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Abstract—Automated program generation (APG) is a concept
of automatically making a computer program. Toward this goal,
transferring automated program repair (APR) to APG can be
considered. APR modifies the buggy input source code to pass
all test cases. APG regards empty source code as initially failing
all test cases, i.e., containing multiple bugs. Search-based APR
repeatedly generates program variants and evaluates them. Many
traditional APR systems evaluate the fitness of variants based on
the number of passing test cases. However, when source code
contains multiple bugs, this fitness function lacks the expressive
power of variants. In this paper, we propose the application of
a multi-objective genetic algorithm to APR in order to improve
efficiency. We also propose a new crossover method that combines
two variants with complementary test results, taking advantage
of the high expressive power of multi-objective genetic algorithms
for evaluation. We tested the effectiveness of the proposed method
on competitive programming tasks. The obtained results showed
significant differences in the number of successful trials and the
required generation time.

Index Terms—Automated Program Generation, Automated
Program Repair, Multi-Objective Genetic Algorithm

I. INTRODUCTION

Automated program generation (APG) is a promising and
exciting concept, which reduces the programming burden
placed on developers. One solution to achieve APG is trans-
ferring automated program repair (APR) [1], [2] to APG. In
APR, buggy source code, which fails one or more test cases,
is repaired to pass all test cases using a metaheuristic search
algorithm, such as a genetic algorithm (GA). APR focuses
only on repair, which means that the repaired source code is
considered to be almost implemented. In contrast to repairing,
APG tries generating functionally competent source code from
empty source code that initially fails all test cases.

Although numerous studies have been conducted on APR in
the past decade [3], there remain many issues in terms of both
practical and theoretical aspects. Specific issues include the
following: requiring a large amount of computational power
for fixing bugs [4], overfitting to test cases [5], generating
incorrect but plausible patches [6], difficulty fixing multiple
bugs [7]. APG regards the initial source code as empty,
which means the code contains a number of bugs. From the
perspective of transferring APR to APG, it is essential to solve
the problem of fixing multiple bugs.

This study focuses on the selection phase of GA-based
APR in order to address the issue of multiple bugs. Standard

GA-based APR [1], [2], [8] repeats the process of modifying
the source code (i.e., generation of variants) and evaluating
it by running test cases (i.e., validation of variants). In the
validation, fitness is calculated based on the degree to which
the generated variants have improved for bug fixing. Variants
with high fitness are selected for the next generation in a
biological evolutionary process.

One problem with the selection is in determining a fitness
function. Many APR techniques use the number of passing test
cases as the fitness function [3]. This function is suitable when
repairing a single bug. However, when repairing multiple bugs,
it causes a problem due to insufficient representation. Let us
consider a case where a variant passes two of three test cases.
We denote this variant as xx-, meaning that it passes the first
and second test cases. Here, two variants x-- and --x are
regarded as being the same by the traditional scalar fitness
function because the number of passing test cases for each
variant is one. However, --x should be selected preferentially
in terms of providing complementary modifying information
to xx-.

In this paper, we propose applying a multi-objective GA
(MOGA) to APR in order to improve the efficiency of APG.
The MOGA evaluates variants using multiple fitness functions,
which enables the evaluation of variants with higher expressive
power compared to a single scalar. The use of multiple fitness
functions can also be expected to avoid local optima [9], so
it has a high affinity with APG, which has a huge search
space. We also propose a method that selects two variants with
complementary test results and a new crossover method that
combines them. In the experiment, we compare the efficiency
of the proposed method with that of the existing APR tool
using 80 competitive programming tasks. We find that the
proposed method significantly improves both the number of
successful trials and the generation time required compared to
the existing methods.

II. PRELIMINARIES

We first provide an overview of APG, which GA-based APR
is transferred to. Additionally, we highlight a challenge that
existing methods face with concrete examples.
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Fig. 1. Overview of transferring GA-based APR to APG

A. Overview of Automated Program Generation

Fig. 1 shows an overview of search-based APG. The input
is empty source code and test cases, and the output is source
code that passes all test cases. Search-based APG consists of
three iterative processes: generation, evaluation, and selection
of variants. In the following, we explain these three processes
based on the GA used by GenProg [1], which was a break-
through in the field of APR.

