
Web Element Identification by Combining NLP and
Heuristic Search for Web Testing

Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{h-kirink, shinsuke, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—End-to-end test automation is critical in modern web
application development. However, test automation techniques
used in industry face challenges in implementing and maintaining
test scripts. It is difficult to determine and maintain the locators
needed by test scripts to identify web elements on web pages.
The reason is that locators depend on the metadata of web
elements and the structure of each web page. One effective way
to solve such a problem of locators is to allow test cases written in
natural language to be executed without test scripts. In this study,
we propose a technique to identify web elements that should
be operated on a web page by interpreting natural-language-
like test cases. The test cases are written in a domain-specific
language that independents on the metadata of web elements and
the structural information of web pages. We leverage natural
language processing techniques to understand the semantics
of web elements. We also create heuristic search algorithms
to explore web pages and find promising test procedures. To
evaluate the proposed technique, we applied it to test cases for
two open-source web applications. The experimental results show
that our technique was able to successfully identify about 94% of
web elements to be operated in the test cases. Our approach also
succeeded in identifying all the web elements that were operated
in 68% of the test cases.

I. INTRODUCTION

In recent years, the prompt updating of software has become
increasingly important in order to respond to rapid changes in
market conditions. Developers need to verify their software
works properly before release. This confirmation includes not
only whether new features work properly but also whether
existing features work as before. Testing that existing features
work as they did previously is called regression testing.
The cost of regression testing is overwhelming in software
maintenance [1], [2]. Test automation is therefore an important
technique to reduce cost.

In web application development, developers commonly use
tools that automate end-to-end testing, and they need to
implement and maintain test scripts. A test script enables the
automation of the operations and verifications performed on
web pages that are being tested. The implementation of test
scripts is known to be costly. Dobslaw et al. [3] investigated
the return on investment (ROI) of end-to-end test automation
frameworks. The authors showed that, compared to manual
testing, the initial implementation time was close to 90%
of the total cost up until reaching the ROI. The study also
claimed that the dominant cost is the initial time required
to implement test scripts. One of the reasons for the high
cost of implementing test scripts is that most end-to-end test

automation tools depend on the metadata of web elements and
the structure of web pages.

For example, Selenium [4], a de facto standard end-to-end
test automation tool, requires locators to identify web ele-
ments. Some locators depend on metadata such as id or name
attributes described in HTML document, and other locators
use XPath. XPath is a query language for selecting a web
element from an XML/HTML document. Developers often
have to understand the detailed implementation of a web page
to determine locators. In this way, test script implementation
is obstructed by the dependence on metadata and the structure
of each web page.

This dependence is also an obstacle to maintaining test
scripts. Test scripts that use locators are known to be frag-
ile. Some prior works have examined the fragility of lo-
cators. Christophe et al. [5] investigated eight open-source
software repositories that include Selenium test scripts. The
study showed that 75% of Selenium test scripts are changed
more than once every nine commits (once every 2.05 days).
Hammoudi et al. [6] examined breakages in 453 versions
of Selenium IDE test scripts of eight web applications and
classified the causes of test breakages. The results of their
experiment showed that 73.62% of the breakages were caused
by locators. From the above studies, we can see that using
locators increases the cost of maintaining test scripts and
hinders efficient regression testing.

Another major problem with end-to-end testing is the cost
of creating and maintaining test cases. Note that this paper
defines a test case as a specification of test procedures and
expected results. This paper also defines a test script as an
automated program to verify the specification. Writing test
cases is important because not all tests are always automated,
and not all people involved in testing understand test scripts
written in a programming language. The test cases also require
maintenance. If both test cases and test scripts exist, developers
need to keep them consistent. Therefore, it is costly to create
and maintain test cases, especially for fast-evolving applica-
tions.

One efficient way to solve the problems mentioned so far
is to make test cases executable without test scripts. This
is because it relieves developers from the problem of test
script implementation and consistency between test cases and
test scripts. Our goal is to make it possible to execute test
cases written in natural languages without conventional test
script implementation using locators. To achieve the goal, it is

first necessary to be able to identify web elements from test
case descriptions without depending on the implementation of
applications. In this study, we propose a technique to identify
web elements to be operated on web pages by interpreting test
cases. The test cases that we are focusing on are written in a
domain-specific language (DSL) without relying on metadata
of web elements or the structural information of web pages.
We leverage natural language processing (NLP) techniques
to understand the semantics of web elements and test cases.
We also create heuristic search algorithms to find promising
test procedures from possible ones. To evaluate our proposed
technique, we applied it to test cases for two open-source web
applications. The experimental results show that our technique
was able to successfully identify about 94% of web elements to
be operated in the test cases. We also succeeded in identifying
all the web elements that were operated in 68% of the test
cases. Our experimental source code, the test cases, and the
outputted test procedure are publicly available1.

The contributions of this study are as follows:

• We propose a novel technique to identify web elements by
interpreting test cases that are close to natural language.

• We propose an algorithm that combines NLP and heuris-
tic search to find promising test procedures.

• Our experiments show the potential for semantic-based
identification of web elements and reuse of test cases
across multiple contexts and applications.

II. MOTIVATING EXAMPLE

We explained the problems of the conventional locator-
based approach for end-to-end test automation in Section I.
In this section, we introduce some examples of such problems
when implementing test scripts using locators. Figure 1 shows
the three different description input fields of Joomla!2 and
MantisBT3 and Python snippets with Selenium to enter the
value “test description”. Even though these fields have similar
roles, it is necessary to use different locators when scripting
them since all of these fields are implemented differently.
These differences in test script implementation make it difficult
to reuse a part of test scripts across different contexts. If
all these web elements could be represented by the word
“description”, it would lead to reuse of a part of test scripts.

