
Constructing Dataset of Functionally Equivalent Java Methods
Using Automated Test Generation Techniques

Yoshiki Higo
Osaka University
Suita, Osaka, Japan

higo@ist.osaka-u.ac.jp

Shinsuke Matsumoto
Osaka University
Suita, Osaka, Japan

shinsuke@ist.osaka-u.ac.jp

Shinji Kusumoto
Osaka University
Suita, Osaka, Japan

kusumoto@ist.osaka-u.ac.jp

Kazuya Yasuda
Hitachi, Ltd.,

Yokohama, Kanagawa, Japan
kazuya.yasuda.fd@hitachi.com

ABSTRACT
Since programming languages offer a wide variety of grammers,
desired functions can be implemented in a variety of ways. We con-
sider that there is a large amount of source code that has different
implementations of the same functions, and that those can be com-
piled into a dataset useful for various research in software engineer-
ing. In this study, we construct a dataset of functionally equivalent
Java methods from about 36 million lines of source code. The con-
structed dataset is available at https://zenodo.org/record/5912689.

KEYWORDS
functionally equivalent Java methods, test generation techniques
ACM Reference Format:
Yoshiki Higo, Shinsuke Matsumoto, Shinji Kusumoto, and Kazuya Yasuda.
2022. Constructing Dataset of Functionally Equivalent Java Methods Using
Automated Test Generation Techniques. In 19th International Conference on
Mining Software Repositories (MSR’22), May 23–24, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528015

1 INTRODUCTION
Since programming languages offer a wide variety of grammars,
desired functions can be implemented in a variety of ways. For
example, in Java, programmers can choose whether to implement
iterations with for-statements, while-statements, recursive meth-
ods, or Streams. With regard to the refactoring patterns proposed
by Fowler [4], both implementations before and after applying a
refactoring pattern are functionally equivalent, and the refactoring
can be regarded as a change in the implementation of the function.
Thus, there are countless ways to implement a certain function,
and programmers implement decired functions according to their
own preferences and project policies.

We consider that there is a large amount of different implemen-
tations of the same functions that can be compiled into a dataset

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528015

useful for various research in software engineering. For example,
such a dataset can be used for evaluating code clone detection tools.
Since it is desirable to detect implementations of the same functions
as code clones, the performance of code clone detection tools can
be evaluated by examining the extent to which different implemen-
tations with the same function are detected as code clones. We
can also investigate which implementations are superior in terms
of performance, such as memory usage and execution speed, and
which implementations are superior in terms of software quality,
such as ISO/IEC 25010:2011 [6], by using such a dataset.

In this study, we construct a dataset of functionally equiva-
lent methods from 36 million lines of Java source code in Borge’s
dataset [2]. Here, functionally equivalent refers to methods that
return the same output (return value) when the same inputs (argu-
ments) are given. The key idea of this research is to automatically
obtain a set of functionally equivalent method candidates by us-
ing types of return and parameters and automated test generation
techniques. The authors visually checked the obtained candidate
groups of functionally equivalent methods to determine whether or
not they are indeed functionally equivalent. As a result, the authors
identified 276 functionally equivalent method groups.

2 KEY IDEA FOR COLLECTING
FUNCTIONALLY EQUIVALENT METHODS

In this research, we use the static features and dynamic behaviors
of Java methods to collect candidates for functionally equivalent
ones. It is necessary to visually check whether obtained candidates
are really functionally equivalent. Thus, it is important to autemate
the collection of candidates for functionally equivalent methods as
much as possible to collect a large number of candidates.

The static features of Java methods used in this research are
return and parameter types. As the first step in obtaining function-
ally equivalent method candidates, methods with equal return and
parameter types are assigned to the same group.

