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The Internet is a best-effort network shared by a number of
users, so there is no guarantee on the QoS properties such as
network bandwidth, delay and throughput. Therefore, sys-
tem developers preliminarily have to estimate the QoS by
simulation techniques or mathematical analysis. Probabilis-
tic model checking can evaluate performance, dependability
and stability of information processing systems with random
behaviors. PRISM is one of probabilistic model checkers. It
handles automata with probabilities (discrete and continuous
time Markov chains) and time elapse. This paper presents a
discrete Markov chain for a real-time distributed system, and
evaluates its QoS properties using the simulation function of
PRISM. As the target real-time distributed system, we use
an experimental system whose main subsystem is video data
transmission which uses RTSP (Real Time Streaming Pro-
tocol) for the streaming protocol. The system has also ftp
servers and clients which exploit tcp connections, as well as
a packet generator that generates udp packets as background
noise. Thus, the system involves several simultaneous con-
nections; it may occur congestion. To validate the correctness
of our model, we also model it in a model for the well-known
network simulator NS–2. The paper gives the comparison of
their simulation results. The comparison shows that the result
of PRISM simulation is very similar to that of NS–2. The re-
sults show that the proposed method is useful to analyze the
network performance.
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1 Introduction

Nowadays real-time distributed systems like streaming me-
dia systems are widely spreading. These systems require time
based transmission such as QoS control to prevent interrup-
tion of packet transmission caused by network delay, packet
loss, and so on.

Since the Internet is a best-effort network shared by a num-
ber of users, there is no guarantee on the QoS properties such
as network bandwidth, delay and throughput. Therefore, sys-
tem developers preliminary have to estimate the QoS by sim-
ulation techniques[2] or mathematical analysis[4].

Simulation techniques usually do not guarantee qualitative
properties such as the maximum throughput and the mini-
mum jitter, and so on, though they can calculate mean-values
along typical traces. In general, these techniques use much
resources to simulate accurately the target network systems.
On the other hand, mathematical analysis is logically correct
and needs fewer computation resources, but in many cases

the based models are too simple and ideal; hence it is hard to
apply the mathematical analysis to realistic applications.

Formal verification techniques, especially model checking
techniques[3] are considered as promising techniques for in-
formation system developing due to their ability of exhaustive
checking. Among them, probabilistic model checking can
evaluate performance, dependability and stability of informa-
tion processing systems with random behaviors. PRISM[1] is
one of probabilistic model checkers. It handles automata with
probabilities (discrete and continuous time Markov chains)
and time elapse. Therefore, it is suitable for modelling the
network systems.

This paper presents a discrete Markov chain for a real-
time distributed system, and evaluate its QoS properties us-
ing the simulation function and the verification function of
PRISM. As the target real-time distributed system, we use an
experimental system shown in Fig.1. The main subsystem
of the system is video data transmission which uses RTSP
(Real Time Streaming Protocol) for the streaming protocol.
The system has also ftp servers and clients which exploit tcp
connections, as well as a packet generator that generates udp
packets as background noise. Thus, the system involves sev-
eral simultaneous sessions; it may occur congestion.

This paper analyzes newly throughput property. The anal-
ysis is performed on two levels; one is detail models, and the
other is abstract level. On the detail level, several numeric
analysis is performed, whereas on the abstract level, qualita-
tive verification is performed. To validate the correctness of
our model, we also model it in a model for the well-known
network simulator NS–2[2], and give the comparison of their
simulation results. The comparison shows that the result of
PRISM simulation is very similar to that of NS–2.

As related works, several case-studies are performed using
PRISM [8]–[10]. For example, Paper [9] deals with network
protocol.

The rest of the paper is organized as follows. Sec.2 gives
some backgrounds, especially overviews of PRISM and NS–
2, as preliminaries. Sec.3 describes the example real-time dis-
tributed systems which uses streaming media. Explanations
on several famous protocols for real-time video systems are
also given. Sec.4 and 5 provide concrete models of the exam-
ple network described in Prism and NS–2, respectively. Sec.6
and 7 show the results of comparison and gives discussions.
Finally Sec.8 concludes the paper.

2 Preliminaries

This section simply describes Prism and NS–2 as well as
network protocols for net streaming.



2.1 Probabilistic Model Checking tool PRISM
Here, we simply describe overview of probabilistic Model

Checking tool PRISM[1].
A model checking tool usually has two inputs, a model M

and a logical expression p. The model is typically a transi-
tion system which represents behavior of the system to check;
while the logical expression is a temporal logic expression
which represents a property to check. The typical output of
the model checking tool is whether the logical expression is
valid on the model (M |= p). Some model checker outputs a
counter example when p is invalid.