Figure 2 shows a drop-down list in the log-in module page
of Joomla! and a Python snippet to select the value “Icons”.
Despite the drop-down list of “Display Label”, the id and name
attribute of the web element do not seem to be related to it.
This would make it difficult for developers to understand what
this snippet means when they read it. If a web element does
not have an id or name attribute, the same problem will occur
because XPath or CSS selectors would be used as a locator. In
this case, we want to suggest using the string ”display labels”
to identify this drop-down list.

1https://github.com/knukio/saner2022-experiment
2https://www.joomla.org/
3https://www.mantisbt.org/

Create project page of MantisBT

Report issue page of MantisBT

Add menu page of Joomla!

driver.find_element_by_id(“jform_menudescription”)
.send_keys('test description')

driver.find_element_by_id(“description”)
.send_keys('test description')

driver.find_element_by_id(“project-description”)
.send_keys('test description')

<input type="text"
name="jform[description]"
id="jform_menudescription"
value="" size="30"
maxlength="255">

<textarea class="form-control"
tabindex="11" id="description"
name="description" cols="80"
rows="10"
required=""></textarea>

<textarea class="form-control"
id="project-description"
name="description" cols="70"
rows="5"></textarea>

Fig. 1. Description input fields and Python snippets to enter the value “test
description”

<select id="jform_params_usetext" name="jform[params][usetext]">
<option value="0" selected="selected">Icons</option>
<option value="1">Text</option>

</select>

Select(driver.find_element_by_id('jform_params_usetext'))
.select_by_visible_text('Icons')

Dropdown list in log-in module page

Fig. 2. A drop-down list in the log-in module page of Joomla! and a Python
snippet to select the value “Icons”

III. RELATED WORK

In the following, we present related studies that have
improved upon the existing test automation approaches. In
order to reduce the cost of test script implementation, many re-
searchers have attempted to automatically generate test scripts
for web applications [7], [8], [9], [10]. These approaches
allow us to generate effective test scripts under certain cir-
cumstances.

Some researchers have sought to eliminate the fragility of
test scripts to improve their maintainability. One effective
solution is to make locators more robust by using metadata that
is unlikely to change [11], [12], [13] or by using images of web
elements as locators [14], [15]. Leotta et al. proposed a robust

XPath algorithm, ROBULA+ [11]. The study showed that
ROBULA+ reduced the fragility of Selenium IDE locators
by 63%, but these algorithms still depend on metadata and
the structural information of web pages. Yandrapally et al. [12]
proposed a technique to identify web elements by using other
prominent elements on a web page (e.g., Click on “LabelA”
near “LabelB”). The technique uses web elements that have
labels and images as prominent elements. The study showed
that, compared to existing tools, their scripts were more
resilient to changes in metadata and the structure of pages.
However, their technique can be fragile to changes in labels
or images, and the expression of their test cases is limited
by the labels. Some other researchers have also attempted
to repair broken locators to handle locator fragility [16],
[17], [18]. On the other hand, our approach aims for greater
flexibility in terms of test case expression and for semantic-
based identification of web elements by using NLP.

Yeh et al. [14] proposed SIKULI, a visual approach to
automate operations on a screen by using images to identify
web elements. The advantage of visual locators is that they
are not dependent on the metadata or the structure of web
pages, and target elements are easy to understand visually.
Stocco et al. [15] proposed a technique called PESTO, which
converts conventional locators to visual locators, but such
visual locators are fragile to changes in user interfaces.

Several other researchers have leveraged NLP into testing
or operating web applications. Thummalapenta et al. [19]
proposed a technique to interpret test cases written in natural
language. Their technique requires that a test step includes
all necessary information for mechanically interpreting the
step. Therefore, as distinct from our technique, targets to be
operated must be described in the test cases in an identifiable
form. DSL is effective in making test cases both unambiguity
and readability. Dwarakanath et al. [20] proposed to introduce
DSL to test cases for accelerating test automation. However,
their technique also requires locators to uniquely identify web
elements.

Lin et al. [21] proposed a technique to identify the topic
of input fields for crawling-based test automation techniques,
which can be applied to mine behavioral models, etc. They
showed that their technique improved the accuracy of input
topic identification by up to 22% compared to a rule-based
approach. However, their technique only considers input fields
and only identifies pre-trained topics. Pasupat et al. [22]
proposed a machine-learning-based technique to convert a
natural language command (e.g., clicking on the second ar-
ticle) into the web element to be operated on the page. Their
technique can be applied to end-to-end testing, but many of
the commands given in their study are indirect and difficult
to interpret with their model. The conversion accuracy of the
technique is therefore not high. On the other hand, our tech-
nique incorporate heuristic search to explore a system under
test by limiting the target to automated testing. Bajammal et
al. utilized NLP techniques for accessibility testing [23].

Test case

System under test

𝑒1, 𝑒2, 𝑒3…
Web elements

Proposed technique Test procedure

Explore

enter "admin" in "username"

enter "admin" in "password"

click “log in"

click “new article“

click “save and close"

…

…

1. Vectorize web elements and strings specifying
the target of the operation in the test case

2. Determine procedures by using heuristic search

to determine a promising test procedure

“username”
“password”

𝑒1
𝑒2

[0.24, 0.38, … , 0.91]
[0.34, 0.98, … , 0.21]
[0.71, 0.24, … , 0.28]
[0.55, 0.30, … , 0.43]

=
=
=
=

…

enter "admin“ in

enter "admin“ in

click

click

click

Fig. 3. An overview of our approach

IV. OUR APPROACH

The proposed technique interprets test cases written in a
DSL close to natural language and determines a promising
test procedure. A test case written in the DSL is a sequence
of test steps. In this case, a test step is the smallest operational
unit, as shown in the following example:

enter "admin" in "username"

Our technique interprets this test step as a operation that iden-
tify a web element that might be represented by “username”
and enters “admin” into it.

