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Abstract—In software development, source code is repeatedly
changed due to various reasons. Similar code changes are called
change patterns. Identifying change patterns is useful to support
software development in a variety of ways. For example, change
patterns can be used to collect ingredients for code completion or
automated program repair. Many research studies have proposed
various techniques that detect change patterns. For example,
Negara et al. proposed a technique that derives change patterns
from the edit scripts. Negara’s technique can detect fine-grained
change patterns, but we consider that there is room to improve
their technique. We found that Negara’s technique occasionally
generates change patterns from structurally-different changes,
and we also uncovered that the reason why such change patterns
are generated is that their technique performs text comparisons
in matching changes. In this study, we propose a new change min-
ing technique to detect change patterns only from structurally-
identical changes by taking into account the structure of the
abstract syntax trees. We implemented the proposed technique
as a tool, TC2P, and we compared it with Negara’s technique.
As a result, we confirmed that TC2P was not only able to detect
change patterns more adequately than the prior technique but
also to detect change patterns that were not detected by the prior
technique.

Index Terms—Mining code change pattern, Repository mining,
Edit script, Code change pattern

I. INTRODUCTION

In software development, source code is repeatedly changed
due to various reasons such as adding new functions, fixing
exposed bugs, and improving code quality [1], [2], [3], [4].
Developers occasionally make similar changes to the source
code. Change pattern is a term that means a set of changes
similar to one other. The change pattern information is useful
for developers and practitioners. The followings are typical
situations where change patterns are useful.

• Developers in an IDE1 can obtain candidates for code
completion from change patterns instead of writing whole
code by themselves [5], [6], [7].

• Library users can be alerted to misuse of libraries from
change patterns of misuse corrections [8].

• Researchers of automated program repair can use change
patterns as candidate modifications for program repair [9],
[10], [11].

Many studies have been conducted to find change pat-
terns. Most techniques to detect change patterns express code
changes as edit scripts, which are sequences of edit operations,
and identify frequently occurring edit operations in the edit
scripts. However, some of those techniques are specialized to
specific objectives, and they have limitations. For example,
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the techniques proposed in literature [6], [12] are specific to
detect change patterns of method invocations. Coming [13]
is a technique to identify change instances that match with
given change patterns in Git repositories. This technique is
not suited to detecting unknown change patterns.

Negara et al. proposed a general-purpose technique to detect
change patterns [14]. Their technique derives change patterns
from the edit scripts each of which are calculated from two
versions of abstract syntax trees (in short, ASTs). Negara’s
technique can detect fine-grained change patterns, but we
consider that there is room to improve their technique. We
re-implemented Negara’s technique as a tool and applied it
to some repositories of open source projects2. As a result,
we found that structurally-different changes are coincidentally
consolidated into a change pattern in Negara’s technique.
We examined such change patterns and concluded that the
reason why such change patterns were derived is the lack of
considering locations of changed program elements in ASTs.
In Negara’s technique, texts of edit operations in changes are
simply compared.

In this study, we propose a new change mining technique to
detect change patterns only from structurally-identical changes
by taking into account the AST structures. There are two key
points in the proposed technique.

• The first point is constructing a unified tree from each
commit in a Git repository. A unified tree is a tree
structure that the ASTs before a given commit and the
ones after the commit are combined.

• The second point is utilizing frequent tree pattern mining
technique [15] on the unified trees instead of performing
text comparisons on edit scripts.

Each change pattern detected by our technique consists of
changes that transform the AST structures in the same way.

We have implemented the proposed technique (tree-based
mining technique) as TC2P and compared it with a text-based
mining technique [14]. The comparison results show that not
only was TC2P able to prevent from detecting change patterns
from structurally-different changes, but it was also able to
detect the change patterns that were not detected by the text-
based technique.

The remainder of this paper is organized as follows. In
Section II, we explain our research motivation. In Section III,
we explain some techniques used in this study. Then, we

2We confirmed that Negara et al. did not publish their tool at 01/Feb/2020.
Thus, we re-implemented a tool based on the descriptions in literature [14].
The re-implemented tool was also used in the comparisons in Section V.



introduce a new technique to detect tree-based change patterns
in Section IV. We describe how we evaluated the proposed
technique and the results in Section V. In Section VI, we
describe prior studies related to this research. Finally, we
conclude this paper in Section VII.