First, a variant is generated from the input source code
using genetic operators. GenProg has two genetic operators:
mutation and crossover. Mutation generates a new variant by
insertion, deletion, or replacement of any particular statement.
Crossover generates new variants by reusing the modification
history (i.e., gene) of two variants. Next, for each generated
variant, we evaluate how close it is to our goal of fixing the
bug. Fitness is calculated from source lines of code of the
variant, the length of the gene, or the results of compiling the
variant and executing the test cases. GenProg calculates fitness
from the number of passing test cases. Based on the fitness,
variants to be saved are selected.

B. Challenge of Existing Methods

Next, we explain a challenge that existing methods face.
Fig. 2 shows four specific test cases based on the FizzBuzz
and examples of variants. In this figure, four test cases and the
initial source code, which always returns an empty string, are
given as input to APR. As shown in the upper right of Fig. 2,
each variant has a single gene consisting of a set of bases.
Bases and genes can be designed in various ways, but here
bases are composed of two elements: position and operation.
Let us take the variant in the upper right of Fig. 2 as an
example. This variant has a gene that consists of a single base,
B1. The position of B1 is in the second line, return "", and
the operation of B1 is a replacement by return str(n).
Applying this gene, the variant has evolved from failing all
test cases to passing the first one.

assert(fz(1)).is("1")
assert(fz(3)).is("F")
assert(fz(5)).is("B")
assert(fz(30)).is("FB")

fz(int n) {
return str(n)

}

fz(int n) {
return ""

}

fz(int n) {
if (n%3==0) return "F"
if (n%5==0) return "B"  
return str(n)

}

fz(int n) {
if (n%15==0) return "FB"
return ""

}

fz(int n) {
if (n%3==0) return "F"

return str(n)
}

V1

fz(int n) {

if (n%5==0) return "B"
return str(n)

}

B4
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Fig. 2. Challenge in selection phase

Let us assume that four variants, V1-V4, have been gener-
ated. The top-left variant, V1, is the best because it passes the
most test cases. Therefore, V1 is used for the next generation.
In search problems such as APR, it is common to select many
variants instead of a single variant. This strategy aims to ensure
genetic diversity and to avoid local optima.

When the number of passing test cases is used as a fitness
measure, V2 and V4, which both pass two test cases, are
selected after V1. However, when we check the passing test
cases and the bases of the variants, we find that these two
variants are a complete subset of V1 in terms of bases and the
results from running test cases, so the selection is inefficient.
On the other hand, although the bottom-left variant, V3, passes
the least number of test cases, it passes the fourth test, which
the other variants fail. Additionally, V3 has a special gene,
B4, that other variants do not have, and it realizes the process
of division by 15 in the FizzBuzz. Thus, in variant evaluation,
the number of passing test cases is insufficient in terms of its
expressive power, and it is necessary to compare the success
or failure of each test case for each variant.

III. THE PROPOSED METHOD

In order to improve the efficiency of APG, we propose
two methods. The first involves applying a MOGA to APR.
The other involves combining two variants that have com-
plementary test case results, using the high expressiveness of
evaluation by the MOGA.



A. Multi-Objective Genetic Algorithm

The MOGA has multiple fitness functions to evaluate vari-
ants. In the following, we explain the design of these functions
and how to use them to select variants.

1) Fitness Functions: This section describes the fitness
functions that evaluate variants. In order to solve the selection
problem described in Section II-B, the result of each test case
is used as an independent fitness function. That is, if there are
M test cases, the number of fitness functions is M . The ith
fitness function fi(v) returns 1 if a variant v passes the ith
test case, and 0 if it fails. A variant whose M fitness function
values are all 1 passes all test cases.

2) Definition of a Relation between Variants: For two
variants, va and vb, we say that vb dominates va if fi(va) <
fi(vb) (∀i = 1, . . . ,M). At this time, a partial relation ≺ is
defined as va ≺ vb. A set of variants forms a lattice under the
relation ≺.

3) Selection: Variants to be left for the next generation are
determined based on the fitness of each variant. Specifically,
variants are ranked using the Pareto ranking method [10].
In this method, the rank of a variant v is 1+ the number
of variants that dominate v in the generation to which v
belongs. Between two variants with different ranks, we select
the variant with the better (i.e., lower) rank.