Figure 3 shows an overview of our approach. The proposed
technique interprets a test case and determines a test procedure
by exploring the page transitions of the system under test. Our
approach vectorizes web elements and strings specifying the
target of the operation to understand their semantics by using
NLP. Our approach also determines a test procedure by using a
heuristic search to consider multiple test procedures for finding
the most promising one.

Table I shows the specification of our DSL. Our DSL
can currently handle only simple operations such as clicking,
inputting, and selecting. open opens a specified URL in a
browser and is generally called at the beginning of the test
case. click, enter and select operate a certain web element.

TABLE I
THE SPECIFICATION OF OUR DSL

Operation Description

open url Open a specified url
click target Click a button, link, etc., specified

with target
enter value in target Enter value in an input field specified

with target
select value from target Select value from a drop-down list

specified with target
--- (page separator) A separator between pages for the

heuristic search algorithm explained
in Section IV-B

These operations contain a target to specify a web element
to be operated. Let us call such a string to specify a web
element target string. Target strings can be any user-specified
string, regardless of the implementation of a web page. enter
and select include a value to be entered into the input field or
selected from a drop-down list.

A. Vectorization

In order to determine a test procedure, we need to identify
the web element that corresponds to the target string specified
in the test case. For this purpose, we measure the similarity
between the web elements and target strings. One important
idea is to vectorize both web elements and target strings to
represent their semantics.

Word embedding techniques (e.g., Word2Vec, fastText,
GloVe, etc.) are often used to represent the semantics of
a word or a sentence as a vector. We devise an approach
to represent the semantics of a web element because web
elements often contain information that is irrelevant to the
semantics. First, we separately extract the values of attributes
and visible texts from a web element. Visible texts include
inner text and labels associated with the web element by for
attributes. The for attribute specifies which web element a
label is bound to, so we can identify the label that represents
the element. The reason for separating attributes and visible
texts is that we assume visible texts represent the semantics
of the web element more directly and are more important
than attribute values. Here, we ignore some attributes that are
mainly used for visual layout such as class, style and so
on. The following describes the procedure for preprocessing
the obtained values.

1) Split the values into words based on white space or
symbols.

2) Convert the words into lowercase.
3) Remove stop words such as prepositions and articles.

Figure 4 shows an example of vectorizing a web element and
a target string in Joomla!. In this example, we have a web
element, a button labeled “Save & Close”. The text “Save
& Close” that is rendered on the button is extracted as text
words. Only the value of the onclick attribute is extracted
as attribute words. The value of the onclick attribute is
often important information because it is often the name of

<button onclick="Joomla.submitbutton('user.save');"
class="btn btn-small button-save">

Save & Close
</button>

[joomla,submitbutton,user,save][save, close]

Text words Attribute words

Web Element

Extract words

Vectorize with fastText

[0.93, 0.34, …][0.34, 0.13, …]

click “save and end”

Test step

[save, and, end]

Target words

[0.42, 0.18, …]

Target vector (𝒗𝐭𝐚𝐫𝐠𝐞𝐭)

Target string

Calculate similarity between target string and each web element

Text vector (𝒗𝐭𝐞𝐱𝐭) Attribute vector (𝒗𝐚𝐭𝐭𝐫)

Fig. 4. An example of web element vectorization

a JavaScript function and represents the feature of the web
element. The other attributes (e.g., class, area-hidden)
are ignored. Thus, we obtain the text words:

[save, close]

and the attribute words:

[joomla, submitbutton,user, save]

Next, we convert these words into vectors representing their
semantics. Among the available word-embedding algorithms,
we selected fastText [24] because of its ability to handle un-
known words using subword embedding. The fastText model
has one million word vectors trained on Wikipedia 2017,
UMBC WebBase corpus, and statmt.org news dataset4. Since
web elements often contain abbreviations and proper nouns,
we believe that a technique using subwords is suitable. The
proposed technique vectorizes each word and takes their mean
to obtain a text vector from the text words and an attribute
vector from the attribute words. The text vector represents the
semantics of the text words, and the attribute vector represents
those of the attribute words.

In addition, we introduce tf-idf to weight each word. Intu-
itively, if the same word appears in a web element frequently,
the word could be considered to uniquely represent the web
element. However, if the same word appears across multiple
web elements, the word would not be considered to represent
the web elements. Therefore, although tf-idf is usually used
to weight words among documents, we apply tf-idf to weight
words among elements in this study. The weighting scheme
is:

tfidf(w, e,E) = fw,e × log
N

nw

where w is a word, E is a set of web elements, e (∈ E)
is a web element, fw,e is the frequency of word w in web
element e, N is the total number of web elements, and nw is
the number of web elements in which w appears.

4https://fasttext.cc/docs/en/english-vectors.html

Let M be the number of text words, and wi be the i-th
unique word. Vector vi is the resulting vector after applying
fastText to wi. The text vector vtext of a web element e
is calculated by the weighted mean of vi with tf-idf as the
weight:

vtext =

∑M
i=1(tfidf(wi, e, E)× vi)∑M

i=1 tfidf(wi, e, E)

The attribute vector vattr is also calculated in the same way
as above.

The method to vectorize target strings is almost the same as
that to vectorize web elements. We extract target words from a
target string and preprocess the target words in the same way
as for web elements. We vectorize each word by using fastText
and calculate the mean of vectors of the words without tf-idf.
Thus, we obtain the target vector vtarget from a target string.

