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Abstract—In the field of software development, version control
systems such as Git are imperative tools that help software teams
manage source code. Git can detect a change history of each
file individually. Even if a file was renamed in the past, Git
can identify and track the before renamed file based on content
similarities, which are calculated as the ratio of lines that match
pre- and post-change files to the total number of lines. However,
line-based comparison techniques do not consider source code
structures and have coarse granularity, which can result in
misidentifying pre-change files and tracking interruptions. To
resolve these problems, this paper proposes a technique that
calculates file content similarities using source code differences
based on an abstract syntax tree. In experiments conducted on
197 open source Java-based projects, we found that the number
of rename detections increased 3.3%, and that, on average,
our technique tracked commits 1.37 times more frequently than
previous technique. We also measured accuracy levels and found
that the maximum F-measure was 0.943, which is higher than
the 0.926 maximum value of the line-based technique.

Index Terms—File tracking, Git, Abstract syntax tree

I. INTRODUCTION

In the field of software development, version control sys-
tems are imperative tools that help software teams manage
source code over time [1]. Such systems enable developers
to restore changed files to their previous versions, check
differences between versions, and develop software in parallel
with multiple developers. Additionally, accumulated change
histories help developers to better understand software behav-
iors and the reasons for the changes [2] and change histories
are also widely used in various research fields to predict buggy
modules [3] and detect change patterns [4].

One such version control system is Git, which can identify a
change history that includes not only the entire repository, but
also individual files. In a case that a file has been changed in a
past commit, Git does different things to track it depending on
whether the filename has been changed or not. If the filename
has not been changed, the file is marked as M (Modified)
in the commit. Thus, the file can be tracked with the same
filename. If the filename has been changed, the post-change
file is marked with A (Added) and the pre-change file is
marked with D (Deleted). The mapping of a post-change file
to a pre-change one is performed by calculating the similarity
of their contents, which is the ratio of lines that match both
files. If the content similarity level exceeds a certain threshold,
the file is regarded as renamed versions of the same file.

However, there is room for improvement in the way the
similarity of files is calculated because line-based comparisons
do not consider source code structures and have coarse granu-
larity, which can result in misidentifying pre-change files and
tracking interruptions. For example, even if only a class name,
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Fig. 1. File rename detection in Git.

a method name, or a variable name is changed due to the file
renaming process, the entire line is treated as changed, which
may cause decreasing similarity and tracking losses.

To address these problems, this paper proposes a technique
that uses source code difference detection based on an abstract
syntax tree (AST) to improve file tracking on Git. Since an
AST represents the source code structure itself, the authors
believe its use could improve file tracking when calculating
the similarity levels from their differences.

Although we are still in the early stages of this research, we
have already conducted small-scale experiments to determine
whether the central idea of our proposed technique has the
potential to work well. More specifically, we carried out
comparative experiments on 197 open source projects with
a line-based technique in which we investigated four items:
the number of rename detections, tracking accuracy levels,
trackable history lengths, and execution times. These experi-
mental results show that our proposed technique detected 3.3%
more filename changes, and that the number of commits in the
output increased by a factor of 1.37 Additionally, the tracking
accuracy of our proposed technique was better than the line-
based technique. However, the proposed technique increased
the execution time by 1.71 times.

II. PRELIMINARIES

A. File tracking on Git

In Git, developers can use the --follow option to track
a specific file and view its change history, and they even
can perform such tracking if the file has been renamed. If
the filename being tracked is changed, Git identifies the file
that existed before the change and uses that filename to
track earlier commits. Figure 1 shows the Git file tracking
mechanism for a commit where a file has been renamed.
Git records information related to the deleted files, added
files, and modified files for each commit, and then calculates
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Fig. 2. Overview of differences detection in GumTree.

the file content similarity between the tracked and deleted
files to detect the renamed files. File pairs that exceed a
certain threshold are regarded as renamed file pairs. If multiple
pairs of files exceed the threshold, the pair with the highest
similarity level is designated as the renamed file pair.

