API changes. APIDIiff is a tool that automat-
ically detects API changes and classifies them into breaking and maintaining
ones [1]. A variety of research has been conducted using APIDIiff. For example,
research has been conducted to clarify the stability of libraries [10], the impact
of breaking changes on client code [10], reasons why developers made breaking
changes [2], and developers’ awareness of the dangers of breaking changes [11].

However, APIDIff tends to fail to correctly classify changes if multiple changes
were conducted to a single API since it identifies breaking changes for each
type of change. As a result, API developers (library developers) and APT users
(library users) may have wrong perceptions of API changes. Fig. 1 shows an
example of the issue in APIDiff. APIDiff should classify the API changes of
setValueFormatter into Pull Up Method and Change in Parameter List. Users
of setValueFormatter can no longer use it after the API changes because the
parameter of the API has been changed. That is, the backward compatibility
of setValueFormatter is broken by the changes, but APIDIff classifies Pull Up
Method incorrectly into the maintaining change based on its change type.

Our proposed technique groups changes by APIs and checks whether each
group contains API changes that break backward compatibility. Classifying API
changes more correctly by our technique will be helpful for release note gener-
ations in maintenance process. We conducted experiments on eight open-source
software and confirmed that our technique could detect API changes more cor-
rectly than APIDiff. We also confirmed that our technique could classify API
changes more correctly into breaking and maintaining ones than APIDIff.

2 Preliminaries

2.1 Catalog of API changes

The backward compatibility considered in this paper is in the context of syntactic
changes and not semantic changes. The catalog of breaking changes is shown in
Table 1. The catalog of maintaining changes is shown in Table 2. Those catalogs
are based on the README file of APIDIff! and the README file of RefactoringMiner?

2.2 APIDiff

APIDiff internally utilizes a refactoring detection tool called RefDiff [8]. RefDiff
outputs a list of refactoring operations applied to the later version of the two
input versions based on the similarity of the code.

The two versions of a Java library given as input to APIDiff are passed to
RefDiff, and classes, methods, and fields are extracted for each version. RefDiff
obtains a list of refactoring operations applied to the later version. Then refactor-
ing operations that are not related to APIs are discarded. APIDiff itself extracts
classes, methods, and fields for each version. APIDiff matches APIs between the
two versions based on the list of refactoring operations and information such
as fully qualified names of classes, APIs’ names, and sequences of parameters.
Based on the results of the API matching and information such as API qualifiers
and annotations, API changes are detected. The detected changes are classified
into breaking or maintaining changes based on their change types. Then APIDiff

! https://github.com/aserg-ufmg/apidiff
2 https://github.com/tsantalis /RefactoringMiner

Table 1: Catalog of Breaking Changes

Type |Rename, Move, Move and Rename, Remove, Lost Visibility, Add Final Mod-
ifier, Remove Static Modifier, Change in Supertype, Remove Supertype, Ex-
tract Type, Extract Subtype

Method|Move, Rename, Remove, Push Down, Inline, Change in Parameter list,
Change in Exception List, Change in Return Type, Lost Visibility, Add Final
Modifier, Remove Static Modifier, Move and Rename

Field |Remove, Move, Push Down, Change in Default Value, Change in Field Type,
Lost Visibility, Add Final Modifier, Rename, Move and Rename

Table 2: Catalog of Maintaining Changes

Type |Add, Extract Supertype, Gain Visibility, Remove Final Modifier, Add Static
Modifier, Add Supertype, Deprecated

Method|Pull Up, Gain Visibility, Remove Final Modifier, Add Static Modifier, Dep-
recated, Add, Extract

Field |Pull Up, Add, Deprecated Field, Gain Visibility, Remove Final Modifier, Ex-
tract

Pre-change Post-change

program program
Class1: Field A Class1: Field A, Method B| Extracted classes,
Class2 : Method B Class2 : Method C methods, and fields

v

Pull Up Method B

List of refactoring
1. Detecting API refactorings

e o o e L fOIm st Class2]) OPOTTOR
2. Detecting and Classifying
\ 4
API changes
Class1: Field A Class1: Field A, Method B| Results of
Class2 : Method B Class2: matching APIs
|]
®associated API ethod bt Pull Up, Lost Visibility grouped by each API
unassociated API Addv
Deprecated Field A (MC)
BC : Breaking Change Pull Up Method B (BC) List of API changes classified into
MC : Maintaining Change |L0st Visibility in Method B (BC) [breaking or maintaining changes
(MC)

Fig. 2: Overview of the proposed technique

creates a list of API change operations, including information such as its change
type, the API before and after the change, and the result of determining whether
the change breaks backward compatibility.