The inputs of PRISM include the following three kind of
transition system as a model:

• Discrete-time Markov chains (DTMC);

• Continuous-time Markov chains (CTMC); and

• Markov decision processes (MDP).

Each of three systems is a probabilistic transition system
(Markov chain). The inputs of PRISM also include Proba-
bilistic Computation Tree Logic (PCTL)[11] for DTMC and
MDP, and Continuous Stochastic Logic (CSL)[12] for CTMC.
They are CTL based logics enchanted with probability.

PRISM has several analysis modes: simulation mode, nu-
merical analysis mode, and verification mode. Using the sim-
ulation mode, we can observe the behavior of the given model
system visually. This mode uses only a model as input. Nu-
merical analysis mode can evaluate the value of uncertain
variable specified with PCTL or CSL based on the model.
Such numerical analysis is considered as a kind of parametric
model checking[13]. PRISM can draw a graph with several
trials of such numeric analysis. Verification mode is like typi-
cal model checking except that PRISM cannot output counter
examples.

In this paper, we use DTMC’s as the model of the network.
Here, we describe more precisely on a DTMC. Formally, a
DTMC D is a tuple (S, s init, P, L), where

• S is a set of states (“state space”) ;

• s init ∈ S is the initial state;

• P : S × S → [0, 1] is the transition probability matrix
where Σs′∈SP (s, s′) = 1 for all s ∈ S; and

• L : S → 2AP is function labelling states with atomic
propositions.

PRISM allows a transition to specify an action and updat-
ing expressions on D, where D is a set of variables with finite
domain. In other words, a DTMC of PRISM is a kind of ex-
tended automaton with probabilities. Usually, one execution
of a transition is translated into a unit time of time elapse (a
tick event). Such scheme is known as digital clock view of
DTMC, however, using an integer variable (with the upper-
bound) explicitly as a clock variable, we can also represent a
system with discrete time in DTMC. In this paper, we use the
latter scheme to avoid the state explosion problem.

2.2 Network Simulator NS–2
The Network Simulator (ns) is a network simulator devel-

oped by Virtual InterNetwork Testbed (VINT) project. It has
been widely used[16].

NS–2 is the successor version of ns. It is open source soft-
ware. NS–2 uses two languages: C++ for core libraries; and
OTcl (Object-oriented Tcl) for scenario description and net-
work configuration. A new protocol which is not pre-defined
in the core libraries has to be written by a user.

2.3 Protocols for Net-streaming
Here, we simply summarize typical protocols used in the

Internet. Typical protocols used in the Internet have a con-
gestion control mechanism in order to avoid network con-
gestion. For example, TCP (Transmission Control Protocol)
uses AIMD (Additive Increase Multiplicative Decrease) type
window-flow control as such the mechanism. It controls the
data size of sending packets based on the current available
bandwidth. Such scheme has an advantage for the correct
data transmission. It, however, allows delays, which is not
suitable for real-time data transmission. Therefore, RTSP
(Real Time Streaming Protocol) is used for real-time appli-
cation. RTSP is a protocol for the Internet streaming of voice
and movies, on TCP/IP network. Famous congestion control
mechanisms for RTSP are RAP (Rate Adaptation Protocol)[5]
and TEAR (TCP Emulate At Receivers)[6]. Recently, TFRC
(TCP-Friendly Rate Control)[7] attracts attention. Hence, this
paper models TFRC.

2.3.1 RTSP

RTSP is one of typical protocols working at end-to-end. RTSP
has five states, called SETUP, PLAY, RECORD, PAUSE and
TEARDOWN. RTP (Real-time Transport Protocol) is respon-
sible for transmission of stream-data. It determines the through-
put of RTP based on rate control scheme of TFRC using the
report message of RTCP (RTP Control Protocol).

2.3.2 TCP Friendly Rate Control TFRC

TFRC is a rate control scheme for fairness between RTP and
TCP. It controls the rate in order to avoid bad effects on ex-
isting TCP flows in the same network, which increases total
effectiveness of the whole network. TFRC controls the rate
using the report message of RTCP. The report message con-
tains loss of packets and jitters, which can be estimated via the
sequence number of received RTP packets and time stamps,
respectively. RFC3448 describes the following formula for
determining the throughput:

X =
s

R∗
√

2∗b∗p/3 + (t RTO∗(3∗
√

3∗b∗p/8∗p∗(1+32∗p2)))

where the unit of X is byte/seconds. The parameter of the
formula is summarized in Table 1.