The similarity S between two files is calculated using the
following formula. length(f) is the number of lines of a file
f and common(f1, f2) is the number of matched lines.

S(f1, f2) =
common(f1, f2)

max(length(f1), length(f2))
× 100 (1)

Algorithms such as Myers [5], Histogram1, which is the
enhanced version of Patience2, and line-by-line hashing can
be used to detect the line granularity differences.

B. Abstract Syntax Tree
An AST is a tree-shaped data structure obtained by parsing

source code that is constructed from a source file. The edge of
an AST indicates a direct parent-child relationship between the
nodes at its two ends, and each node of an AST is composed
of at least four of the following five elements:

• ID: Each node includes a unique identifier in the AST.
• Parent node: Each node has a reference to its parent

node. (Except for the root node, which does not have a
parent node.)

• Child nodes: Each node has a reference to its child nodes.
(Except for leaf nodes, which do not have child nodes.)

• Label: Each node has a label that represents its grammat-
ical type, such as an if-statement or a variable declaration.

• Value: Some nodes have values that represent other
information than the label. For example, the nodes of
identifiers include their method names or variable names
as values.

C. GumTree [6]
GumTree is a tool that detects AST differences by gener-

ating an AST for each of the two source files of different
versions given as input. It then compares those files and
outputs the differences of the AST subtrees/nodes as an edit
script. An edit script is a sequence of editing operations
applied to the pre-change source code in order to obtain the

1https://javadoc.io/doc/org.eclipse.jgit/org.eclipse.jgit/latest/org/eclipse/jgit/
diff/HistogramDiff.html

2https://alfedenzo.livejournal.com/170301.html

package com.beardedhen.androidbootstrap.support;
package com.beardedhen.androidbootstrap.utils;
import android.content.Context;
import android.content.res.Resources;
import android.support.annotation.DimenRes;
/**
* Utils class for resolving color resource values.
*/
public class DimenUtils {

public static float textSizeFromDimenResource(Context context,
@DimenRes int sizeRes) {

/**
* Resolves a dimension resource that uses scaled pixels
*
* @param context the current context
* @param sizeRes the dimension resource holding an SP value
* @return the text size in pixels
*/
public static float pixelsFromSpResource(Context context, 

@DimenRes int sizeRes) {
final Resources res = context.getResources();
return res.getDimension(sizeRes) / res.getDisplayMetrics().density;

}
/**
* Resolves a dimension resource that uses density-independent pixels
*
* @param context the current context
* @param res     the dimension resource holding a DP value
* @return the size in pixels
*/
public static float pixelsFromDpResource(Context context,

@DimenRes int res) {
return context.getResources().getDimension(res);

}

}
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Fig. 3. An example of a change that interrupt tracking due to the low
similarity.

post-change source code. Specifically, the edit scripts output
by GumTree contain the delete/insert/move/update operations
and the AST nodes where those operations were performed.

Figure 2 shows GumTree in operation. As can be seen
in the figure, GumTree matches between the pre- and post-
change versions of each AST node and treats such matched
nodes as a same node. Next, GumTree refers to the matching
results and ASTs and identify nodes where operations were
performed using an algorithm created by Chawathe et al. [7].
In this example, Node 3 is regarded as deleted because it only
exists before the change, while Node 5 is regarded as inserted
because it only exists after the change, and Node 4 is regarded
as moved because its parent is changed. Finally, Node 2 is
regarded as updated because, while its parent node remained
the same, its pre- and post-change values are different.

III. MOTIVATING EXAMPLE

Figure 3 shows a DimenUtils.java modification to a
AndroidBootStrap project. In this change, the pathname was
modified because of a restructuring project. At the same time,
additions were made to the methods and Javadoc, but the pre-
and post-change versions are still considered to be the same
file. However, since the calculated similarity level of the two
files is just 25% based on the formula (1) in section II-A, and
since the default threshold value in Git is 50%, these files were
regarded as non-identical. As a result, it would be impossible
to track the pre-change file history.