Fig. 3 shows a Hasse diagram of the relation between all
possible variants when there are four test cases. In this figure,
a line is drawn upward from va to vb when va ≺ vb is satisfied
and there is no vc such that va ≺ vc ≺ vb. The top variant,
which dominates all other variants, is the target variant that
passes all test cases. When there are all the variants shown in
Fig. 3, the ranks of each variant are: 1 for the top variant, 2
for the second four variants, 4 for the third six variants, 8 for
the fourth four variants, and 16 for the bottom variant.

The ranks of the variants shown in Fig. 2 are 1 for V1 and
V3, and 2 for V2 and V4. This is because V1 and V3 have no
variants that dominate them in Fig. 3, but V2 and V4 have V1
above them. Using this rank, V3 can be selected in preference
to V2 and V4.

B. Crossover

In addition to the application of the MOGA described in
Section III-A, this study improves the crossover, which is
one of the operations to modify the source code. In this
section, we explain our proposed new crossover method,
cascade crossover, which selectively combines two variants
with complementary test results.

1) Cascade Crossover: Cascade crossover generates two
variants by joining all of the bases of two variants. If two
variants, va and vb, are selected as parents, cascade crossover
generates a new variant according to the following processes.

1) Joins the genes in the order va, vb and removes dupli-
cated bases.

2) Joins the genes in the order vb, va and removes dupli-
cated bases.

3) Generates two variants with these genes.

V1

V3

V2

V4

Fig. 3. Hasse diagram of all variants with four test cases, and the relation
between V1-V4
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Fig. 4. Genes of V1 and V3 combined by cascade crossover

Fig. 4 shows the variants generated by cascade crossover
of V1 and V3 in Fig. 2. The duplicated base, B2, is removed
during the crossover processes.

The reason for removing duplicate bases is that they are
likely to have a negative effect on the variant. As an example,
let us consider a base that inserts a variable declaration. If this
base is duplicated, two variables with the same identifier will
be declared, and the variant will fail to compile.

2) Selection of Variants to Crossover: Among the variants
with rank 1, the cascade crossover is performed on two pairs
of variants whose fitness do not match. Selecting variants in
this way aims to produce variants that pass all of their parents’
passing tests. In the case of the four variants shown in Fig. 2,
the variants of rank 1 are V1 and V3, so cascade crossover is
performed only on these.

3) Validation of Variants Generated by Crossover: When
cascade crossover generates a variant, vc, by combining va and
vb, vc is selected for the next generation only if vc dominates
va and vb. This is because, as mentioned in the previous



section, the goal of cascade crossover is to generate variants
that pass all of the tests that the parents passed. In the case of
combining V1 and V3, the generated variants are eligible for
selection in the next generation only if they pass all four test
cases.

IV. EXPERIMENT

A. Overview of Experiment

To confirm its effectiveness, we implemented the proposed
method based on an existing APR tool, kGenProg [8], which
is a Java implementation of GenProg. The purpose of this
experiment is to investigate how the proposed method changes
the efficiency of APG. We compared our tool with kGenProg
before the extension. The evaluation metric consist of the
number of successes, which means generating a variant that
passes all of the input test cases, and the time required for
APG.

B. Experimental Settings

A list of the experimental settings is shown in Table I.
We used eighty 100-point tasks from ABC101 to ABC180 of
the past AtCoder Beginner Contest (ABC), held at AtCoder1.
Since kGenProg and our tool use GA, which has randomness,
we set 20 random seeds (from 1 to 20) and tried generating
source code.

Our tool and kGenProg both require source code to generate
variants. Therefore, we obtained source code fragments from
all correct answers of the 80 tasks used in the experiment
and flattened their nested structures. In the flattening process,
each statement in the blocks (e.g., if and for) was moved
out of the blocks. Since the reused code includes all statements
that make up the correct code, it is theoretically possible to
generate the correct code if sufficient time is spent on this task.
In this way, we were able to check whether it is possible to
generate source code only by reusing small independent code
snippets. We used all of the test cases published by AtCoder
as input for both tools. The default values of kGenProg were
used for the other parameters necessary for the GA.

C. Results

1) Number of Successes: We call a task that has at least one
successful trial out of 20 trials a successful task. The number
of successful tasks generated by both tools was 62, only one

1https://atcoder.jp/

TABLE I
EXPERIMENTAL SETTINGS

Item Value

Subject of experiment ABC101∼ABC180 100-point task
Number of tasks 80
Random seed 1∼20 (20 trails)
Time limit 1 hour per trial
Reuse code Correct code snippets for all subjects
Generation limit Unlimited
CPU mem Xeon E5-2630 2 CPUs 16 GB mem

by kGenProg was 4, only one by our tool was 4, and the
number of tasks unsuccessfully generated by both tools was
10.