II. RESEARCH MOTIVATION

Negara et al. proposed a technique to detect fine-grained
unknown change patterns by mining edit operations included
in edit scripts [14]. We consider that Negara’s technique
has an issue in terms of adequateness in detecting change
patterns. Their technique occasionally consolidates different
code changes into the same change pattern. We explain this
issue with Figure 1. There are two changes in this figure. Each
change inserts an if-statement, an expression-statement, and
a return-statement while their relative positions are different.
Thus, we consider that it is inadequate to make a common
change pattern from the two changes. However, Negara’s tech-
nique regards that those two changes form a common change
pattern. In their technique, both changes are represented by
the following edit operations.

• Inserting an element labeled as if-statement.
• Inserting an element labeled as expression-statement.
• Inserting an element labeled as return-statement.

Negara’s technique identifies common edit operations by com-
paring edit actions (e.g., insertion, deletion) and target labels
(e.g., if-statement, return-statement). Consequently, Negara’s
technique regards that those two changes include exactly the
same edit operations, so that it makes a common change
pattern from the changes. This fact has a negative impact on
understanding change patterns because the change pattern can
be interpreted as both changes. If a user wants to understand
what kinds of changes are expressed by a given change pattern,
he/she needs to see actual change instances included in the
change pattern because there is no information on relative
positions of program elements in the change pattern.

To overcome this issue, we propose a new technique to
detect fine-grained change patterns from commit history. Our
technique considers relative positions of program elements in
addition to compare edit operations and labels. In the case
of Figure 1, our technique does not make a common change
pattern for the two changes. Moreover, change patterns derived
by our technique can be understood by users without checking
their actual change instances.

III. PRELIMINARIES

In this section, we explain some terms and techniques that
we use in this research. If you are eager to see our proposed
technique, please skip this section and come back here if you
meet unfamiliar terms/techniques in Section IV.

A. Abstract Syntax Tree

An abstract syntax tree (in short, AST) is a tree structure
that represents source code. An AST is constructed for each
source file in a project. Each node of an AST is composed of
the following five elements.

ID. Each node includes a unique identifier in the AST.

…
void method(String name){

+   if(null == name){
+     this.initialized = false;
+     return;
+   }

this.name = name;
…

(a) Change A

…
String name = engineer.getName();

+   if(null == name){
+     return;
+   }
+   this.name = name;

teamMembers.put(name, engineer);
…

(b) Change B

Fig. 1. Motivating Example

Reference to parent. Each node has a reference to its parent
node on the tree structure. The root node is the only
exception because it does not have a parent node.

Reference to child. Each node has a reference to each of its
child nodes on the tree structure. Leaf nodes do not have
this reference because they do not have child nodes.

Label. Each node has a label that represents its grammatical
type such as if-statement or return-statement.

Value. Some nodes have values that represent other infor-
mation than the label. For example, nodes for variables
include their variable names as their values.

B. GumTree

GumTree is a technique that detects differences between
given two ASTs [16]. GumTree generates an edit script in-
cluding a sequence of edit operations that converts one of
the ASTs to the other. An edit operation consists of an edit
action and its target nodes. GumTree supports the following
four types of edit actions.
insert(t, tp, i, l, v) means inserting a new node to the

AST. t is the inserted node. Its label is l. Its value is
v. Its parent node is tp. i means that t is the i-th child
of tp.

delete(t) means deleting an existing node from the AST. t
is the deletion target.

update(t, v) means updating the value of an existing node
in the AST. t is the target node for updating. v is a new
value.

move(t, tp, i) means moving a subtree to another place in
the AST. t is the root node of the moving target subtree.
tp is the new parent node after t is moved. i means that
t is the i-th child of tp.

The number of editing operations included in an edit script
is called the length of the edit script in this study. The
processing of GumTree consists of the following two parts:

1) matching nodes between given two ASTs, and
2) generating an edit script based on the matching results.



The processing of matching nodes consists of two phases:
top-down and bottom-up. First, in the top-down phase,
GumTree traverses the two ASTs from their roots and maps
subtrees that have exactly the same structures to each other in
the two ASTs. In the bottom-up phase, GumTree traverses the
two ASTs from the root nodes of the subtrees that have been
mapped in the top-down phase to the root nodes of the two
ASTs. In the bottom-up traverse, if GumTree finds subtrees
that are similar to each other, it maps them. GumTree uses a
value between 0 and 1 as a threshold to determine whether
given two subtrees are similar or not. Subtree similarities are
calculated with the Jaccard index of their nodes.