Then, we can calculate the similarity between a target string
and a web element by using vtarget, vtext, and vattr. The
similarity between a target string t and a web element e is
calculated as a weighted mean of the two cosine similarities:

similarity(t, e) =
α× sim(vtarget,vtext) + sim(vtarget,vattr)

α+ 1
(1)

where α (≥ 1) is a constant to add weight to the text words,
and sim is the cosine similarity of two vectors.

B. Heuristic search algorithm

A web element that is most similar to the target string is
considered to be operated in the test step. However, we do
not determine a test procedure in order from the beginning
by using only word-vector-based similarities calculated in
Eq. (1). This is because it is uncertain whether the vector
representation of the web element correctly represents its
semantic.

The uncertainty of using only the NLP-based approach leads
to the following problems. The first is that multiple target
strings may be determined to be closest to the same web
element. For example, suppose that there is a password field
and a confirm password field on the web page. Two test steps
have “password” and “confirm password” as target strings
respectively in a test case. Suppose also that both strings are
determined to be the most similar to the password input field.
In this case, the two target strings are considered to specify
the same web element. However, in general, different target
strings should specify different web elements.

The second is that, if a web element identification fails at an
early step of the test case, the subsequent test procedure cannot
be determined correctly. Our technique requires a browser to
render web pages to obtain web elements. Because the web
pages may include static or dynamic page transitions, our
technique needs to execute each test step each time to execute
the expected page transitions. Once a test step executes an
incorrect page transition, the subsequent test steps cannot reach
the expected web page and will be useless.

To handle such uncertainty associated with the word-vector-
based similarity, we create two heuristic search algorithms:

page-level search and transition-level search. We use page-
level search to handle the first problem and transition-level
search to handle the second problem.

Page-level search: The page-level search algorithm con-
tributes to accurately determining a test procedure closed
to one web page. To clarify which test steps are closed to
one web page, we introduce page separator "---" to our
DSL. Strictly speaking, page separators ensure that all web
elements operated in test steps between two separators are
rendered on the web page when the page is loaded. It is
helpful to know that the web elements specified by the target
strings exist on the same page. The page-level search algorithm
finds plausible permutations of web elements corresponding
to target strings in test steps closed to a web page. First, the
algorithm calculates the similarities of all possible pairs of
a target string and a web element on a particular web page.
Next, it calculates scores of permutations of web elements
corresponding to target strings. Let us call this score a page-
wise score. Here, more promising permutations have a higher
page-wise score. When N test steps are executed on a web
page, the page-wise score sp is calculated as the mean of the
sum of similarities between a target string and a web element:

sp =
1

N

N∑
i=1

similarity(ti, ei)

where ti is the i-th target string, and ei is a web element
corresponding to ti. Page-wise scores are calculated for all
possible permutations. We note that the possible permutations
are determined by the type of element (input field, button,
or drop-down list) and the type of operation (enter, click or
select). For example, if an operation is enter, the candidate web
elements operated in the test step are limited to input fields.
When a permutation is selected, a procedure to be operated on
the web page is determined. We define the operation procedure
as a page-wise procedure.

Figure 5 shows an example of page-level search. The
web page has a password field e1 and a confirm password
field e2. Two test steps are given for operating the input
fields. The similarities between the target strings and the web
elements can be calculated with the algorithm described in
Section IV-A. There are two possible permutations here, in
which “password” refers to e1 and “confirm password” refers
to e2, or vice versa. In this example, the page-wise score of
the former is 0.8, and that of the latter is 0.7, so the former
is more plausible. When the former is selected, the page-wise
procedure executes the operations in the order of e1 and e2.
Without page-level search, both of the target strings would
be considered to represent e1. Thus, the page-level search
algorithm contributes to determining a test procedure closed
to a web page.

Transition-level search: We obtained multiple page-wise
procedures with page-wise scores by applying the page-level
search algorithm. However, it is insufficient to perform only
the page-level search because the page-wise procedure with
the highest page-wise score is not always correct. Transition-

enter “root” in “password”

enter “root” in “confirm password”

Test steps for this page

similarity(“password”, 𝑒1) = 0.9

similarity(“password”, 𝑒2) = 0.6

similarity(“confirm password”, 𝑒1) = 0.8

similarity(“confirm password”, 𝑒2) = 0.7

Page-wise procedure and page-wise score

Similarity

Elements on a web page

𝑒1

𝑒2

enter “root” in “password”

enter “root” in “confirm password”

𝑒1
𝑒2

Score:
0.9+0.7

2
= 0.8

enter “root” in “password”

enter “root” in “confirm password”

𝑒2
𝑒1

Score:
0.6+0.8

2
= 0.7

Fig. 5. An example of page-level search

level search explores multiple possible sequences of page-
wise procedures. It contributes to determining a promising test
procedure throughout the test case.

Figure 6 shows an example of transition-level search. We
assume that a test case has five test steps, excluding the page
separator. The first three test steps are executed on page X , and
then the last two are executed on any of the pages following
page X . In this case, there are two page-wise procedures,
ppx1 and ppx2, on page X , and they are the most promising
procedures on page X . ppx1 makes a page transition from X
to Y , and ppx2 makes a page transition from X to Z. We also
assume that the two most promising page-wise procedures are
obtained on page Y or Z after ppx1 or ppx2 is executed. It
should be noted that ppx1 is likely to be wrong even though it
is the most promising on page X . This is because both ppy1
and ppy2 have low page-wise scores. This means that page Y
is not likely to have web elements specified by target strings
“name” and “search”. On the other hand, page Z seems to
have web elements specified by the target strings because of
its high page-wise score. Therefore, although it does not have
the highest page-wise score, it is more promising to execute
ppx2 on page X than ppx1.