The similarity level decreases even though the files are
identical because the line granularity comparison does not
consider the source code structure. For example, in the first
line, only a part of the package name was changed, but the
similarity level was calculated based on the assumption that
the entire package statement had been deleted and reinserted.
Similarly, only the method names were changed in the deletion
on line 6 and the insertion on line 16, but those changes were
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Fig. 4. Overview of the proposed technique.

treated as entire line changes. As a result, 25% of the entire
method was regarded as being changed. Furthermore, the fact
that Javadoc occupied 17 of the 24 inserted lines is also a
significant factor that reduced the similarity level, even though
it did not change the program function.

To resolve this problem, our study proposes a similarity
calculation technique that uses ASTs to consider source code
structures. The use of ASTs makes it possible to compare fine
levels of granularity and reduce the percentage of components,
such as Javadoc and comments, which can introduce noise
when calculating similarity levels.

IV. PROPOSED TECHNIQUE

An overview of our proposed technique, which improves
the file tracking similarity calculation in Git, is shown in
Figure 4. As can be seen in the figure, GumTree receives the
pre- and post-change files, which are then used to calculate
similarity levels. GumTree then generates ASTs from each file
and calculates tree differences. Finally, based on the editing
script output from GumTree, the similarity level is calculated.
We define the similarity S via the following formula. t1 and t2
denote the ASTs generated from the pre- and post-change files,
while treeSize(t) denotes the number of nodes contained in
t. editScript(t1, t2) is an edit script that GumTree outputs
when it receives t1 and t2.

S(t1, t2) =

(
1− length(editScript(t1, t2))

treeSize(t1) + treeSize(t2)

)
× 100 (2)

The more similar the contents of pre- and post-change files
are, the shorter the length of the edit script is, and thus the
higher the output similarity level. If the similarity level exceeds
a certain threshold, the files are designated and tracked as
renamed versions of the same file.

Here, it should be noted that our proposed technique does
not consider the operation type in an edit script. In other words,
the length value of an edit script increases by one no matter
which operation is performed. This is because insertions and
deletions operate on a single AST node, and the length of
an edit script corresponds to the number of nodes. On the
other hand, moves operate on an AST subtree even though
the edit script length is one. Therefore, insertions and deletions
have longer edit script lengths than moves. We consider the
functional differences that result when the source code is
moved rather than inserted or deleted to be minor. Therefore,
to increase the similarity level when a move occurs, we use
an edit script without weighing each operation.

Next, we use our proposed technique to calculate the
similarity of the example shown in Figure 3. Here, the number
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Fig. 5. The number of renames detected by each technique.

of nodes in the AST generated from the pre- and post-change
file was 53 and 103, respectively, and the length of the edit
script output by GumTree was 52. As a result, the calculated
similarity was 66.7%, and the proposed technique continues
tracking because it regards the files as renamed versions of
the same file.

If one or more of the files is unable to generate an AST,
or if there is a file that contains syntax errors, the line-based
technique is used to calculate the similarity level.

V. EVALUATION

In this section, we report on experiments conducted to eval-
uate our technique, in which we use Git that is implemented in
Java, hereafter referred to as “JGit”. This implementation was
selected because GumTree is also implemented in Java, and
thus can be easily integrated into JGit. More specifically, the
experiment compared two versions of JGit that were applied
to the proposed and line-based techniques in reference to the
following four items:

• the number of rename detections,
• tracking accuracy levels,
• trackable change history lengths, and
• execution times.

A. Target projects

The 197 Java projects used in this experiment were selected
for use as targets from the Borges dataset [8], which consists
of 2,279 projects that are popular on GitHub. Of these, 202
are Java projects. Two of those projects were excluded because
they have not been already published, and three projects were
excluded because they failed to run GumTree due to runtime
errors.

B. The number of rename detections

First, we varied the similarity threshold value by 1%,
executed the rename detection of all the commits in the project,
and then compared the number of rename detections. Figure 5
shows the total number of filename changes for all projects.
In this figure, “AST-based” denotes the proposed technique,
and “line-based” denotes the prior line-based technique.