Then, GumTree computes an edit script by using the match-
ing results. Based on the edit script, the nodes in the two ASTs
are exclusively classified into the following three categories:

• nodes existing only in the before-change AST,
• nodes existing only in the after-change AST, and
• nodes existing in both ASTs.

For the nodes existing only in the before-change AST,
GumTree regards that the change has deleted them. In the
same way, for the nodes existing only in the after-change
AST, GumTree regards that the change has inserted them. For
the nodes existing in both ASTs, if their parent nodes are
different between the before-change and after-change ASTs,
GumTree regards that they have been moved. If values of
nodes are different between the before-change and after-
change ASTs, the nodes are regarded as updated. In this
way, GumTree computes an edit script by using the matching
results. The computation of the differences between the two
ASTs has already been well optimized [17]. GumTree uses
this technique.

GumTree has been used in a variety of studies. For example,
it has been used for recommending APIs [6], analyzing Maven
build files [18], repairing bugs automatically [11], [19], [20],
and finding patterns in JavaScript bugs [21].

C. FREQT

FREQT is an algorithm to find frequent tree patterns from a
labeled ordered tree [15]. A tree pattern is a structure common
to subtrees in a given tree. By applying FREQT to unified trees
(explained in Section IV-A), we can obtain change patterns
that have been generated only from changes that transform
the AST structures in the same way.

An ordered tree is a tree structure in which the child nodes
of each node have an ordered relationship. A labeled ordered
tree is an ordered tree in which each node has a label l ∈ L
when L = {l0, l1, l2, ...} is a finite set of labels. FREQT
is an enhanced version of Apriori algorithm [22] that finds
frequent itemsets in given transactions. FREQT receives a
labeled ordered tree t and minimum support σ (0 ≤ σ ≤ 1) as
input. f(p, t) means a frequency of tree pattern p in t. More
concretely, f(p, t) is the number of times that p appears in t
divided by the number of nodes in t. If σ ≤ f(p, t) is satisfied,
FREQT outputs p as a frequent tree pattern.

FREQT finds Fk+1 (a set of frequent tree patterns including
k+1 nodes) by using Fk (a set of frequent tree patterns
including k nodes). Its algorithm consists of four steps.
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Fig. 2. Example of rightmost expansion. The blue nodes represent the
rightmost branch, and the yellow nodes represent that they have been added
by rightmost expansion

STEP-A. FREQT scans the nodes of a given labeled ordered
tree t to find F1, which is a set of frequent nodes.

STEP-B. FREQT enumerates candidate tree patterns of size
k+1 by using Fk and FREQT adds them to Ck+1.

STEP-C. FREQT calculates f(c, t), which is a frequency of
candidate tree c ∈ Ck+1 in t. If σ ≤ f(c, t) is satisfied,
FREQT adds c to Fk+1.

STEP-D. FREQT terminates if Fk+1 is an empty set. If not,
k is incremented by 1 and FREQT goes back to STEP-B.

When enumerating candidate tree patterns of size k+1 from
Fk in STEP-B, it is inefficient to add all labels l ∈ L for
every node of every frequent tree pattern included in Fk. Thus,
FREQT performs rightmost expansion to efficiently generate
candidate tree patterns.

Before explaining rightmost expansion, we explain right-
most leaf and rightmost branch. A labeled ordered tree t is
traversed with depth-first priority from its root node, and the
last node to reach is rightmost leaf . The rightmost branch
is the path from the root node to the rightmost leaf , and
rightmost expansion means adding a child node to a node
included in the rightmost branch. By performing rightmost
expansion, the set of candidate trees Ck+1 can be obtained
without duplication or leakage.

Figure 2 shows an example of rightmost expansion. In this
example, the rightmost branch includes nodes ‘1’, ‘5’, and
‘7’, and for each node, node ‘8’ is added. It is also inefficient
to add a child node for every label l ∈ L when doing rightmost
expansion. Thus, FREQT takes the following heuristics.

Node-skip. FREQT adds only labels included in F1 in right-
most expansion because labels not included in frequent
set F1 are never included in frequent set Fk.