We determine the most promising procedure throughout

enter “root” in “password”

enter “root” in “confirm password”

click “login”

enter “test user” in “name”

click “search”

Page-wise procedure:

𝑝𝑝𝑥2: score 0.7

Page X

Page Y

Page Z

𝑝𝑝𝑥1: score 0.9

Page-wise procedure:

𝑝𝑝𝑦2: score 0.1

𝑝𝑝𝑦1: score 0.3

Page-wise procedure:

𝑝𝑝𝑧2: score 0.5

𝑝𝑝𝑧1: score 0.7

Test steps in a web page Test steps in the next page

Transition-wise score:

[𝑝𝑝𝑥1, 𝑝𝑝𝑦1]: 0.9+0.3 = 1.2

[𝑝𝑝𝑥1, 𝑝𝑝𝑦1]: 0.9+0.1 = 1.0

[𝑝𝑝𝑥2, 𝑝𝑝𝑧1]: 0.7+0.7 = 1.4

[𝑝𝑝𝑥2, 𝑝𝑝𝑥2]: 0.7+0.5 = 1.2

Transition

enter “root” in “password”

enter “root” in “confirm password”

click “login”

enter “test user” in “name”

click “search”

Test case

Fig. 6. An example of transition-level search

the test case by considering the transition-wise scores. The
transition-wise score is calculated as the sum of the page-
wise scores up to the current web page. Generally, there are
many possible page-wise procedures and page transitions, so it
would take too much time to explore all the possible sequences
within the page-wise procedures. Hence, we adopt the beam
search algorithm, which explores a graph by expanding the
most promising node in a limited set. The beam search has two
parameters: a search width and a beam width. When the search
width is Ws, we search the top Ws page-wise procedures at
each step. Therefore, if the beam search considers N states at
the current step, the number of states at the next step will be
Ws×N . When the beam width is Wb, the beam search prunes
the states, leaving the Wb states with the highest transition-
wise scores. Let M be the number of page-wise procedures
executed up until the current state. The transition-wise score
st is:

st =

M∑
i=1

spi

where spi
is the page-wise score of the i-th page-wise proce-

dures. Note that transition-level search is performed while dy-
namically exploring the application that is being tested. Since

TABLE II
A SUMMARY OF THE TARGET APPLICATIONS AND TEST CASES

Application Version Description Feature category # of test cases # of total test steps

Joomla! 3.9 Content management system
Article management 10 90
User managmement 4 44
Menu management 7 64

MantisBT 2.24.1 Bug tracker
Issue management 8 80
User management 6 54
Others 12 121

Total 47 453

the state changes of the application during the exploration
may affect the result of the transition-level search algorithm,
it is desirable to initialize the state of the application each
time a new page transition is attempted. To summarize this
section, the transition-level search algorithm determines the
procedure with the highest transition-wise score throughout
the test case. The sequence of page-wise procedures with
the highest transition-wise score is assumed to be the most
promising for the test case.

V. EVALUATION

We applied the proposed technique to test cases written in
our DSL to evaluate the accuracy of our technique. The target
applications in our experiment were Joomla! and MantisBT,
which are non-trivial and popular open-source web applica-
tions. We chose these applications because they are feature-
rich, have dynamic user interfaces, and are widely used in
practice. We first prepared test cases manually for the two
applications as inputs for our technique. To investigate the
effectiveness of our technique, we addressed the following
research questions:

RQ1. How accurately can our approach identify web ele-
ments and determine test procedures?

RQ2. Did the vectorization and the heuristic search con-
tribute to determining test procedures?

RQ3. Can we apply our approach to testing in actual
development?

A. Experimental setup

There are a large number of features in Joomla! and
MantisBT, so we did not prepare test cases that cover all
of the features. We therefore chose the key use cases of the
applications by referring to their user manuals and then wrote
test cases to cover them. As a result, we chose 21 use cases
of Joomla! and 26 use cases of MantisBT. The use cases of
Joomla! belong to the following three categories, described in
the user manual for administrators [25]: article management,
user management, and menu management. Because the user
manual of MantisBT does not have an organized categorization
like Joomla!, we assumed that there are three features that
constitute the main functionality of MantisBT: issue manage-
ment, user management, and others (management of projects,
tags, custom fields, and global profiles). We then chose the use
cases to cover them. We note that we exclude some use cases

here requiring operations that our technique does not support.
Table II shows a summary of the application and the test cases
for our experiment.

We wrote 47 test cases to verify the chosen use cases.
However, the way of writing test cases seems to depend on
the person. In particular, the target string is dominant for the
accuracy of our technique. Hence, we set the following rules
for writing test cases. First, if the manual describes a specific
procedure for the use case, we follow the manual as much as
possible. When a use case has multiple ways in which it can
be achieved, we chose one of them randomly. Second, it is
not necessary to fill in all of the input fields in the test cases.
In addition to the required input fields, we fill in one or more
of the optional input fields. Furthermore, when we operate the
same web pages in multiple test cases, we try to fill in different
optional input fields from the input fields operated in the other
test cases. Third, we limit the text used as target strings to one
or a combination of the following:

• The text of nearby labels that are obviously related to a
target element (e.g., a label right next to an input field)

• The text displayed in tooltips of a target element
• For buttons, the text displayed on the button
• For input fields, the default text specified by placeholder

attributes
• For checkboxes and radio buttons, the text “checkbox”

and “radio button”

The idea of following these rules is to reduce bias when
creating test cases.