Both techniques detected the majority of filename changes,
and it seems that both techniques have the same level of
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detection capability. However, the number of renames de-
tected by the proposed technique exceeded the number of
detection by the line-based technique by an average of 3.3%
and a maximum of 13.1%. It can be seen that the number
of rename detections by the proposed technique increased
when the threshold was greater than 90%. Since the line-
based technique identifies slight changes, such as variable and
method name modifications, as an entire line changes, the
number of matched lines decreased. In contrast, the similarity
level calculated by the proposed technique tended to be higher
because our technique can detect minor changes to only the
target AST node. As a result, the number of rename detections
identified by the proposed technique increased to a high
threshold of more than 90%.

C. Tracking accuracy

Next, we manually checked whether the change histories
output by each technique are correct. Since it is evident that the
tracking is correct when there are no filename changes, only
filename changes were checked. We also varied the similarity
threshold by 5% and then calculated the precision, recall, and
F-measure at each threshold.

We randomly selected a single file from each project and
created a dataset that consisted of the correct histories of the
selected files. However, since it was not practical to check all
deleted and added files combinations to create a dataset when
files are renamed, our correct renames dataset was created
based on the following steps by referring to literature [9]:

1) We execute the following command, manually check
change histories, and count the number of correct
rename detections.
jgit log -p -U 15 -M -Mscore 10
--follow path3

2) Two of the authors carried out Step 1 independently.
3) The two authors then collated the results of Step 2 and

discussed the change histories that conflict the results to
reach a consensus on the number of renames.

The experimental targets were 191 projects that contain Java
files in the latest commit. In Step 1, we used JGit, which we
partially modified to apply to the proposed technique. In Step
3, the authors identified five projects that did not correspond to
the number of filename changes and agreed on their number.

3-Mscore is an option we implemented to set the similarity threshold.

Fig. 7. The length of trackable change histories.

Fig. 8. History lengths when focusing solely on files with different outputs
between the proposed and line-based techniques.

Next, we compared the number of renames detected by
each technique and the dataset in order to calculate precision
and recall levels. The following command measures the
number of detected renames. When JGit detects renames, it
outputs “rename from XXX.java” and “rename to
YYY.java”. Thus we can count the number of renames
using grep and wc command.
jgit log -p -U 15 -M -Mscore threshold
--follow path
　| grep "ˆrename from|ˆcopy from"
　| wc -l

Figure 6 shows how the precision, recall, and F-measure
change levels according to given thresholds. The proposed and
line-based techniques show almost the same level of precision
when the threshold is greater than 40%. However, the precision
level of the proposed technique falls below the level of the line-
based technique when the threshold is lower than 40%. Thus,
in the case of low threshold cases, the proposed technique
may track more than necessary. On the other hand, the recall
level of the proposed technique is higher than the line-based
technique for all thresholds, thus indicating that the proposed
technique can detect longer change histories than the line-
based technique. Furthermore, there is only a slight gap in the
tracking even if the similarity threshold is set at a high level.
The maximum F-measure of the proposed technique is 0.943
at the threshold of 40%, which is higher than the F-measure of
the prior technique at all set thresholds. The maximum value of
the line-based technique is 0.926 at 40%. From these results,
we can conclude that our proposed technique outperforms the
line-based technique in terms of tracking accuracy, and the
best threshold of the proposed technique is 40%.

D. The length of trackable change history
Next, we compared the number of commits tracked by each

technique using the --follow option. The average number
of commits in a change history for each project, per file, is
shown as a box plot in Figure 7. The target is all the files
contained in each project. This includes not only files that exist
in the latest commit but also all the previously existing files.
The similarity threshold is set at 40%, which is the highest
F-measure in the proposed technique based on the tracking
accuracy experiment results.

From the results obtained by comparing both techniques,
we can see that the proposed technique tracks the history
slightly longer than the line-based technique. The median of
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Fig. 9. Execution times.

the proposed technique is 8.49, and that of the line-based
technique is 8.37. Thus, we can see that the overall number
of trackable commits increased by 1.5%.