The next step is to determine whether methods belonging to the
same group have the same dynamic behavior by executing unit
tests on them. In this study, we use an automated test generation
technique to generate unit tests from a larger number of target
methods. Automated test generation techniques generate tests that
pass for the target method. In other words, all test cases generated
from method-A pass method-A. This means that the test cases gen-
erated from method-A represent the behavior of method-A. Using

https://zenodo.org/record/5912689
https://doi.org/10.1145/3524842.3528015
https://doi.org/10.1145/3524842.3528015

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Trovato and Tobin, et al.

Source
files

Method group 1
String(int,int)

Method group 2
int(String)

extracting and
grouping
methods

Method A Test cases B

+ running
test cases Results A_B

✓✓✓

Method A Test cases C

+ running
test cases Results A_C

✓× ×

Method B Test cases A

+ running
test cases Results B_A

✓✓✓

Method B Test cases C

+ running
test cases

Method C Test cases A

+ running
test cases

Method C Test cases B

+ running
test cases

Results C_A

✓×✓
Results B_C

× × ×

Results C_B

× × ×

Method 1 Method 2

checking functional equivalence manually
Method group 1
String(int,int)

Method A

Method B

Method C

Test cases A

Test cases B

Test cases C

generating
test cases

generating
test cases

generating
test cases

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Figure 1: Steps for collecting functionally equivalent Java methods

this property, we automatically generate tests from each method
that belongs to the same group, and execute the tests mutually. If
method-B passes all the tests generated frommethod-A andmethod-
A passes all the tests generated from method-B, it indicates that
the behaviors of method-A and method-B are equivalent to some
extent, and the key idea of this research is that their functions may
be equivalent if all tests run successfully against each other.

Based on this key idea, we construct a dataset of Java methods
that are functionally equivalent by obtaining a set of methods that
are successfully tested against each other from a large amount
of open source software. Since it is obvious that methods with
the same implementations are functionally equivalent, and those
methods can be detected by existing code clone detection tools [5],
the purpose of this research is to construct a dataset of functionally
equivalent methods with different implementations.

3 PROCEDURE FOR COLLECTING
FUNCTIONALLY EQUIVALENT METHODS

In this study, the following steps are used to construct a dataset of
functionally equivalent methods.

STEP-1 Grouping methods included in the target projects.
STEP-2 Generating unit test cases for each method.
STEP-3 Determining the equivalence of behaviors.
STEP-4 Checking the results of STEP-3 manually.

An overview of the steps is shown in Figure 1. The first three
steps are performed automatically by creating a tool. STEP-4 is
conducted by the authors. Each step is described in detail below.

3.1 STEP-1
In STEP-1, the source code of the target projects is analyzed to
extract methods, and the extracted methods are grouped together.
In the extraction of methods, the following information is obtained
for each method and registered in the database:

(1) method name,
(2) return and parameter types,
(3) original source code,
(4) normalized source code,
(5) the number of statements and conditional predicates,
(6) file path, and
(7) start and end line numbers.
In the normalization, all variables are replaced with a special

name. Figure 2(b) shows an example of the normalization.
Not all methods included in the target projects are extracted.

Methods satisfying any of the following conditions are ignored.
• Reference types other than java.lang and lava.util pack-
ages are used in the return type, pamareter types, and body
of the method.

• The return type of the method is void.
• The method includes only one program statement.

Constructing Dataset of Functionally Equivalent Java Methods
Using Automated Test Generation Techniques MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

The reason for using the first condition is that if a reference type
other than java.lang package is used, it is necessary to write an
import-statement at the top of the source file or refer to the type
by its fully qualified name. Furthermore, if the type is not included
in the standard Java library, it is necessary to prepare its class file
(jar file), which increases the time required to compile the method.

The reason why java.util was chosen as an exception to the
types that can be used in the methods to be extracted is that
java.util package contains many commonly-used types such
as java.util.List and java.util.Set. The number of methods
that can be extracted increases dramatically by adding those types.