Edge-skip. Herein, an edge means a tree pattern whose size
is 2, that is, a pair of a parent node and its child node.
We assume that a label of the node selected for rightmost
expansion is l. Only the labels of the child nodes of
the edges whose parent node has label l and included in
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(b) Process of computing candidate/frequent tree patterns

Fig. 3. Example of how FREQT works

frequent tree patterns F2 are used in rightmost expansion.
Figure 3(b) shows an example of how candidate tree patterns

Ck and frequent tree patterns Fk are computed for the labeled
ordered tree shown in Figure 3(a). We can see that candidate
tree patterns C2 are generated only for nodes included in F1

by performing node-skip. That is, node <3> is not used to
compute C2.

IV. PROPOSED TECHNIQUE

Figure 4 shows an overview of the proposed technique,
TC2P. TC2P takes a Git repository as input and it generates
tree-based change patterns contained in the repository. First,

TC2P extracts commits in which at least a Java source file was
changed in a given Git repository. Second, TC2P generates an
edit script by utilizing GumTree for each of the changed Java
files in the identified commits. Third, TC2P creates a unified
tree by using the edit script and the before-change/after-change
ASTs. A unified tree is a tree structure where a pair of before-
change and after-change ASTs and an edit script between the
two ASTs are combined into a single tree. We explain unified
tree in Subsection IV-A in detail. After constructing unified
trees from all the commits where at least a Java file is changed,
TC2P performs a frequent tree pattern detection on the unified
trees to obtain change patterns. Note that TC2P filters out
frequent tree patterns that are not related to nodes included in
the edit script.

In the remainder of this section, we explain two core
analyses in TC2P, (1) constructing a unified tree tree from
a changed file, and (2) detecting frequent tree patterns from
unified trees in Subsections IV-A and IV-B, respectively. Then,
we describe our implementation in Subsection IV-D.

A. Constructing a unified tree

The reason why TC2P constructs unified trees is to consider
relative positions of nodes included in edit scripts in detecting
change patterns. By examining an edit script generated by
GumTree, TC2P identifies which nodes in the before-change
and after-change ASTs have been manipulated. A unified tree
construction includes the following processing.

• TC2P collects all nodes that were manipulated in a given
edit script.

• TC2P deletes unnecessary nodes.
First of all, TC2P collects all nodes that were manipulated

in a given edit script. The collecting processing is performed
with the following algorithm.

• For insert operations, TC2P adds the inserted nodes into
the before-change AST. Nodes are added to the same
places as the after-change AST.

• For delete and update operations, TC2P does nothing be-
cause the deleted and updated nodes are already included
in the before-change AST.

• For move operations, TC2P adds the moved subtrees into
the before-change AST at the same place as the after-
change AST. This means that, for each move operation,
the subtree of the move target exists at two places: where
it existed before the move operation and where it exists
after the move operation.

Consequently, a unified tree means the before-change AST
where target nodes of insert operations and moved subtrees
of move operations have been added. A unified tree after the
above processing includes many nodes that are not manipu-
lated in the edit script. If we detect frequent tree patterns from
such native unified trees, we will obtain many tree patterns that
are not related to the edit script. Thus, we delete unnecessary
nodes from naive unified trees. The nodes not satisfying any
of the following conditions are deleted:

• included in the targets of the edit operations,
• included in the move subtrees,
• having two or more child nodes, and
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Fig. 4. Overview of TC2P

• having a parent node.
Figure 5(a) is a short edit script that includes all the four

types of operations and Figure 5(b) shows how a unified tree
is constructed based on the edit script. The inserted nodes
‘15’ and ‘16’ and the moved subtree ‘6’ in the after-change
AST are added to the before-change AST, which we call naive
unified tree. Then, nodes ‘0’, ‘1’, ‘2’, ‘3’, ‘10’, ‘11’, and
‘14’ are deleted because they do not satisfy any of the above
conditions. By eliminating unnecessary nodes, the size of the
unified tree is decreased to 13 from 20 in this example.

B. Detecting frequent tree patterns
After constructing unified trees, TC2P mines them to de-

tect frequent tree patterns. In this processing, TC2P utilizes
FREQT [15] with a little expansion. While original FREQT
detects frequent tree patterns in a single tree, TC2P need to
detect them in multiple trees. Consequently, we changed the
algorithm of FREQT as follows.

• In STEP-A (, which is described in Subsection III-C),
original FREQT scans a single tree to obtain F1, but in
the expanded version, all the multiple trees are scanned
to obtain F1.