The calculated throughput is a rate with which a RTSP
server should send packets considering the network conges-
tion at the time. Therefore weighted average values of the pa-
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Figure 1: A Configuration of Experimental System

rameters in a short period are applied into the equation. Paper
[7] also defines the calculation methods for the parameters.

When the value of X is less than the bandwidth, TFRC lets
RTSP set the value as throughput.

3 Example Network Configuration and
Protocols

In this section, we introduce an example of a real-time dis-
tributed system. As the example system, we select a video
data transmission system[14] shown in Fig.1. The system
is composed of a pair of a video server and its client, three
pairs of FTP servers and their clients, and a packet generator,
which are connected to each other through routers located at
the middle of Fig.1. The routers are connected through the
10Base–T Ethernet, which is considered as a bottleneck of
packet transmission. In the considering scenario, the video
server sends 80MB of video data with throughput of 1Mbps
using the rate control of TFRC. After 100 seconds from the
start of the video streaming, FTP servers and clients start their
data transmission through TCP sessions. Also, the packet
generator always sends UDP packets with the throughput of
8Mbps as background noise.

4 PRISM Model

We generate two PRISM models for the example of Fig.1.
The first one is modelled in detail, and another one is based
on the simulation results on the first model but is more simpli-
fied model. First, we apply PRISM simulation to the detailed
model to show the correctness of our model and to obtain
the data to generate the simplified model. Next, the simpli-
fied model is used to verify the qualitative properties of the
throughput.

Table 1: Parameters of the Throughput Estimation Formula
R[seconds] Round trip time
p[%] A packet loss rate
s[byte] Packet size

b[number of times]
A number of packets acknowledged
by a single TCP acknowledgment

t RTO[seconds] A TCP retransmission timeout value

4.1 The Detailed Model
In the detailed model, we have to model packet loss rates

and round trip time of the RTP packets as well as the buffer
control of the routers, the congestion control of transmission
protocols, and a time elapsing mechanism.

4.1.1 Time Elapsing

In order to manage time elapsing in the detailed model, we
declare an integer variable to represent time. Time elapsing
is based on events such as packet transmission. In the model,
each module registers time of occurrence of the next event,
and when all modules register the time, the model perform
time elapsing into the latest time of the registered event from
the current time. After time elapsing, a corresponding module
performs the registered event and registers time of the next
event again.

The module to manage time elapsing contains two vari-
ables and is implemented as ten lines of code.

4.1.2 Buffer Control of the Routers

Buffer control of the routers is modelled as a queue which
holds transferring packets. In the model, the current queue
length is managed with an integer variable. Enqueue and
dequeue behaviors are described in the model as operations.
Also, regardless of the current queue length, enqueueing pack-
ets are dropped with certain probability. In order to construct
the module of buffer control, we have to specify maximum
length of the queue, a packet transfer rate of the link between
the routers, and constant probability to drop enqueueing pack-
ets as parameters.

In the enqueue operation, if the current queue length be-
comes larger than the maximum one, the enqueueing packet
is considered to be dropped (drop tail). The dequeue opera-
tion is abstracted; together with the time elapsing operation,
a number of packets are output from the queue at a time ac-
cording to the packet transfer rate of the link.

The buffer control module shown in Fig.2 contains ten vari-
ables and is implemented as about 80 lines of code, where
the module also manages the history of packet loss intervals
used for the congestion control. In Fig.2, the ten variables
are firstly declared. Several actions are defined in CCS like
expressions with probabilities. For example, the expression

[ENQFTP1] (q_len <= MAXQLEN - pnum_ftp1)
-> 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp1);
+ P_LOSS_RATE : true;

stands for that when an action ENQFTP1 occurs and (q len
≤ MAXQLEN − pnum ftp1 ) holds, the variables q len is
updated to q len+pnum ftp1 with probability 1−P LOSS
RATE , or do nothing with probability P LOSS RATE .

4.1.3 Congestion Control

In the model, TCP and RTP sessions can handle congestion
control.