The reason for using the second condition is that for methods
whose return value is void, it is difficult to determine which value is
the final results of the method’s calculation in an automatic manner.
If the return value is not void, the return value of the method can
be used as the final results of the method’s calculation. The reason
for using the third condition is that the Java source code contains a
large number of setters and getters, which have very simple bodies
and are not appropriate targets for methods with the same functions
and different implementations.

Grouping the extracted methods is performed using the return
and parameter types. Methods whose return and parameter types
are exactly equal are classified into the same group. After groups
are created, if there are multiple methods in the same group whose
normalized source code matches exactly, only one of them is kept
in the group. The reason for this is that it is obvious that methods
with the same implementation have the same behavior, and such
same implementations do not fit the purpose of this research. Note
that a group consisting of only a single method is not subject to
the processing from STEP-2.

3.2 STEP-2
In STEP-2, each method in all groups is cut into a single file to
generate its test cases, and the following operations are performed
when cutting the methods into files.

• Inserting ‘import java.util.*;’ at the top of the file. This
is a process to allow compilation even if classes of java.util
package are used in the target method.

• Enclosing the target method in a class. At present, name
‘Target’ is used. Also, changing the name of the target
method to ‘__target__’. This is to ensure that all target
methods are handled uniformly in the experimental script.

• Removing annotations and ‘static’ from the method sig-
natures. This is also to ensure that all target methods are
handled uniformly in the experimental script.

Figure 2(c) represents the entire file when the method obtained
from the source code of Figure 2(a) is extracted as a single file. From
this figure, it can be seen that the extracted file contains only the
target method, the class and method names are unified, and the
annotations and static modifier attached to the method signature
have been removed.

We then generate unit test cases for each of the extracted meth-
ods. Currently, we are using EvoSuite [3] to generate the test cases,
but other test generation tools such as Randoop [9] and Agitar [1]
can be used as well. In this experiment, any method that generated
even one test case is used in STEP-3.

1 package com.intellij.openapi.util.text;
…
33 public class StringUtil extends StringUtilRt {
…

1265 @Contract(pure = true)
1266 public static @NotNull String repeat(@NotNull String s, int count) {
1267 if (count == 0) return "";
1268 assert count >= 0 : count;
1269 StringBuilder sb = new StringBuilder(s.length() * count);
1270 for (int i = 0; i < count; i++) {
1271 sb.append(s);
1272 }
1273 return sb.toString();
1274 }

…

(a) Original source code

String $method(String $variable,int $variable){
if ($variable == 0) return "";
assert $variable >= 0 : $variable;
StringBuilder $variable=new StringBuilder($variable.length() * $variable);
for (int $variable=0; $variable < $variable; $variable++) {
$variable.append($variable);

}
return $variable.toString();

}

(b) Normalized source code

1 import java.util.*;
2 public class Target {
3 String __target__(String s,int count){
4 if (count == 0) return "";
5 assert count >= 0 : count;
6 StringBuilder sb=new StringBuilder(s.length() * count);
7 for (int i=0; i < count; i++) {
8 sb.append(s);
9 }
10 return sb.toString();
11 }
12 }

(c) Source code cut out to a file

Figure 2: Target Method

3.3 STEP-3
In STEP-3, we mutually execute tests on the methods that belong to
the same group and have successfully generated test cases. In Fig-
ure 1(c), tests are mutually executed for Method-A, Method-B, and
Method-C. Method-A passes all the tests generated from Method-B,
and Method-B also passes all the tests generated from Method-A.
Therefore, Method-A and Method-B are candidates for functionally
equivalent methods. Method-C does not pass one of the tests gen-
erated from Method-A, and does not pass all the tests generated
from Method-B. Therefore, a pair of Method-A and Method-C and
another pair of Method-B and Method-C are not candidates for
functionally equivalent methods.

3.4 STEP-4
STEP-4 is seeintg the source code of the candidate methods with the
same behavior and different implementations obtained in STEP-3
to check whether they really have the same function.

