®

Check for
updates

Are NLP Metrics Suitable for Evaluating
Generated Code?

Riku Takaichi'®®) Yoshiki Higo', Shinsuke Matsumoto', Shinji Kusumoto',
Toshiyuki Kurabayashi?, Hiroyuki Kirinuki?, and Haruto Tanno?

! Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka, Japan
r-takaic@Qist.osaka-u.ac.jp
2 Nippon Telegraph and Telephone Corporation, Minato, Tokyo, Japan

Abstract. Code generation is a technique that generates program
source code without human intervention. There has been much research
on automated methods for writing code, such as code generation. How-
ever, many techniques are still in their infancy and often generate syn-
tactically incorrect code. Therefore, automated metrics used in natural
language processing (NLP) are occasionally used to evaluate existing
techniques in code generation. At present, it is unclear which metrics in
NLP are more suitable than others for evaluating generated codes. In
this study, we clarify which NLP metrics are applicable to syntactically
incorrect code and suitable for the evaluation of techniques that auto-
matically generate codes. Our results show that METEOR is the best of
the automated metrics compared in this study.

Keywords: Automated metric - Code generation * Deep learning

1 Introduction

Code generation is a technique that generates program source code without
human intervention. It significantly changes the software process and is known
as a promising way to reduce the burden of programming on developers [14].
In recent years, there has been much research on automated methods for writ-
ing code, such as code generation [1,4,14]. In these studies, automated metrics
(hereinafter, referred to it simply as “metrics”) are used to evaluate generated
code, and several metrics for code evaluation have already been proposed [13,15].
These metrics use abstract syntax trees or program dependency graphs, assum-
ing that code is syntactically correct. However, research on code generation is
still in its infancy, and it is not uncommon for syntactically incorrect code to be
generated. For example, 7.0 % of code generated by SNM [14] and 90 % of code
by Coarse-to-Fine [4], which are recently proposed code generation models, are
syntactically incorrect. Therefore, metrics for code that assume that generated
code is syntactically correct may not be usable.

In some cases, metrics used in natural language processing (NLP) are used
to evaluate the code generation techniques in place of metrics for code [12]. For

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 531-537, 2022.
https://doi.org/10.1007/978-3-031-21388-5_38

532 R. Takaichi et al.

example, BLEU is frequently used to evaluate the quality of generated code.
However, this metric has limitations when used in code evaluation [5,13]. It is
thus still unclear which metrics are suitable for evaluating code without assuming
the syntactic correctness of the code.

In this study, we clarify which metrics are suitable for evaluating code, and in
particular, can be applied to syntactically incorrect code. More specifically, we
focus on the code generation task by deep learning, and clarify which metrics are
suitable for evaluating code that are automatically generated from requirements
written in natural language.

Currently, it is difficult to generate complete code from requirements
described using natural language [7]. When using code generation, human modifi-
cation of the generated code is required to make the code meet the requirements.
Therefore, it is desirable that the generated code be easy to modify into code
that satisfies the requirements. The suitability of metrics for generated code can
be evaluated by the ease with which the generated code can be modified into
code that satisfies the requirements.

In this study, we measure the ease of modifying various examples of gener-
ated code into code that satisfies given requirements. The results suggest that
METEOR is the best metric that correlates with the ease of modifying gener-
ated code and is thus the most suitable for evaluating code created via code
generation [3].

2 Research Questions

RQ1: Which metrics can be used to evaluate the ease of modifying
generated code in terms of modification time?

The ease of modifying generated code can be evaluated in terms of the time a
developer take to modify it. To evaluate the ease of modification of generated
code in terms of modification time, we investigate which metrics can evaluate
the ease of modification. More specifically, we examine the correlation between
the time it takes a developer to modify generated code into code that satisfies
their requirements and the evaluation values of metrics.

RQ2: Which metrics can be used to evaluate the ease of modifying
generated code in terms of the size of changes to the code needed to
modify it?

The ease of modification of generated code can also be evaluated by the amount
of modification of the code by a developer. When evaluating the ease of modi-
fication of generated code by the amount of modification, we investigate which
metrics can evaluate the ease of modification. As in RQ1, we examine the corre-
lation between the amount of modification and the evaluation values of metrics,
where the strongest correlation between these is considered indicative of ease of
modification. In this study, the amount of modification is defined as the number
of tokens to modify the generated code.