The slow-start and congestion avoidance behaviors of TCP
are embedded to our TCP model. For each connection of the
TCP, we declare two integer variables to manage the slow-
start threshold and the window size. For each connection of



module Router

q_len : [0..MAXQSIZE] init 0; //The current queue length

//The history of packet loss intervals
int_p_loss0 : [0..10000] init 0;
int_p_loss1 : [0..10000] init 10000;
int_p_loss2 : [0..10000] init 10000;
int_p_loss3 : [0..10000] init 10000;
int_p_loss4 : [0..10000] init 10000;
int_p_loss5 : [0..10000] init 10000;
int_p_loss6 : [0..10000] init 10000;
int_p_loss7 : [0..10000] init 10000;
int_p_loss8 : [0..10000] init 10000;

//A flag to observe whether the packet loss occurs burstly or not
p_loss_flag : bool init false;

//When the queue length does not reach to its maximum
//Transfering packets are dropped with certain probability
[ENQMS] (q_len <= MAXQLEN - ms_pnum)

-> 1 - P_LOSS_RATE :
(q_len’ = q_len + ms_pnum) & (p_loss_flag’ = false) &
(int_p_loss0’ = int_p_loss0 + 1)

+ P_LOSS_RATE :
(int_p_loss0’ = 0) & (int_p_loss1’ = int_p_loss0) &
(int_p_loss2’ = int_p_loss1)&(int_p_loss3’ = int_p_loss2)&
(int_p_loss4’ = int_p_loss3)&(int_p_loss5’ = int_p_loss4)&
(int_p_loss6’ = int_p_loss5)&(int_p_loss7’ = int_p_loss6)&
(int_p_loss8’ = int_p_loss7);

//When the queue length reaches to its maximum
[ENQMS] (q_len > MAXQLEN - ms_pnum) & (!p_loss_flag)

-> (q_len’ = MAXQLEN) & (int_p_loss0’ = 0) &
(int_p_loss1’=int_p_loss0+1)&(int_p_loss2’ = int_p_loss1)&
(int_p_loss3’ = int_p_loss2)&(int_p_loss4’ = int_p_loss3)&
(int_p_loss5’ = int_p_loss4)&(int_p_loss6’ = int_p_loss5)&
(int_p_loss7’ = int_p_loss6)&(int_p_loss8’ = int_p_loss7)&
(p_loss_flag’ = true);

// When the packet loss occurs burstly
// (do not update the history of packet loss intervals)
[ENQMS] (q_len > MAXQLEN - ms_pnum) & (p_loss_flag)

-> (q_len’ = MAXQLEN) & (p_loss_flag’ = (q_len = MAXQLEN));

//The ENQUEUE operations for the three FTP sessions
[ENQFTP1] (q_len <= MAXQLEN - pnum_ftp1)

-> 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp1);
+ P_LOSS_RATE : true;

[ENQFTP1] (q_len > MAXQLEN - pnum_ftp1)
-> (q_len’ = MAXQLEN);

[ENQFTP2] (q_len <= MAXQLEN - pnum_ftp2)
-> 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp2)
+ P_LOSS_RATE : true;

[ENQFTP2] (q_len > MAXQLEN - pnum_ftp2)
-> (q_len’ = MAXQLEN);

[ENQFTP3] (q_len <= MAXQLEN - pnum_ftp3)
-> 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp3)
+ P_LOSS_RATE : true;

[ENQFTP3] (q_len > MAXQLEN - pnum_ftp3)
-> (q_len’ = MAXQLEN);

// DEQUEUE is executed together with the time elapsing event
[TIMER] (q_len != 0)

-> (q_len’ = max(0, q_len - floor(min_lookahead *
(PACKETPERMSEC -PACKETPERMSEC2))));

[TIMER] (q_len = 0) -> true;

endmodule

Figure 2: The Module of Router Described with PRISM Lan-
guage

the TCP, we declare six variables and the behavior is imple-
mented as about 30 lines of code.

In the transmission of RTP, a packet transmission rate is
calculated from the throughput equation defined in [7]. To
use the equation, we also have to model a packet loss rate and
round trip time of the RTP session (see Sec.4.1.4 and 4.1.5).
The module related to RTP contains six variables and is de-
scribe with about 40 lines of code.

In our model, the packet transmission behaviors of TCP
and RTP are abstracted as a number of packets are transmitted
simultaneously.

4.1.4 Round Trip Time

In our model, round trip time is obtained using physical delay
and delay in the router. The delay in the router is calculated
as the time to transmit all packets currently buffered in the
router. Therefore, we obtain the delay in the router using cur-
rent queue length and a packet transmission rate of the link.