3 Proposed Technique

An overview of our technique is shown in Fig. 2. It is important to detect API
changes with high accuracy in our technique in advance to classify API changes.
The proposed technique detects API refactorings using RefactoringMiner [9]
instead of RefDiff. RefactoringMiner (in short, RMiner) is a tool that detects
refactorings with high accuracy because of syntax-aware replacements of abstract
syntax trees nodes and heuristics defined to match statements. Our proposed
technique matches APIs between versions based on the output of RMiner. Our
technique detects and groups changes by APIs and checks whether each group
contains changes that break backward compatibility.

3.1 Detectiong API refactorings

The two versions of a Java library given as input to our technique are passed to
RMiner. The tool extracts classes, methods, and fields for each version. RMiner
outputs a list of refactoring operations applied to the later version. Then refac-
toring operations that are not related to APIs are discarded.

3.2 Detecting and Classifying API changes

The API changes detection and classification procedure consists of the following
steps:

Step-1 matching APIs between versions,
Step-2 detecting/grouping API changes for each API, and
Step-3 classifying API changes into breaking or maintaining changes.

In Step-1, the classes having identical fully qualified names are associated
between the two versions. The methods having identical fully qualified names of
the class, method names, sequences of parameters, and return types are associ-
ated. The fields having identical fully qualified names of the class, field names,
and field types are associated. The unassociated APIs are classified into refac-
tored, deleted, or added APIs based on the list of refactoring operations. In
Step-2, based on the results of the API matching in Step-1 and information such
as API qualifiers and annotations, API changes are detected. Then changes are
grouped for each API based on the combination of the API before and after
the change. In Step-3, each detected change is classified into breaking or main-
taining changes based on its change type. Then our technique checks whether
each group includes at least a breaking change. If the group includes at least a
breaking change, our technique determines that the API is broken and reclassi-
fies all the changes included in the group into breaking changes. Then a list of
API change operations is created in the same way as APIDiff.

4 Experiment

We evaluated our technique in terms of the number of detected API changes, the
precision of classifying API changes, and execution time. Our tool and datasets
are available3.

4.1 Target projects

In order to experiment with projects that are frequently updated and popular,
we selected eight open source software for the experiment from the experimental
targets of the longitudinal study using RMiner [3]. The eight projects were se-
lected because their repositories included enough commits, and many users gave
stars to the repositories. The target projects are shown in Table 3.

4.2 The number of detected API changes

We applied our technique and APIDiff to all the commits on the master branch
of the projects and compared the number of detected changes. The results are
shown in the column of Number in Table 3. While APIDiff detected 4,180
(=2,943+1,237) changes, our technique detected 7,883 (=2,943+44,940) changes.
In all the projects, our technique detected more API changes than APIDiff.

3 https://github.com/kusumotolab/APIMiner

4.3 The precision of classifying API changes

We used MPAndroidChart to calculate the precision because its calculation re-
quired manual checking of detected API changes. MPAndroidChart was also
used in the experiment of APIDIff [1]. Due to the large number of API changes
detected by our technique and APIDIiff, we visually checked 165 API changes of
which classification results are different from our technique and APIDIff. Due
to the large number of API changes detected by our technique alone, 311 were
sampled to achieve a tolerance of 5% and a confidence level of 95%. All the API
changes detected only by APIDiff were visually checked. The results are shown
in Table 4. The column of Num shows the number of detected API changes.
The column of Precl shows whether each change is correct in change type. The
column of Prec2 shows whether each change is correct in both change type
and classification results. The overall precision of APIDiff alone is the number
of API changes visually checked to be correct divided by 165, the number of
APT changes detected by APIDIiff alone. The overall precision of ours alone is
the number of API changes visually checked to be correct divided by the sample
size, 311. Although for Inline Method and Move Method, the precision of APIDiff
was higher than that of our technique, the overall precision of our technique was
89.7%, compared to 44.8% for APIDIff. The difference between Precl and Prec2
in the column of APIDIiff alone indicates that APIDiff detected Pull up Method
correctly but classified some of them into breaking or maintaining changes in-
correctly. On the other hand, our technique detected Pull up Method correctly
and classified them into breaking or maintaining changes correctly.