Comparing the number of successfully generated trials for
each task, our tool outperformed kGenProg in 35 tasks and
kGenProg outperformed our tool in 20 tasks. Out of 1,600
trials, there were 730 successful trials for kGenProg and 784
for our tool. We conducted a Wilcoxon signed-rank test for the
number of successful trials and found a significant difference
between kGenProg and our tool (p = 4.46× 10−3).

2) Source Code Generation Time: Fig. 5 shows the average
generation time for each of the 62 both successful tasks. The
horizontal axis represents the task name, and the vertical axis
represents the average time required for successful generation.
We sorted the tasks on the horizontal axis by the time taken to
execute kGenProg in descending order. There were 43 tasks
that succeeded in less time with our tool, and 19 tasks with
kGenProg. We conducted a Wilcoxon signed-rank test for
the average time and found a significant difference between
kGenProg and our tool (p = 2.48× 10−3).

V. DISCUSSION

It can be concluded that the proposed method can generate
more correct source code in a shorter time than the conven-
tional method, and that the proposed method is more efficient
than the conventional method.

The Wilcoxon signed-rank test showed significant differ-
ences in the number of successful trials and the program
generation time. It can be concluded that the proposed method
generates source code faster than the conventional method.
Therefore, the proposed method is considered to improve the
efficiency of source code generation.

From Fig. 5, it can be seen that the shorter the generation
time is in the conventional method, the smaller the efficiency
improvement obtained by the proposed method. We now
consider the reason for this. As a concrete example of a task
whose generation time is short in the conventional method, we
choose ABC134. In ABC134, the input is a and the output
is 3a2. In this task, only one piece of code is required (i.e.,
return 3*a*a), and if we can insert that code, we can
generate a variant that passes all input test cases. In such a
simple task, generated variants either pass or fail all the test
cases, so high expressiveness of the fitness is not necessary.
On the other hand, ABC123, which has the largest difference
in generation time, requires a branch (e.g., if) in the correct
code, which causes the problem described in Section II-B.
From the above, we can see that the proposed method solves
the problem associated with the selection phase.

VI. RELATED WORKS

Many APR tools have been proposed. ARJA [2] is a search-
based APR tool with MOGA. ARJA has two fitness functions:
the number of passing test cases and the patch size. ARJA aims
to improve readability of generated patches by introducing
patch size as one of the multiple fitness functions.
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Fig. 5. Average generation time for each task

Similar to our approach, ARJAe [11] and 2Phase [12] have
fine-grained fitness functions to improve the selection phase.
ARJAe is an extension of ARJA. In addition to the above
two fitness functions, ARJAe takes assertion distances into
consideration. In other words, ARJAe calculates the distances
from the difference between expected and actual assertion
values. A similar idea is introduced into 2Phase. 2Phase has a
scalar fitness function calculated from the number of passing
test cases and the assertion distances.

The main difference between our method and these three
tools is the design of the fitness functions. Our design shown
in Section III-A1 enables us to select different variants which
complement each other. On the other hand, these three tools
use the number of passing test cases as the fitness function.
As we described in Section II-B, this fitness function lacks the
expressive power of variants. This causes these three tools to
suffer from the challenges shown in Fig. 2.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for APG by apply-
ing a MOGA, in which each test result is an independent
fitness function. The effectiveness of the proposed method
was confirmed through an experiment using 80 competitive
programming tasks.

In future work, we intend to include a detailed analysis of
the experimental results. We also intend to analyze the effect of
each subject on the proposed method, e.g., ABC144, where the
generation time for the proposed method deteriorated signifi-
cantly. Additionally, the degree to which the MOGA proposed
in this paper contributed to the efficiency improvement of the
selection method and cascade crossover is unclear. Although
the MOGA enables the avoidance of local optima, we have not
confirmed whether this effect is obtained by our method, so a
detailed analysis is needed. In terms of improving the method,
we are considering incorporating metrics such as lines of code
or test time. In addition, to improve the cascade crossover,
instead of using all the bases, we could use a dynamic source
code analysis to attempt to select only the useful bases that

can pass the test. In our experiments, we used the simplest
tasks of AtCoder Beginner Contest, but application to more
complex tasks is an issue for future investigation.
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