4.1.5 Packet Loss Rate

In the TFRC specification[7], a packet loss rate is calculated
using intervals of packet loss. To avoid the loss rate varying
rapidly, a history of the packet loss intervals is used to calcu-
late it. Our model declares eight integer variables to manage
the history. In the calculation of the loss rate, recent intervals
in the history are weighted heavily.

4.2 The Simplified Model
The detailed model described in Sec.4.1 is too complicated

to verify its qualitative properties using model checking. Here,
we create a simplified model based on simulation results on
the detailed model to perform model checking. Using the sim-
plified model, we verify the minimum and maximum through-
put of the media server.

The simplified model is based on the throughput equation
defined in [7]. In order to create the simplified model, we
have to measure distributions of round trip time and packet
loss rates on the detailed model. From the obtained distri-
butions, we create discrete probability distributions of them.
The simplified model decides its round trip time and a packet
loss rate according to the probability distributions. Finally,
by verifying occurrence probability of the throughput on the
simplified model, we can obtain the minimum and maximum
throughput.

The simplified model is implemented as 50 lines of code.

5 NS–2 Model

We use a simulation scenario shown in Fig.3. Values asso-
ciated with each link represent transfer rates or physical delay
of the link. TCP and UDP sessions in the scenario are derived
from pre-defined protocol set in NS–2. In this example, we
have to modify the pre-defined RTP protocol so that it can
control network congestion because the pre-defined RTP pro-
tocol cannot control it. According to TFRC3448[7], we have
modified the behaviors of RTP senders and receivers as fol-
lows; the receiver can return appropriate feedback packets to
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the sender, which include information of a packet loss rate,
network delay and so on, and the sender can control a trans-
fer rate due to the feedback packets. In our implementation,
we have added about 500 lines of code to eight files (twelve
methods) of NS–2 sources.

6 Experiments

We have performed some experiments using our PRISM
and NS–2 models described in Sec.4 and 5. The experiments
were performed under an environment of Windows Vista 64
bit, Intel Core 2 Duo 2.33GHz, and 2.00GB of M.M.

In the experiments, we assume packet transmission param-
eters as follows: the packet size is 500 Byte, the number of
packets acknowledged by a single TCP acknowledgment is
one, and the TCP retransmission timeout value is 4 × RTT
second. Also we consider three scenarios with respect to the
buffer size of routers. In the scenarios, the buffer sizes are 32,
64, and 128 KB respectively.

In the paper, we have performed two experiments. In the
first experiment, we performed one trial run for PRISM and
NS–2 simulation, respectively, and compared the simulation
results. In the second experiment, we performed about 400
trial runs for PRISM simulation, and created a more simpli-
fied PRISM model based on the simulation results. Using
the simplified model, we verify the minimum and maximum
throughput of the RTP session. To make the simulation results
more reliable, we chose about 400 thousands as the number
of trial runs, which is default number trial runs for PRISM
simulation.

6.1 Comparison of the Simulation Results
Here, we present the simulation results of the buffer size

of 64KB in Fig.4 and 5. Throughput in the graph means the
average throughput within one second, and a packet loss rate
means a calculated value at the time as defined in [7]. In
the scenario of the example, file transmission starts after 100
seconds from the start of RTP session, and this causes the
network congestion. Consequently, the throughput of the RTP
session goes down and the packet loss rate of it comes up. The
simulation results of Fig.4 and Fig.5 show that our PRISM
model and NS–2 model behave similarly even if the network
congestion occurs.
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Figure 5: Comparison of Packet Loss Rates

To analyze the correctness of our PRISM model in detail,
we compare the average, variance, minimum and maximum
of throughput measured by PRISM and NS–2. Table 2 repre-
sents the analyzed data. Though the maximum throughput of
PRISM and NS–2 are similar in all scenarios, the average and
minimum throughput are a little bit different in the scenarios
of 32KB and 128KB. We think one of the reasons is that we
abstract a packet sending mechanism in the PRISM model,
that is, when the packet transmission rate is high, our model
transmits a number of packets at a time. We think this may
cause the differences of behaviors between the PRISM model
and NS–2 one. However, Table 2 shows that the behaviors of
these models seem to be totally similar.

For one trial run of the PRISM simulation, it takes about
two or three seconds, while it takes about three minutes in the
simulation of NS–2.