• In original FREQT, the minimum support σ is set as
0 ≤ σ ≤ 1, and tree patterns appearing at a rate
greater than or equal to σ are regarded as frequent tree
patterns. However, in detecting change patterns, it is more
natural to base the number of occurrences of change
patterns rather than the rate of their occurrences. In fact,
prior studies used the number of occurrences, not the
rate of occurrences [14], [23]. Therefore, in TC2P, the
minimum support σ of change pattern is set as 1 ≤ σ,
and tree patterns with more than σ times of occurrences
are regarded as frequent tree patterns.

To detect frequent tree patterns, it is necessary to define
node equivalence in unified trees. In TC2P, two nodes are de-
fined as equivalent if they satisfy all the following conditions.

• Types of edit actions for the two nodes are the same.
• Labels of the two nodes are the same.
• If the two nodes include values, the values are the same.
• If the edit actions for the nodes are update, the updated

values are the same.
TC2P includes a new mechanism to reduce computational

costs in detecting frequent tree patterns. TC2P does not use

update(4, *)
move(6, 9, 3)
insert(15, 13, 1, *, *)
insert(16, 8, 1, *, *)
delete(5)

Asterisks indicate labels or values that do 
not need to be considered here

(a) A given edit script
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Fig. 5. An example of constructing a unified tree
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Fig. 6. Examples of useful and useless tree patterns

a frequent tree pattern of size k as a base of candidate tree
patterns of size k+1 if it is the base of only useless change
patterns. Figure 6(a) shows that a new node has been added to
a frequent tree pattern included in F8 by performing rightmost
expansion. Figure 6(b) shows a frequent tree pattern included
in F4 and a new node has been added to it by performing
rightmost expansion. The difference between the tree pattern
in F8, and the one in F4 is whether subtree Tleft is included
or not. For this tree pattern of size nine in Figure 6(a), another
node will be added to the root node or the new node because
TC2P performs rightmost expansion. This means that subtree
Tleft does not include manipulated nodes at this moment, and
it will never include such manipulated nodes even in larger tree
patterns. All change patterns found by using the change pattern
of size nine in Figure 6(a) are always based on the change
pattern of size four in Figure 6(b). Consequently, TC2P does
not add the change pattern of size nine to C9. This filtering
can save unnecessary computational costs to detect frequent
change patterns. More concretely, if a change pattern of size k
includes subtree Tleft that satisfies both following conditions,
the change pattern is not added to Ck.

• Tleft is not included in any of the subtrees for move
operations.

• Tleft does not include any target node of insert, delete,
and update operations.

C. Method-level AST Comparison

An AST is usually constructed for each file. Since a Java
source file can include multiple methods, a unified tree can
include subtrees of multiple methods. Therefore, when two or
more methods in a file are accidentally changed in the same
commit, A single change pattern will be detected from the
unified tree. For this reason, our technique constructs unified

trees from method-level ASTs instead of file-level ASTs. By
using method-level ASTs, our technique avoids generating a
single change pattern from changes made to multiple methods
in the same commit by chance.

D. Implementation

We have implemented TC2P as a software tool. At this
moment, TC2P is implemented for Java language, but it is
not difficult to expand TC2P for other programming languages
that are supported by GumTree. Hereafter, we call our imple-
mentation TC2P.

TC2P utilizes SQL database as a cache for unified trees.
When a commit is given to TC2P, it checks whether unified
trees of the given commits are in the database. Only if
unified trees are not registered for the given commit, TC2P
constructs unified trees from the commit and registers them to
the database. This caching mechanism works well if we run
TC2P on the same repositories again and again. Besides, TC2P
performs the processing of detecting frequent tree patterns Fk

with the customized FREQT (described in Subsection IV-B)
in parallel.

In Section IV-C, we explained that our technique constructs
a unified tree for each method. To construct a unified tree for
each method, we need to track each method instead of each
file. To retrieve method histories, we use FinerGit [24], which
is a tool that converts a Git repository of Java project to a finer-
grained one. In a converted repository, each Java method is
preserved as a single file. Thus, we can easily retrieve method
histories only by using Git commands such as git-log.

V. EVALUATION

We evaluate TC2P in terms of the following two points:
• quality of change patterns detected by TC2P, and
• execution time of TC2P.

A. Dataset

We take advantage of the dataset published by Borges et
al. [25] in this evaluation. The dataset includes 202 repositories
of Java projects3. We use method histories instead of file
histories because TC2P is designed to utilize method histories
(described in Subsection IV-C). To retrieve method histories,
we apply FinerGit to the 202 repositories to generate their
finer-grained repositories. The 202 projects vary in size, but
in total they include 1.3M commits, 32.9M lines of code, and
1.8M methods. We use the latest 1,000 commits in each of
the 202 finer-grained repositories to detect change patterns.