4.4 Execution time

We applied our technique and APIDiff to all the commits on the master branch of
the projects and measured execution time. Then we compared the total execution
time between our technique and APIDIff. The results are shown in the column of
Execution Time of Table 3. In five out of the eight projects, the execution time
of our technique was shorter than that of APIDIff. In three projects out of the

Table 3: Target projects, the number of detected API changes, and execution time

Number Execution Time
Project Name LOC Commits Both Ours APIDiff Total Detect Refactorings

alone alone Ours APIDiff| Ours APIDiff
OkHttp 72,696 4,839 675 460 396| 11minbd3s 12min30s| 11min49s 6min20s
Retrofit 26,995 1,865| 243 338 84 2min36s 3min07s 2min35s 1minl9s
MPAndroidChart 25,232 2,068(1,120 1,607 116 2min08s 4minl18s 1min59s 2min00s
LeakCanary 26,269 1,609 41 79 51 24s 2min59s 24s 18s
Hystrix 50,510 2,108| 292 722 183] 19mind8s 4min3d6s| 19min56s 2minl0s
iosched 23,550 2,757 91 143 4413h16min39s 6min57s|3h16min38s 1min53s
Fresco 7,194 2,897 452 1,514 359 2min25s 20minl18s 2minl8s 5min46s
Logger 1,441 144 29 77 3 11s 8s 11s 3s
Sum 2,943 4,940 1,237

eight projects, our technique took less time to detect API changes than APIDIfT,
even though RMiner took more time to detect refactorings than RefDiff.

5 Discussion

Fig. 3 shows an example of API change detected by APIDiff alone. APIDiff
detected and classified the API change of cloneEntry into Rename Method cor-
rectly, but our technique classified the API change into Remove Method and
Add Method incorrectly. Our technique matches APIs between two versions us-
ing the output of RMiner. RMiner did not detect the change, so our technique

Table 4: The precision of classifying API changes

Both Ours alone APIDiff alone
APT change type Num Precl Ours - APIDiff Num Precl Prec2|Num Precl Prec2
Prec2 Prec2
Change in Field Default Value 107 18 100 100 1 100 100
Change in Return Type Method 125 56 100 100 3 100 100
Extract Method 0 133 78.6 78.6 4 25.0 25.0
Inline Method 5 19 84.6 76.8 4 100 100
Lost Visibility in Method 19 32 385 385/ 44 00 0.0
Pull Up Method 115 100 100 0.0 107 100 100{ 20 100 70.0
Push Down Field 6 2 100 100 1 100 100
Push Down Method 28 29 100 100 2 100 100
Move Field 45 75 100 100 1 100 100
Move Method 60 46 154 154 12 66.7 66.7
Rename Method 147 67 100 100| 22 68.2 68.2
Rename Type 27 2 100 100 2 100 100
Add Static Modifier in Method 1 3 100 100 0
Change in Field Type 53 10 100 100 0
Change in Supertype 132 100 100 0.0 2 100 100 0
Deprecated Method 6 48 100 100 0
Deprecated Type 3 2 100 100 0
Gain Visibility in Field 43 35 100 100 0
Gain Visibility in Method 47 56 100 100 0
Gain Visibility in Type 2 4 100 100 0
Lost Visibility in Field 8 18 100 100 0
Move and Rename Type 3 2 100 100 0
Move Type 69 8 100 100 0
Pull Up Field 28 100 100 0.0 45 100 100 0
Change in Parameter List 0 626 100 100 0
Extract Field 0 3 100 100 0
Extract Subtype 0 2 100 100 0
Extract Supertype 0 36 923 923 0
Extract Type 0 25 100 100 0
Move and Rename Field 0 4 75.0 75.0 0
Move and Rename Method 0 32 84.6 84.6 0
Remove Static Modifier in Method 0 2 100 100 0
Rename Field 0 58 84.6 84.6 0
Add Final Modifier in Field 1 0 0
Add Supertype 28 0 0
Remove Final Modifier in Field 5 0 0
Remove Supertype 7 0 0
Overall 1,120 100 100 0.0/1,607 90.0 89.7| 116 50.0 44.8

Pre-change Post-change

protected Entry cloneEntry() {
Entry entry = new Entry(mval, mXIndex);
return entry;

public Entry copy() {
return new Entry(mvVal,mXIndex);

}

}

https://github.com/Phillay/MPAndroidChart/commit/30e54a3aa3a7a35fcd1b33f98df471c231a8740e

Fig. 3: An example of API change detected by APIDIiff alone

classified cloneEntry into a removed API and classified copy into an added API
incorrectly.