4 CONSTRUCTED DATASET
Herein, we describe the dataset we constructed. We have con-
structed a dataset of functionally equivalent methods on Borge
et al.’s dataset [2]. The dataset includes 2,500 projects whose source
code is available on GitHub and 197 of those projects contain Java

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Trovato and Tobin, et al.

int countOccurrences(String string,String substring){
int i=0;
int count=0;
while ((i=string.indexOf(substring,i)) >= 0) {

++count;
i=i + string.length();

}
return count;

}

int countMatches(String haystack,String needle){
int num=0;
int pos=0;
while (pos < haystack.length()) {

int nextPos=haystack.indexOf(needle,pos);
if (nextPos < 0) {

break;
}
num++;
pos=nextPos + needle.length();

}
return num;

}

int getOccurrenceCount(String text,String s){
int res=0;
int i=0;
while (i < text.length()) {

i=text.indexOf(s,i);
if (i >= 0) {

res++;
i++;

} else {
break;

}
}
return res;

}

int occurrencesOf(String text,String lookFor){
int index=-1;
int count=-1;
do {

count++;
index=text.indexOf(lookFor,index + 1);

}
while (index != -1);
return count;

}

https://github.com/bazelbuild/bazel

https://github.com/facebook/buck

https://github.com/JetBrains/intellij-community https://github.com/neo4j/neo4j

Figure 3: Real examples: counting the number of times the second parameter string appears in the first parameter string

source code. Those 197 projects consist of a total of 36,316,510 lines
of source code and contain 2,299,436 methods. In STEP-1, 16,936
methods were extracted and they were divided into 1,222 groups. In
STEP-2, test cases were successfully generated from 5,720 methods.
STEP-3 resulted in 418 candidate groups with equivalent behaviors,
consisting of 1,190 methods in total.

The visual check in STEP-4 was conducted by the authors. The
visual check took about eight hours, and 276 functionally equivalent
groups consisting of 728 methods were obtained. The information
on the obtained groups is available at Zenodo1. In the visual check,
109 groups were determined not to be behaviorally equivalent. In
addition, 30 groups were excluded because their behaviors were
equal but their implementations were not different enough to meet
the condition of “equal behavior but different implementations”.
For example, groups that differed only in whether the variables had
a final modifier or not, or only in the error message string, were
excluded.

Figure 3 is an example of functionally equivalent methods that
we found. All the four methods in the figure have the function
that counts the number of times the string given as the second
parameter appears in the string given as the first parameter. Method
countOccurrences is shorter than the others but the conditional
expression in the while-statement is complex. On the other hand,
method getOccurrenceCount is longer, but the instructions in each
line are simple and easy to understand. In addition, only method
occurrencesOf uses do-while-statement.

For detailed instructions on how to use this dataset, please refer
to the attached ReadMe.md file. This dataset assigns a unique ID to
each method group, making it easy to obtain the source code for
each method group.

1https://zenodo.org/record/5912689#.YfOZFfWmNqs

5 RELATEDWORK
Svajlenko et al. have constructed a dataset called BigCloneBench [3,
10]. BigCloneBench is a collection of duplicate methods and the
duplicate methods are classified into 45 functions. The quality of
the dataset is considered to be high because they conducted visual
checks at the end of the dataset construction process. However,
the target of the visual check was Java methods found by a clone
detection tool. Thus, the functionally equivalent methods that were
not detected as code clones are not included in their dataset. In
addition, the target methods were not executed during the con-
struction process of the dataset, and functional equivalence was
not determined in terms of dynamic behavior.

Liu et al. have constructed a dataset of functionally equivalent
programs using past data of competitive programming [7]. They
have collected functionally equivalent programs for about 5,000
problems, and the answers of several users to a certain problem in
competition programming are programs with the same function.
Zhao et al. publish a dataset of the same functional programs in
Google Code Jam [11], and Mou et al. also publish a dataset of
programs submitted to the pedagogical programming open judge
system [8]. On the other hand, our dataset differs from their dataset
in that it is not a set of programs in competitive programming but
functionally equivalent methods included in OSS.