B. Re-implementation of Negara’s technique

We evaluate the qualify of change patterns detected by TC2P
by comparing them with Negara’s technique [14]. However,
the tool and the dataset that they used in literature [14] are
not open to the public. Thus, we implemented another tool
NGR based on the literature. NGR mines a set of edit scripts
and derives change patterns by using itemset mining [26].

The equivalence of edit operations in NGR is different from
TC2P because NGR does not consider the tree structure of
change patterns. In NGR, given two edit operations are defined

3https://goo.gl/73Sbvz



as equivalent if the two edit operations satisfy the following
conditions:

• types of the edit actions in the two edit operations are
the same (e.g., insertion, deletion), and

• labels of the target nodes in the edit operations are the
same (e.g., if-statement, return-statement).

In this evaluation, we detect change patterns with TC2P and
NGR from the fine-grained repositories. By applying both tools
to method histories, we can compare the differences between
tree-based mining and text-based one.

C. Configurations

We conducted the following two experiments.
EXP-1. We compare change patterns detected by TC2P with

ones detected by NGR for each of the target repositories.
EXP-2. We measure the execution time of TC2P with dif-

ferent support values. A support value means a minimum
occurrence number of change patterns that TC2P detects.

In the experiments, the time limit for all executions of TC2P
and NGR is set to two hours. We run all the experiments on a
single workstation equipped with 64GB memory and two 12-
core CPUs. TC2P and NGR are implemented as multi-threaded
programs to make good use of the resource of the workstation.

In EXP-1, we detect change patterns by using TC2P and
NGR for each of the target repositories. For TC2P, we use ten
as the minimum support value. For NGR, we use the values in
Table I for Absolute Frequency Threshold (in short, AFT) and
Dynamic Threshold (in short, DT). A candidate change pattern
whose number of occurrences does not exceed the AFT is not
treated as a change pattern. If the size of the candidate pattern
multiplied by the number of occurrences does not exceed
DT, it is not treated as a change pattern. NGR enumerates
candidate change patterns by adding edit operations one by
one like Apriori algorithm [22] with dynamically switching
the thresholds between AFT and DT depending on the number
of occurrences of the added edit operations. This algorithm is
based on the descriptions in literature [14].

In EXP-2, for each repository, we run TC2P with different
minimum support values and measure the execution time. We
use 10, 25, 50, and 100 as the thresholds.

D. Results of EXP-1

To check whether TC2P can detect change patterns more
adequately than NGR, we compare change patterns detected
by the two tools. However, it is impossible to directly compare
change patterns detected by the two tools for the following
reason. Each change pattern detected by TC2P is a pattern of
tree structure while each change pattern detected by NGR is
a set of edit operations. Consequently, in this experiment, we
convert each of the change patterns detected by TC2P to a set

TABLE I
PARAMETERS FOR BASE

Frequency F AFT DT
250 ≤ F 10 250

50 ≤ F < 250 10 50
10 ≤ F < 50 10 10

Change patterns
detected only by TC2P
(62,809)

Change patterns
detected by both the techniques
(10,974)

Change patterns
detected only by NGR
(488,137)

Fig. 7. The number of change patterns detected by TC2P and/or NGR

of edit operations. Then, the converted sets are compared with
change patterns detected by NGR. If a set of edit operations
converted from a tree pattern is exactly the same as a set of
edit operations in a change pattern detected by NGR, we regard
the TC2P’s change pattern (a tree structure) is the same as the
NGR’s change pattern (a set of edit operations).

By converting the tree structure of each change pattern
detected by TC2P to a set of edit operations, the information of
relative positions of nodes manipulated in the change patterns
is lost. However, we can compare the detection results of the
two techniques. Figure 7 shows the comparison results with a
Venn diagram. The numbers of change patterns detected only
by TC2P or only by NGR are 62,809 and 488,137, respectively.
The two techniques share only 10,974 change patterns.

Firstly, we focus on the change patterns detected only by
TC2P. We found that 62% of those change patterns included
at least a move action. NGR does not consider that a code
fragment is moved to another place. In NGR’s change patterns,
a moved code fragment is represented by a sequence of delete
operations and another sequence of insert operations. On the
other hand, TC2P has the capability of identifying code moves.
Representing moved code fragments with move actions is
definitely more adequate than representing them with delete
and insert actions.