In the column of Ours alone in Table 4, the precision of Move Method was
as low as 15.4%. That is because RMiner classified some of Pull up Method and
Push Down Method into Move Method incorrectly. Our technique determines
the type of refactoring based on the output of RMiner. Even if our technique
classifies an API as a refactored API correctly, the type of refactoring may not
be correctly determined.

In the column of Execution Time in Table 3, our technique took a much longer
time to detect API changes than APIDiff in the project iosched. The majority of
our tool’s execution time was spent detecting refactorings by RMiner. RMiner
constructs abstract syntax trees of changed files and compares subtrees of them
between two versions to detect refactorings. If many files are changed in a single
commit, there will be more subtrees to compare between versions, and it will
take more time to detect refactorings.

6 Threats to Validity

We considered classes, methods, and fields with the access level of public or
protected as APIs. The access level may be set to public or protected for
internal processing rather than for exposing as an API. If such classes, methods,
and fields are excluded, the experiment results may change.

In order to calculate the precision, we visually check the detected changes.
Some API changes may not have been classified correctly.

Since some API change types were not detected so much, their precisions
may not have been correctly calculated.

7 Related Works

RefDiff [8] and RMiner [9] are refactoring detection tools. Those tools themselves
neither detect other changes (i.e., adding or removing API, etc.) nor classify
detected changes into breaking or maintaining changes.

Android applications, like libraries, are suffered from API-related compati-
bility issues. Li et al. proposed an automated approach named CiD for system-
atically modeling the lifecycle of the Android APIs and analyzing app bytecode
to flag usages that can lead to potential compatibility issues [5]. Our technique
is for detecting API changes of Java libraries, not Android APIs.

8 Conclusions and Future Work

We proposed a new technique to classify API changes into breaking and main-
taining ones automatically. Our proposed technique groups changes by APIs and
checks whether each group contains changes that break backward compatibil-
ity. Classifying API changes more correctly by our technique will be helpful for
release note generations in maintenance process.

By increasing the number of OSSs to be evaluated, we are going to visually
check a sufficient number of API change types that were not detected so much in
this experiment. We are also going to integrate our technique with CI platforms.

Acknowledgment

This research was supported by JSPS KAKENHI Japan (JP20H04166, JP21K 18302,
JP21K11820, JP21H04877, JP22H03567, JP22K11985)

References

1. Brito, A., Xavier, L., Hora, A., Valente, M.T.: APIDiff: Detecting API breaking
changes. In: Proc. Int. Conf. Softw. Anal., Evol., Reengineering. pp. 507-511 (2018)

2. Brito, A., Xavier, L., Hora, A., Valente, M.T.: Why and how Java developers break
APIs. In: Proc. Int. Conf. Softw. Anal., Evol., Reengineering. pp. 255-265 (2018)

3. Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca,
B., Ribeiro, M., Chéavez, A.: Understanding the Impact of Refactoring on Smells:
A Longitudinal Study of 23 Software Projects. In: Proc. Joint Meeting on Founds.
Softw. Eng. pp. 465-475 (2017)

4. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. Softw. Maint.,
Evol.: Res., Pract. 18(2), 83-107 (2006)

5. Li, L., Bissyandé, T.F., Wang, H., Klein, J.: CiD: Automating the Detection of
API-Related Compatibility Issues in Android Apps. In: Proc. ACM SIGSOFT Int.
Symp. Softw. Testing and Analysis. p. 153-163 (2018)

6. Michail, A.: Data mining library reuse patterns in user-selected applications. In:
Proc. Int. Conf. Automated Softw. Eng. pp. 24-33 (1999)

7. Moreno, L., Bavota, G., Penta, M.D., Oliveto, R., Marcus, A., Canfora, G.:
ARENA: An Approach for the Automated Generation of Release Notes. IEEE
Trans. Softw. Eng. 43(2), 106-127 (2017)

8. Silva, D., Valente, M.T.: RefDiff: Detecting Refactorings in Version Histories. In:
Proc. IEEE/ACM Int. Conf. Mining Software Repositories. pp. 269-279 (2017)

9. Tsantalis, N., Ketkar, A., Dig, D.: RefactoringMiner 2.0. IEEE Trans. Softw. Eng.
pp. 1-21 (2020)

10. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical and impact analysis of
API breaking changes: A large-scale study. In: Proc. Int. Conf. Softw. Anal., Evol.,
Reengineering. pp. 138-147 (2017)

11. Xavier, L., Hora, A., Valente, M.T.: Why do we break APIs? First answers from
developers. In: Proc. Int. Conf. Softw. Anal., Evol., Reengineering. pp. 392-396
(2017)