6.2 Verification results for the simplified
model

Here, we verify minimum and maximum throughput that
the media server can provide in the worst case and best case.
In the verification, we use a simplified model based on the

Table 2: Comparison of the Analyzed Data
Buffer size 32KB 64KB 128KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Maximum 607 588 738 640 995 980
Minimum 203 48 193 216 33 144
Average 242 372 443 401 473 367
Variance 11 13 10 11 12 12
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Figure 7: The Discrete Probability Distribution of Packet
Loss Rates

simulation results on the detailed PRISM model. The simu-
lation results should contain discrete probability distributions
of the round trip time and the packet loss rates. To obtain re-
liable simulation results, we perform about 400 thousands of
trial runs of PRISM simulation, which is default number of
the PRISM simulation.

When the buffer size is 64KB, the discrete probability dis-
tributions of the round trip time and the packet loss rates are
shown in Fig.6 and 7, respectively.

The verification property to be checked is given as follows;
P =?[Throughput < xUThroughput > x]. This property
means the probability of Throughput being the value of x,
where Throughput is a variable to manage the throughput of
the RTP session. The verification is performed with varying x
from 0 to 1000. Figure 8 represents occurrence probability of
the throughput. The graph represents the probability that the
throughput becomes greater than or equals to value of x-axis.

In the Fig.8, when the throughput is less than 116Kbps,
the probability keeps the value one, and until the through-
put becomes 1000Kbps the probability is greater than zero.
From the verification result, it is guaranteed that the through-

Figure 8: Occurrence Probability of Throughput

put of the media server is greater than 116Kbps in the worst
case. Also, the result shows that the media server can trans-
mit packets with the rate of 1000Kbps in the best case. The
simulation results of PRISM and NS–2 do not contradict to
this verification result.

Although it takes about 10 hours to perform about 400 trial
runs for PRISM simulation on the detailed model, in the ver-
ification on the simplified model, it takes about 40 seconds.

7 Discussion

In our case study, we have verified throughput of the media
server using the detailed model and simplified model. The
detailed model includes behaviors of the buffer control of the
router and behaviors of the RTP, TCP and UDP protocols in
detail. Although the detailed model is too complicated to ver-
ify qualitative properties of the system, we can measure some
network properties using the simulation function of PRISM.
On the other hand, the simplified model focuses on the veri-
fication of the minimum and maximum throughput, which is
considered as one of important properties of the real-time sys-
tems. The simplified model is based on the throughput equa-
tion shown in Sec.2, where the dominant parameters such as a
packet loss rate and round trip time are derived from the sim-
ulation results on the detailed model. The verification on the
simplified model has been performed in a few seconds.

From the experiments, we can reconstruct our method as
follows. The method will be useful to verify the minimum
and maximum throughput that a RTSP connection can pro-
vide in an environment where some TCP and UDP connec-
tions exist simultaneously. In our method, first, we create a
detailed model of the system which should have a buffer con-
trol mechanism of a router considered to be a bottleneck, as
well as network congestion control mechanisms of RTSP and
TCP. Next, using the simulation function of PRISM, we mea-
sure distributions of round trip time and a packet loss rate on
the detailed model, and create discrete probability distribu-
tions of them. Based on the probability distributions and the
throughput equation shown in Sec.2, we create a simplified
model. The simplified model decides its round trip time and
packet loss rate according to the probability distributions of
them. Finally, the minimum and maximum throughput can be
verified on the simplified model by probabilistic model check-
ing with PRISM.

In our simplified model, we assume that packet loss rates
and round trip time are decided independently. In fact, these
parameters are not independent, i.e., when network conges-
tion occurs, packet loss rates and round trip time tend to in-
crease simultaneously. In the future work, we need to create
a simplified model which represents their dependency.

Though simulation with NS–2 or PRISM can evaluate the
system’s performance, the simulation results depend on paths
evaluated in the simulation. Therefore, from the simulation
results, we cannot prove qualitative properties of the system.
If we obtain a occurrence probability of throughput from the
results of Fig.4, we cannot say it is reliable. In the paper, we
created the simplified model and we can verify the qualitative
properties of the system using model checking.



8 Conclusion

This paper presents a discrete Markov chain for a real-time
distributed system, and evaluate its QoS properties using the
simulation function of PRISM. To validate the correctness of
our model, we also model it in a model for the well-known
network simulator NS–2, and give the comparison of their
simulation results. The comparison shows that the result of
PRISM simulation is very similar to that of NS–2. It shows
that the proposed method is useful to analyze the network per-
formance. We think that such analysis is useful for other kind
of network analysis.

The future works include automatic derivation of simplified
model suitable for model checking analysis. Many abstrac-
tion techniques are proposed for model checking. We want to
apply such techniques to the process.
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