
Toward Efficient Code Clone Detection on Grid Environment

Yuki Manabe† Yoshiki Higo† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{y-manabe, higo, inoue}@ist.osaka-u.ac.jp

Abstract

Originally, code clone detection technique was devel-
oped for investigating duplicated code in a single soft-
ware system or between two or three ones. If it can
be applied to a large amount set of software systems,
we should identify useful duplicate in it. This paper
describes how we are going to scale up code clone de-
tection technique for handling many software systems.

1 Introduction and Motivation

Recently, code clone detection technique attracts
much attention. A code clone is a code fragment having
code fragments identical or similar to it in the source
code. It is widely accepted that automated code clone
detection can help software development and mainte-
nance. For example, in the debug process, code clone
detection prevent us from overlooking some of code
fragments simultaneously.

Originally, code clone detection technique was de-
veloped for investigating duplicated code in a single
software system, or catching plagiarism between two
or three software systems. But, applying code clone
detection technique to a large set of software systems
should be able to identify useful duplication in it.

However, there is a big problem in applying code
clone detection technique to a large set of software sys-
tems; existing detection technique is for a few software
systems; the scalability of it is not enough to handle a
large set. We need to handle several hundred software
systems (or several billion lines of code) all together.

In order to satisfy this requirement, we are trying
to applying existing code clone detection technique in
grid environment. We have already implemented D-
CCFinder, which is a code clone detection system in a
distributed environment [2], and have conducted case
studies on a large set of software systems [1]. But, we

believe that using grid environment can achieve more
ease of use, more portability, and more scalability.

2 Code Clone Detection in Grid Envi-
ronment

In grid environment, there are two kinds of nodes,
master and slave.

Master node: master node divides the target software
systems into small sets. Then, it assigns each small
set to slave nodes until no small set remains. Also,
master node receives code clone detection results
from each slave node, and merge them as a single
result.

Slave node: slave node receives a small set from the
master node. Then, it detects code clones in it by
using existing code clone detection technique. The
detection result is returned to the master node.
After returning the result, the slave node received
another small set.

In order to run this system fast, we need a method
to merge slave node’s detection results efficiently.

3 Assumed Applications

At present, we are developing a system running on
grid environment, and so have no case study. The re-
mainder of this section describes some assumed appli-
cations of our developing tool.

3.1 Creating useful libraries

It may be possible that a single software develop-
ment department the same kinds of functions in differ-
ent projects. If we could identify duplicated functions
between different project’s source code developed by a
department, the duplicated functions may be able to
be useful libraries for the department. Creating useful
libraries can prevent the department from writing the



same kinds of code in the future, and can reduce the
development cost.

3.2 Catching source code licensing viola-
tions

Code clone detection from a large set of software
systems is used for catching source code licensing vi-
olations. For example, if we write source code based
on GPL’ed software, the source code must be licensed
with GPL. If many code clones are detected between
GPL’ed source code and non-GPL’ed source code, non-
GPL’ed source code may violate source code licensing.

4 Conclusion

In this paper, we describes code clone detection on
grid environment for handling a large set of software
systems and also discussed its assumed applications.

Acknowledgements

This work has been conducted as a part of EASE
Project, Comprehensive Development of e-Society
Foundation Software Program, and Grant-in-Aid for
Exploratory Research(186500006), both supported by
Ministry of Education, Culture, Sports, Science and
Technology of Japan. Also it has been performed un-
der Grant-in-Aid for Scientific Research (A)(17200001)
supported by Japan Society for the Promotion of Sci-
ence.

References

[1] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Anal-
ysis of the linux kernel evolution using code clone cover-
age. In Proc. of the 4th Workshop on Mining Software
Repositories, pages 22.1–22.4, May 2007.

[2] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-
large scale code clone analysis and visualization of open
source program using distributed ccfinder: D-ccfinder.
In Proc. of the 29th International Conference on Soft-
ware Engineering, pages 106–115, May 2007.