We applied the proposed technique with three different
parameters. In this experiment, we set the same values for the
search widths Ws and beam widths Sb and tried three different
values: Ws = Wb = 1, 3, or 5. Ws = Wb = 1 means that
the transition-level search was not performed. In other words,
the page-wise procedure with the highest page-wise score was
adopted on each web page. In this study, we attempted to
treat text vectors and attribute vectors separately for better
web-element embeddings. To confirm whether this approach
worked well, we also examined the case where elements are
represented by a single vector without distinguishing between
text vectors and attribute vectors at the vectorization step. This
means that all words in a web element are treated equally. In
this case, we set Ws and Wb to 5, whether the vectors are
distinguished or not. When distinguishing between the vectors,

TABLE III
HOW TEST STEPS ARE CONVERTED INTO PYTHON CODE

Operation Python code

open url driver.get(url)
enter value in target driver.find_element_by_type(locator).send_keys(value)
select value from target Select(driver.find_element_by_type(locator).select_by_visible_text(value)
--- (page separator) (This is not reflected in test scripts.)

TABLE IV
THE NUMBER OF SUCCESSFUL IDENTIFICATIONS

Search/Beam width Ws = Wb = 5 Ws = Wb = 3 Ws = Wb = 1 Ws = Wb = 5
Distinguish text/attribute Yes Yes Yes No

Test step Test case Test step Test case Test step Test case Test step Test case

Joomla! 179 (90.4%) 13 (61.9%) 179 (90.4%) 13 (61.9%) 163 (82.3%) 9 (42.9%) 162 (81.8%) 9 (42.9%)
MantisBT 247 (96.9%) 19 (73.1%) 245 (96.1%) 18 (69.2%) 231 (90.6%) 15 (57.7%) 240 (94.1%) 18 (69.2%)
Total 426 (94.0%) 32 (68.1%) 424 (93.6%) 31 (66.0%) 394 (86.0%) 24 (51.1%) 402 (88.7%) 27 (57.5%)

α = 3 is set as the weight text vector in Eq. (1).
We output a test procedure as a test script written in Python

to confirm the test procedure determined by the proposed
technique. We can determine locators for the test script ac-
cording to the sequence of the page-wise procedures. This is
because, if a web element operated at a certain test step is
determined, we can obtain a locator from the implementation
of the web element. Table III shows how each test step is
converted into Python code. As shown in the table, a single
test step is converted into a single line of python code. type
in the Python code is id, name or xpath according to the
locator type, and locator is a locator string obtained by the
web element. open are directly converted into Python code
because these operations do not include a target string. We do
not ensure that the generated test scripts are always executable.
This is because we do not consider an appropriate waiting
time for rendering pages and the states of the system under
test. We note that we are focusing on whether the proposed
technique can identify correct web elements and determine a
test procedure in this evaluation.

B. Results

We manually checked the test scripts to determine whether
the proposed technique correctly identified web elements.
Table IV shows the number of successful identifications. Test
step in the table means the number of test steps that correctly
identified web elements. Some test steps were duplicated
because the test cases often included the same test steps.
For example, the log-in steps were included at the beginning
of all of the test cases. However, we counted the duplicate
steps as being distinct, even if the test steps looked the same.
This is because the XPaths of web elements may change
depending on the state of web pages even though the web
elements themselves may look the same. Furthermore, because
of the uncertainty of our approach, the same test steps may
be interpreted as different test procedures depending on the
context. Test case in the table means the number of test cases
in which all test steps in the test case identified web elements

correctly. In other words, even if one of the test steps failed to
identify the correct web element, it was counted as a failure.

RQ1: How accurately can our approach identify web elements
and determine test procedures?

First, we explain the results when text vectors and attribute
vectors were distinguished between. Table IV shows that,
when Ws = Wb = 5, about 94% of test steps are successful
in identifying web elements. Our approach also succeeded in
identifying all the web elements that were operated in 68%
of the test cases. No improvement in accuracy was observed
for more search width or beam width. To answer RQ1, our
technique can correctly identify web elements in up to about
94% of the test steps and identify all web elements in 68% of
the test cases.

RQ2: Did the vectorization and the heuristic search contribute
to determining test procedures?

When Ws = Wb = 3, the accuracy was slightly lower than
in the case where Ws = Wb = 5. We can see that when
Ws = Wb = 1 (without transition-level search), the accuracy
was rather low compared to the other cases. This result means
that the correct page-wise procedure is suggested in the top
three by the page-level search in most cases. Therefore, we
can say that page-level search worked well in our approach.
By comparing between the cases Ws = Wb = 1 and 3, we
can see that the transition-level search contributes significantly
to the accuracy of our technique. Thus, we can say that the
heuristic search algorithms compensate for the uncertainty of
the NLP-based approach.

Next, we explain the results when text vectors and attribute
vectors were not distinguished between. Furthermore, by com-
paring the case in which the text vector and attribute vector are
distinguished and the case where they are not, we can see that
distinguishing the vectors is effective for our approach. The
result also indicates that text words represent the semantics
of elements more directly than attribute words. Therefore, the
approach weighting text vectors contributed to the accuracy

TABLE V
AVERAGE MACHINE TIME (IN SECONDS) REQUIRED PER TEST CASE.

Ws = Wb = 5 Ws = Wb = 3 Ws = Wb = 1

Joomla! 107 66 25
MantisBT 94 56 21
Average 101 61 23

of the proposed technique. To answer RQ2, the vectorization
approach and the heuristic search algorithms contribute to
determining correct test procedures.

RQ3: Can we apply our approach to testing in actual devel-
opment?