For the remaining 38% change patterns, the reason why only
TC2P detected them was due to different kinds of thresholds
between the two techniques. TC2P adopts a simple static
threshold, and we use ten as it. On the other hand, NGR
takes dynamic thresholds, and we use the values in Table I
based on literature [14]. Although it is possible to minimize
the detection of such change patterns by tuning the parameters,
we did not do so because it is not the main purpose of this
experiment.

Next, we focus on the change patterns detected only by
NGR. Those change patterns account for 97% of the change
patterns detected by NGR. We randomly selected 30 change
patterns from the top 1,000 change patterns with many edit
operations that were detected only by NGR and visually
browsed their change instances.

There are 29 change patterns whose change instances in-
clude different tree structures from other change instances in
the same change pattern. TC2P considers relative positions



Before change

After change

ResultSet rs = statement.executeQuery();
Assert.assertFalse(rs.next());
rs.close();

1.
2.
3. 

try (ResultSet rs = statement.executeQuery()) {
Assert.assertFalse(rs.next());

}

1.
2.
3.

insert delete move update

(a) An actual change for ResultSet

Before change

After change

Connection c = ds.getConnection();
Assert.assertNotNull(c);
c.close();

1.
2.
3. 

try (Connection c = ds.getConnection()) {
Assert.assertNotNull(c);

}

1.
2.
3.

insert delete move update

(b) An actuual change for Connection

Before change

After change

$VARIABLE_DECALRATION_FAGMENT;
$EXPRESSION_STATEMENT;
$0.close();

1.
2.
3. 

try ($VARIABLE_DECLARATION_FRAGMENT) {
$EXPRESSION_STATEMENT;

}

1.
2.
3.

insert delete move update

(c) The detected pattern

Fig. 8. Two changes and their change pattern related to try block

of nodes manipulated in edit operations while NGR does
not, which is the reason why those change patterns were not
detected by TC2P, as shown in Figure 1.

The remaining change pattern included code changes whose
tree patterns are the same. The corresponding change pattern in
TC2P included a move action, which is the reason why TC2P
does not the exactly same change pattern as NGR. The inves-
tigation results show that the change patterns detected only
by NGR are also detected by TC2P in more adequate forms
or not detected by TC2P due to the structural inconsistencies.
Consequently, we conclude that there is no change pattern to
be detected as they are in the 30 change patterns detected only
by NGR.

Herein, we show some change patterns detected by TC2P.
Figure 9 shows a change for debugging output and its change
pattern. Figure 9(a) shows an instance of the changes form-
ing the change pattern. We can see that the statement of
“Debug.d(...” gets surrounded by the if-statement in the
change. Figure 9(b) shows the derived change pattern. TC2P
generates change patterns as tree structures (In the figure, the
detected pattern is shown with the source code). In the figure,
the variables whose nodes are not included in the change
pattern are represented by “$ + number”. In the pattern, we
can see that the statement of "Debug.d(..." has been moved
into the newly added if-statement. As already mentioned, move
operation is not supported by NGR. If a code move exists in a
given change, NGR output it as a sequence of delete operations
and another sequence of insert operations. Moreover, NGR
does not consider relative positions of manipulated nodes in

+
+

+

1
2
3
4

5
6
7
8
9

10
11

@Override
protected void onCreate(final Bundle pSavedInstanceState) {

if(BuildConfig.DEBUG) {
Debug.d(this.getClass().getSimpleName() + ".onCreate" + 

" @(Thread: '" + Thread.currentThread().getName() + "')");
}
super.onCreate(pSavedInstanceState);
this.mGamePaused = true;
this.mEngine = this.onCreateEngine(this.onCreateEngineOptions());
this.applyEngineOptions();
this.onSetContentView();

}

-

1
2
3

4
5
6
7
8
9

@Override
protected void onCreate(final Bundle pSavedInstanceState) {

Debug.d(this.getClass().getSimpleName() + ".onCreate" + 
" @(Thread: '" + Thread.currentThread().getName() + "')");

super.onCreate(pSavedInstanceState);
this.mGamePaused = true;
this.mEngine = this.onCreateEngine(this.onCreateEngineOptions());
this.applyEngineOptions();
this.onSetContentView();

}

Before change

After change

(a) An actual change

Before change

After change

insert delete move update

Debug.d($0.getSimpleName() + " @(Thread: '" + $2.getName() + "')");1. 

if (BuildConfig.DEBUG) {
Debug.d($0.getSimpleName() + " @(Thread: '" + $2.getName() + "')");

}

1.
2.
3.