Are NLP Metrics Suitable for Evaluating Generated Code? 533

3 Background

3.1 Code Generation

Code generation is a method by which source code is written automatically. It
can be classified in terms of the following elements:

— Input, for example, requirements written in natural language [7], DSL [10],
or input/output examples [9].
— Approach, for example, translation-based [7] or search-based [11].

This study focuses on translation-based code generation using deep learning,
which takes requirements written in natural language as input.

3.2 Edit Distance

The edit distance is the minimum number of edits (insertions, deletions, or sub-
stitutions) required to make one sequence X equivalent to another sequence Y.
The normalized edit distance (NED) between X and Y is computed as

EditDistance(X,Y")

NED(X,Y) =
(X, Y) max (length(X),length(Y"))

where EditDistance(X,Y) is the edit distance between the sequence X and Y.
Here, length(.S) refers to the length of the sequence S. The value of normalized
edit distance is between 0 and 1. In this study, the edit distance is calculated by
considering the code as a sequence of tokens.

3.3 Metrics

Metrics are used for the automated evaluation of the quality of translation
results. Ideally, automated evaluations should correlate highly with human evalu-
ation because metrics are meant to be a feasible alternative to human evaluation.
The metrics used in this study are as follows:

BLEU [8] is an metric for evaluating the quality of natural language machine
translation results. It is calculated using the n-gram of two sequences.

STS [13] is calculated using the edit distance.

ROUGE-L [6] is calculated using the length of the longest common subse-
quence.

METEOR [3] is an metric for evaluating the quality of automated translation
results in the field of NLP [2]. In this study, a code was regarded as English
text because a code is usually written using English words.

These metrics are between 0 and 1. A higher value means a higher evaluation.
BLEU, STS, and ROUGE-L were selected because there are studies that used
them to evaluate code [12,13]. METEOR was selected because it is designed to
address BLEU’s weaknesses [2].

534 R. Takaichi et al.

4 Experiment

We conducted an experiment to measure the ease of modifying code created
with a code generation model to code satisfying given requirements. The ease of
modification we measured involves either the modification time or the modifica-
tion amount. The higher these, the lower the ease of modification. The amount
of modification is measured by the normalized edit distance between generated
code and modified code. We also examine the correlation between the ease of
modification and evaluations of the generated code using metrics. The stronger
the negative correlation, the more suitable the automated evaluation value is for
evaluating code generated from requirements described in natural language.

4.1 Code Generation Model

We created a code generation model using a deep neural network for NLP avail-
able on GitHub!. The code generation model was trained on the dataset ReCa
[7] comprising requirement text, correct code, and test cases used in program-
ming contests. The dataset includes 5,149 requirements and 16,673 Python code.
The code generation model was trained using 300 data entries for testing, 200
for validation, and the remainder for training.

The input of the model is text that has been preprocessed with lowercasing,
lemmatization, and removing stopwords. The original text before preprocessing
is requirement text written in English. The output of the model is tokens of
Python code. It can be automatically transformed into actual Python code. The
generated code may not satisfy the requirement described in the input text. The
correct code satisfies the requirement and passes the test cases.

4.2 Measuring Ease of Modification

We conducted an experiment with human subjects to measure the ease of mod-
ification of generated code. In this experiment, 10 data entries were randomly
sampled from the 300 test data. The sampled data have an average of 53.4 test
cases per requirement. The subjects were 11 people, one associate professor and
ten students. Each subject had a different skill level in Python. A cheat sheet
with the code that might be needed when modifying the generated code was
supplied for the subjects who were less skilled. Each subject experiments with
the 10 sampled data. The experimental steps are as follows:

STEP-1 [Understanding Requirements|. Subjects receive the requirements
text and test cases. They understand the requirements by reading the text.

STEP-2 [Modifying Generated Code]|. Subjects receive the generated code.
They modify the generated code to satisfy the requirements given in STEP-1.

STEP-3 [Testing]. Subjects check whether the code modified in STEP-2 passes
all the test cases given in STEP-1. If it passes, STEP-3 is completed. Other-
wise, they return to STEP-2 to modify the generated code once more.

! https://github.com/nazim1021/neural-machine-translation-using-gan.