Table V shows the average execution time (in seconds) of
our technique required per test case. We can see that the time
is approximately proportional to the search width and beam
width. The loading time of the fastText model, about 200
seconds, is not included here. We consider that this time to
be negligible when the number of test cases to be processed
at a time is long because our technique can process multiple
test cases simultaneously after the model was loaded once.
Most of the execution time of our technique is due to the
dynamic exploration of the application by the transition-level
search. However, we can make the exploration executed in
parallel, in which case the execution time is not proportional
to the number of test cases. We therefore assume that the time
required to handle a large number of test cases is reasonable.

We obtained some results that illustrate the strengths of
the NLP-based approach in real-world development. First,
our technique was able to identify different web elements
by the same test step depending on the context. In our
experiments, the test step “enter "test description"
in "description"” were able to correctly identify all
three web elements in the situation of Figure 1. It showed
the possibility of reusing the same test steps in different test
cases and applications. Our technique was also able to identify
web elements that did not seem to be directly related to target
strings. The web element in Figure 2 did not include the words
display and labels in the HTML document of the web element.
Nevertheless, our technique was able to correctly identify this
web element with the test step “select "Icon" from
"display labels"”, even though this web page contained
48 drop-down lists as candidates for the operation. This result
indicates that the NLP-based approach works well in capturing
the abstract semantics of web elements.

Figure 7 shows the relationship between the number of test
steps in each test case and the number of executable test
scripts generated from the rule described in Table III. The
result is for the case when Ws = Wb = 5. There were
between six and thirteen test steps in all of the test cases. In
the figure, All means the total number of test cases. Plausible
means the number of test cases in which all web elements
were correctly identified. Executable means the number of
generated test scripts that were executable from start to finish.
This result shows that 56% of the plausible test cases were

0

2

4

6

8

10

12

14

6 7 8 9 10 11 12 13

#
 o

f
te

s
t
c
a

s
e

s

of test steps

Executable

Plausible

All

Fig. 7. The relationship between the number of test steps and that of plausible
or executable test scripts

converted to executable test scripts. The main reason for
unexecutable test scripts is that some web elements, especially
in Joomla!, were not able to be operated by Selenium despite
the locator having been correct. These failures depend on the
implementation of the web page, not on locator errors. To
operate these web elements in the test executions, for example,
it is necessary to include a command to wait for a page load
or to execute JavaScript directly through Selenium. Since it is
uncertain whether our technique can execute the correct test
procedure, we need to find a way to deal with the uncertainty,
such as combining our approach with existing locator-based
techniques. In addition, our current DSL does not consider
assertions, which are essential for automated testing.

To answer RQ3, we believe that there is no practical
problem with the execution time. By analyzing individual
cases, we showed the potential of reusing the same test step
for various test cases and applications. In addition, users
without knowledge of programming may be able to write test
cases since our technique does not require considering the
detailed implementation of the system under test. However,
it is necessary to improve the expressiveness of test cases in
order to use them for real-world development.

VI. DISCUSSION

A. What are the cases where our approach does not work?

In this study, we did not find relationships between the
number of test steps and the success rate of determining
correct test procedures. Intuitively, as the number of test
steps increases, the probability of correct test procedures
would be expected to decrease, but this was not the case in
this experiment. This is probably because whether the web
element is difficult to identify is a more significant factor
than the number of steps. We therefore need to focus on
individual failures for more detailed analyses. Suppose that
identifying web elements fails at an early step of the test case,
and an unexpected page transition is executed. In this case,
the identification of subsequent web elements will also fail.
Nevertheless, the result in Table IV shows that the accuracy
of web element identifications is high, and the accuracy of

identifying all web elements in a test case is low. This indicates
that web element identifications often fail in the latter part of
each test case. In this experiment, we found that web element
identifications often failed, especially on the last web pages
checked in the test case. This is because our technique does
not benefit from the transition-level search on the last page.
This means that, on the last page, the transition-level search
cannot use the information of the next pages to choose the
page-wise procedures. Therefore, our approach is prone to
failing identifications of web elements at the end of the test
case. We can say that this is a weakness of our heuristic search
algorithms.

We found two patterns of web pages in which the NLP-
based approach did not work well. The first was when there
were multiple elements with the exact same label on the page.
In particular, in our experiments, if the web elements have the
same label, our technique cannot distinguish them by the rules
for describing test cases. For example, the user management
page of Joomla! has two “Users” links on a web page. Within
the test case description rules, there is no other way to write
other than “click "Users"” when we want to click on
these elements. If there are meaningful words in the attribute
text of the web elements, our technique may distinguish them
by adding the words to the target string. Alternatively, by
extending our approach so that positional information can be
added to target strings, our technique may be able to handle
the problem of the same label.

The second pattern where the proposed technique does not
work is in the presence of an excessive number of elements
on a web page. Our technique selects a web element to be
operated from the web elements rendered on the browser. A
large number of elements increases the likelihood of failing
identification of a web element because there are more can-
didates for the operation. Note that here there may be many
invisible elements in the HTML document despite only some
of the web elements being visible on the screen. For example,
some pages in Joomla! have such invisible elements. The web
page to add menu items in Joomla! has five tab menus, but
their contents are embedded in a single HTML document when
the page is loaded. In addition, when the “Select” button
is clicked on the page, a pop-up menu appears, which is
also embedded in the HTML document. From the above, the
actual number of web elements on the page is much larger
than the number of visible elements. One of the solutions for
this problem is to leverage heuristics into our technique, e.g.,
elements operated consecutively tend to be close to each other
in terms of their position on the screen.

B. Limitations

Our approach limits the target applications and possible
operations. Since the proposed technique uses Selenium in-
ternally, the technique can only operate web elements that
Selenium can identify. For example, contents created by can-
vas feature or Flash cannot be operated. Current our DSL
also cannot handle operations other than click, enter, and

select (e.g., drag and mouse hover). These operations can be
addressed by extending the proposed technique.