Next, we focused solely on files with different output
histories between the proposed and line-based techniques.
Figure 8 shows the average number of commits in the change
history of each file for each project. A total of 150 projects
contained files with different outputs when the proposed and
line-based techniques were used. The result indicates that the
proposed technique tracks the change history much longer
than the line-based technique. When comparing the median,
we see that the number of trackable commits increased 1.37
times. From these results, we can conclude that the proposed
technique makes it possible to track change histories past the
point where the line-based technique breaks off.

There were 12 projects that the line-based technique that
could track histories longer than the proposed technique. The
average difference in the number of commits was 1.27. On the
other hand, the proposed technique could track 138 projects
longer than the line-based technique and the mean difference
in their tracking lengths was 6.56. These results show that, in
most cases, our proposed technique can track change histories
longer than the line-based technique, and that in projects where
the line-based technique can track histories longer than the
proposed technique, the difference in the number of commits
is insignificant.

E. Execution times

In this experiment, we select a file from each project to track
and measure the execution times. The following commands
apply to each technique:
jgit log -M -Mscore 40 --follow path
The similarity threshold is set to 40%, and the targets are

191 projects that contain Java files in the latest commit.
We used an Ubuntu machine with a Ryzen Threadripper

3960X (24C/48T) CPU and 128 GB RAM. The file tracking
and supporting multi-threading were optimized for JGit.

Figure 9 shows the execution times of each technique as a
box plot. As can be seen in the figure, the proposed technique
takes longer because the computational complexity increases
as it constructs the necessary ASTs and detects the differences
between them. When the median values were compared, we
found the execution time of the proposed technique was 1.71
times longer than the line-based technique.

VI. THREATS TO VALIDITY

Although all the experiments were conducted on Java
projects, GumTree also supports other programming languages
such as Python and JavaScript, so the proposed technique
could be applied to those languages as well. This means that

future studies involving programming languages other than
Java could provide different results.

We created a dataset of correct rename detections using
the tracking results of Git for the accuracy portion of this
study. Since it is normally necessary to check all the file
combinations in a commit where the filename was changed and
then decide which combination is most suitable (correct), the
dataset may have affected the accuracy evaluation. However,
since it would be unrealistic to check all of the combinations,
even for a small number of targets, we limited this study to
checking as many results as practical with a sufficiently low
threshold. Nevertheless, even though this construction process
does not ensure a 100% correct dataset, it was sufficiently
accurate for use when comparing different techniques.

VII. RELATED WORKS

FinerGit [9] and Historage [10] track change histories in
Git at method-level granularity. These techniques split a file
for each method and used the Git file tracking system to
track those methods. In particular, since Historage extracts
methods and saves them in a file, it is possible to apply our
technique via an AST method parser. CodeShovel [11], which
is also proposed as a method-level tracking technique, matches
methods by filename, method signature, and method body to
detect operations performed on methods. Code clone detection
and text-based similarity levels are used to match methods.

Our proposed technique differs from the abovementioned
techniques in that it aims to improve tracking at file-level
granularity. Furthermore, while Java was the target of above-
mentiond techniques, the proposed technique can be applied
to all programming language to which GumTree is applicable.

VIII. CONCLUSION

This study proposed a technique for improving the file
tracking system in Git. Our approach calculates similarity
levels from the output edit scripts by GumTree, which detects
AST differences. To confirm the validity of our proposed
technique, we surveyed 197 Java projects for data related to
the number of rename detections, tracking accuracy levels,
trackable change history lengths, and execution times. The
obtained results showed that our proposed technique could
detect more filename changes as well as longer and more
accurate track history changes than the line-based technique.
The best threshold of the proposed technique is 40%. However,
execution times increased for the proposed technique.

In the future, we will focus on improving our similarity
calculations in order to detect more filename changes, increase
tracking accuracy, and speed up. We also plan to apply the
proposed technique to other works because it is our belief
that the proposed technique may have applications in other
research fields and thus has the potential to help other tools that
use Git change histories to achieve better results. When a bug
prediction tool based on development histories is applied to the
proposed technique, it is expected to predict higher accuracy.
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