Are NLP Metrics Suitable for Evaluating Generated Code? 535

We count the seconds from STEP-2 to the end of STEP-3 and took this value to
be the time developers took to modify the generated code. In the above steps,
the modified generated code is called “modified code”. We cannot obtain both
the modification time and the modified code if the subject cannot successfully
modify the generated code so that the requirements are met.

4.3 Results

Table 1 lists the Pearson’s correlation coefficients between the evaluation value
of each metric and the ease of modification (such as the modification time and
the modification amount), with p-values. According to the results in Table 1, the
correlation between the evaluation and the modification time and modification
amount is strongest for METEOR. However, it is only weakly correlated with
modification time.

Table 1. Correlation between metrics and the ease of modification

Metric RQ1: the modification time | RQ2: the amount of modification
COR | p-value COR | p-value

BLEU —0.181]0.117 —0.392 | 4.64 x 1074

STS —0.100|0.389 —0.555[1.99 x 1077

ROUGE-L | 0.011,5 | 0.921 —0.481[1.08 x 1075

METEOR | —0.251 | 0.028,6 —0.696 | 3.03 x 1072

Answer to RQ1 and RQ2: Among the examined metrics, METEOR is the
best metric to evaluate the ease of modifying generated code in terms of the
modification time and the modification amount. In addition, BLEU, which is
widely used to evaluate generated code, is not a good metric in these context.

5 Conclusion

The purpose of this study was to clarify which NLP metrics can be applied to
syntactically incorrect code. We investigated which metrics strongly correlate
with the evaluation values obtained in the experiment with subjects. The results
of the study showed that METEOR has a relatively strong correlation with both
amount of modification and the time required to modify code created by code
generation to meet the given requirements. We conclude that METEOR is a bet-
ter metric for generated code than the frequently used BLEU. However, metrics
may not be suitable for evaluating generated code because of its weak correla-
tion with the modification time. In addition, note that there are limitations in
applying these results to real projects because the subject experiment in this
study was conducted using programming contest data.

536 R. Takaichi et al.

For future research, we are going to examine the evaluation values that corre-
late stronger with the coding time reduced by using the generated code. This is
why we plan to compare the time required for subjects to read the requirements
and write a program with the time required for them to modify generated code
to satisfy the requirements.

Acknowledgements. This research was supported by JSPS KAKENHI, Japan (grant
numbers JP20H04166, JP21K18302, JP21K11820, JP21H04877, JP22H03567, and
JP22K11985).

References

1. Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W.: Unified pre-training for pro-
gram understanding and generation. In: Proceedings of Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (2021)

2. Banerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of ACL Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization
(2005)

3. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evalua-
tion for any target language. In: Proceedings of Workshop on Statistical Machine
Translation (2014)

4. Dong, L., Lapata, M.: Coarse-to-Fine decoding for neural semantic parsing. In:
Proceedings of Annual Meeting of the Association for Computational Linguistics
(2018)

5. Karaivanov, S., Raychev, V., Vechev, M.: Phrase-based statistical translation of
programming languages. In: Proceedings of ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (2014)

6. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceed-
ings of ACL Text Summarization Branches Out (2004)

7. Liu, H., Shen, M., Zhu, J., Niu, N., Li, G., Zhang, L.: Deep learning based program
generation from requirements text: are we there yet? IEEE Trans. Softw. Eng.
48(4), 1268-1289 (2022)

8. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evalu-
ation of machine translation. In: Proceedings of Annual Meeting of the Association
for Computational Linguistics (2002)

9. Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis. In: Proceedings of International Conference on Learning Rep-
resentations (2017)

10. Rabinovich, M., Stern, M., Klein, D.: Abstract syntax networks for code generation
and semantic parsing (2017). https://arxiv.org/abs/1704.07535

11. Spector, L.: Autoconstructive evolution: Push, PushGP, and Pushpop. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (2001)

12. Svyatkovskiy, A., Deng, S.K., Fu, S., Sundaresan, N.: Intellicode compose: code
generation using transformer. In: Proceedings of ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2020)

13.

14.

15.

Are NLP Metrics Suitable for Evaluating Generated Code? 537

Tran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T.: Does BLEU score work
for code migration? In: Proceedings of IEEE/ACM International Conference on
Program Comprehension (2019)

Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
In: Proceedings of Annual Meeting of the Association for Computational Linguis-
tics (2017)

Zhao, G., Huang, J.: Deepsim: deep learning code functional similarity. In: Pro-
ceedings of ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2018)