In addition, it is difficult to apply our approach to ap-
plications with ambiguous page transitions such as single-
page applications. Our approach assumes that page separators
are included in the test case properly. Therefore, to write
appropriate test cases for such applications, users need to know
when web elements will appear on the web page. Eliminating
the page separator from the DSL and not performing the page-
level search can solve this difficulty, but it will reduce the
accuracy of our technique.

C. Threats to validity

The following presents two factors that undermine the
external validity. The first is the scale of the experiment. We
have only experimented with two applications, Joomla! and
MantisBT, and the number of test cases is limited. Experiments
on applications in other domains may yield different results
from our experiment. We would obtain more accurate results
by applying the proposed technique to a larger number of test
cases. We tried to make the results more reliable by referring
to the official manuals and selecting use cases from multiple
functional categories to create test cases.

The second is the way of writing the test case. The way to
write target strings is highly dependent on the accuracy of the
NLP-based approach. In this study, we attempted to set rules
for writing test cases. The rules are based on the assumption
that test cases are written while observing the web page of the
application under test. We wrote the test cases ourselves, so a
certain amount of bias was inevitable, but we tried to reduce
the bias by following the rules. In addition, since the created
test cases are publicly available, it is possible to verify the
validity of these test cases.

VII. CONCLUSION AND FUTURE WORK

In this study, we proposed an approach to identify web
elements from test cases that are close to natural language and
determine a test procedure. Our approach uses an algorithm
that combines NLP and heuristic search to obtain promising
test procedures. To evaluate the proposed technique, we took
test cases written in our DSL as input and applied our tech-
nique to two open-source web applications. The experimental
results showed that our NLP-based approach and heuristic
search contribute to determining correct test procedures.

As future work, we aim to extend the expressiveness of
test case descriptions for practical use. In addition, we want
to increase the number of applications and test cases for
the evaluation and to demonstrate the effectiveness of our
approach more generally.

REFERENCES

[1] G. Rothermel and M. Harrold, “A safe, efficient regression test selection
technique,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 6, no. 2, 1997.

[2] H. K. N. Leung and L. White, “Insights into regression testing (software
testing),” in Proceedings of Conference on Software Maintenance, 1989,
pp. 60–69.

[3] F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. de Oliveira Neto,
and R. Torkar, “Estimating return on investment for gui test automa-
tion frameworks,” in IEEE 30th International Symposium on Software
Reliability Engineering, 2019, pp. 271–282.

[4] (2004) Selenium. [Online]. Available: https://www.selenium.dev/
[5] L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence

and maintenance of automated functional tests for web applications,” in
IEEE International Conference on Software Maintenance and Evolution,
2014, pp. 141–150.

[6] M. Hammoudi, G. Rothermel, and P. Tonella, “Why do record/replay
tests of web applications break?” in IEEE International Conference on
Software Testing, Verification and Validation, 2016, pp. 180–190.

[7] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided test generation for web applications,” in 35th International
Conference on Software Engineering, 2013, pp. 162–171.

[8] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based
web test generation,” in Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 142–153.

[9] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in Proceedings
of the 29th ACM/IEEE International Conference on Automated Software
Engineering, 2014, pp. 67–78.

[10] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, Automatic
Web Testing Using Curiosity-Driven Reinforcement Learning, 2021, p.
423435.

[11] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+: An algorithm
for generating robust xpath locators for web testing,” Journal of Soft-
ware: Evolution and Process, vol. 28, no. 3, pp. 177–204, 2016.

[12] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust
test automation using contextual clues,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, 2014, pp.
304–314.

[13] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Using multi-locators
to increase the robustness of web test cases,” in IEEE 8th International
Conference on Software Testing, Verification and Validation, 2015, pp.
1–10.

[14] T. Yeh, T. Chang, and R. C. Miller, “Sikuli: Using gui screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, 2009, pp. 183–
192.

[15] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “Pesto: A tool for
migrating dom-based to visual web tests,” in IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, 2014,
pp. 65–70.

[16] Z. Long, G. Wu, X. Chen, W. Chen, and J. Wei, “Webrr: Self-
replay enhanced robust record/replay for web application testing,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, p. 14981508.

[17] M. Hammoudi, G. Rothermel, and A. Stocco, “Waterfall: An incremental
approach for repairing record-replay tests of web applications,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2016, pp. 751–762.

[18] H. Kirinuki, H. Tanno, and K. Natsukawa, “Color: Correct locator rec-
ommender for broken test scripts using various clues in web application,”
in IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering, 2019, pp. 310–320.

[19] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra, “Au-
tomating test automation,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 881–891.

[20] A. Dwarakanath, D. Era, A. Priyadarshi, N. Dubash, and S. Podder,
“Accelerating Test Automation through a Domain Specific Language,”
in IEEE International Conference on Software Testing, Verification and
Validation, 2017, pp. 460–467.

[21] J. Lin, F. Wang, and P. Chu, “Using semantic similarity in crawling-
based web application testing,” in IEEE International Conference on
Software Testing, Verification and Validation, 2017, pp. 138–148.

[22] P. Pasupat, T. Jiang, E. Liu, K. Guu, and P. Liang, “Mapping natural
language commands to web elements,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018, pp. 4970–4976.

[23] M. Bajammal and A. Mesbah, “Semantic Web Accessibility Testing via
Hierarchical Visual Analysis,” in Proceedings of the 43rd International
Conference on Software Engineering, 2021, pp. 1610–1621.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[25] (2020) Joomla! administrator’s manual. [Online]. Available: https:
//docs.joomla.org/Portal:Administrators