6 CONCLUSION
In this study, we identified functionally equivalent method groups
by generating tests for methods extracted from open source soft-
ware and executing the generated tests against each other. We have
applied to the 197 Java projects in Borge et al.’s dataset [2]. As a
result, 418 candidates of functionally equivalent method groups con-
sisting of 1,190 methods were found. The authors visually checked
all of them and identified 276 functionally equivalentmethod groups.
The constructed dataset can be used to compare the performance

https://zenodo.org/record/5912689#.YfOZFfWmNqs

Constructing Dataset of Functionally Equivalent Java Methods
Using Automated Test Generation Techniques MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

of code clone detection tools and to study the quality of the code,
such as understandability.

The current issue is that the execution time for finding candi-
dates of functionally equivalent methods is very long because the
tests are mutually executed for all combinations of methods whose
return and parameter types are equal and for which tests could
be generated. In this experiment, it took about three days only
for STEP-3. In the future, we plan to introduce some heuristics to
reduce the number of combinations of methods to be executed mu-
tually, so that we can try to detect functionally equivalent method
groups in a larger set of open source projects.

Another issue is that a large percentage (34%) of the method
groups were determined to be functionally inequivalent by the
visual investigation. In this experiment, all methods for which
even a single test case was generated were targeted for dynamic
behavior verification, but by limiting the number of methods for
which multiple test cases were generated, the percentage of such
method groups could be reduced. Also, in addition to EvoSuite,
other test generation tools may be used to reduce the percentage
of such method groups.

REFERENCES
[1] [n.d.]. AgitarOne. http://www.agitar.com/solutions/products/agitarone.html.

[2] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE.
https://doi.org/10.1109/icsme.2016.31

[3] Evosuite. 2021. Evosuite: Automatic Test Suite Generation for Java. https:
//www.evosuite.org/.

[4] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA.

[5] Katsuro Inoue and Chanchal K. Roy. 2021. Code Clone Analysis: Research, Tools,
and Practices. Springer, Singapore.

[6] ISO/IEC 25010. 2011. ISO/IEC 25010:2011, Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models.

[7] Hui Liu, Mingzhu Shen, Jiaqi Zhu, Nan Niu, Ge Li, and Lu Zhang. 2020. Deep
Learning Based Program Generation from Requirements Text: Are We There
Yet? IEEE Transactions on Software Engineering (2020). https://doi.org/10.1109/
TSE.2020.3018481

[8] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix,
Arizona) (AAAI’16). AAAI Press, 1287–1293.

[9] Randoop. 2022. Randoop: Automatic unit test generation for Java. https://randoop.
github.io/randoop/.

[10] Jeffrey Svajlenko and Chanchal K. Roy. 2016. BigCloneEval: A Clone Detection
Tool Evaluation Framework with BigCloneBench. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE. https://doi.
org/10.1109/icsme.2016.31

[11] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional
Similarity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 141–151. https://doi.org/10.1145/3236024.3236068

https://doi.org/10.1109/icsme.2016.31
https://www.evosuite.org/
https://www.evosuite.org/
https://doi.org/10.1109/TSE.2020.3018481
https://doi.org/10.1109/TSE.2020.3018481
https://randoop.github.io/randoop/
https://randoop.github.io/randoop/
https://doi.org/10.1109/icsme.2016.31
https://doi.org/10.1109/icsme.2016.31
https://doi.org/10.1145/3236024.3236068

	Abstract
	1 Introduction
	2 Key idea for collecting functionally equivalent methods
	3 Procedure for collecting functionally equivalent methods
	3.1 STEP-1
	3.2 STEP-2
	3.3 STEP-3
	3.4 STEP-4

	4 Constructed Dataset
	5 Related Work
	6 Conclusion
	References