(b) The detected pattern

Fig. 9. A change and its change pattern related to logging

edit scripts in detecting change patterns. For the above two
reasons, it is impossible to know where a node has moved from
to where with NGR’s change pattern. In TC2P, on the other
hand, the change pattern is detected by using the information
of the AST structure. By using TC2P’s change pattern, we
can see where a node has moved from to where, as shown
in Figure 9(b). As shown in this example, we can understand
that move action is more compatible with tree-based change
patterns.

Next, we show a change pattern detected only by TC2P.
Figure 8(c) shows a change pattern where a try-statement
is added. $VARIABLE_DECLARARION_FRAGMENT represents a
variable-declaration, and $EXPRESSION_STATEMENT represents
an expression-statement. In the change pattern, the following
manipulations are conducted.

• The variable-declaration is moved into the clause of the
try-statement.

• The expression-statement is moved into the block of the
try-statement.

• The statement of “$0.close()” is deleted.
Herein, we focus on the fact that move actions have been

applied to the abstracted AST nodes, not to actual program
elements, in the change pattern. Because TC2P applies fre-
quent tree pattern mining to ASTs, it can abstractly maneuver
them as change patterns regardless of the concrete processing
such as what kinds of variables are declared. Figures 8(a) and
8(b) show two actual changes included in the change pattern.
The types of the declared variables in the moved variable-
declarations and the invoked methods in the moved expression-
statements are different between the two changes. Even though
those two changes contain such differences, TC2P was able



Before change

if ($0 == null) {
throw new NullPointerException($1);

}

1.
2.
3. 

After change

ObjectUtil.checkNotNull($2, $3);1. 

insert delete move update

Fig. 10. A change pattern related to null checking

to detect the change pattern common to them. This is only
possible by using the tree structure to detect the change
pattern.

Figure 10 shows a change pattern where EXTRACT
METHOD refactoring is applied to a null-checking code
fragment. In the change pattern, the invoked constructor
name (NullPointerException) and the method name
(checkNotNull) is not abstracted unlike Figure 8(c). Con-
crete names in the change pattern mean that all the changes in
the change pattern have the common names. Such a distinction
between abstracted and concrete names is impossible in NGR,
because NGR does not consider the parent-child relationship
between nodes and cannot determine whether the manipulated
nodes have a common parent or not.

With the experimental results, we conclude that TC2P can
detect change patterns that are not detected by NGR. Further-
more, TC2P avoids detecting change patterns whose change
instances have different tree structures by considering relative
positions of nodes in each change instance. Consequently, we
can conclude that quality of change patterns detected by TC2P
is higher than ones detected by NGR.

E. Results of EXP-2

The results of EXP-2 are shown in Table II. The average
execution time was calculated for projects where TC2P fin-
ishes detecting change patterns within two hours. The number
of projects where TC2P execution exceeded the time limit is
shown in the second column. TC2P has a longer time execution
as the number of emerging change patterns increases. Thus,
the larger the value of the minimum support is, the shorter
the execution time because the number of subtrees treated as
change patterns is reduced. For the minimum support of ten
and 25, the average of 25 is shorter than the one of ten. But, in
the case of ten, TC2P exceeded the time limit for 17 projects
while only six projects in the case of 25.

Consequently, we conclude that TC2P was able to detect
change patterns in an average of less than one minute for
most target projects. However, it took more than two hours
for some large projects.

TABLE II
EXECUTION TIME FOR EACH MINIMUM SUPPORT VALUE

minimum support execution time (sec.) # of time limit
10 30.3 17
25 38.8 6
50 11.9 2

100 4.8 0

F. Threats to Validity

Herein, we list some threats to validity in the experiment.
• Although all the experiments were conducted on Java

projects, GumTree supports other programming languages
than Java, such as Python and JavaScript. We may obtain
different results for other programming language.

• We implemented NGR based on the information in lit-
erature [14], [27] as Negara’s technique, and then we
compared TC2P and NGR. If we misunderstood the
specification of Negara’s technique or induced non-trivial
bugs to NGR, the comparison results do not make sense.

VI. RELATED WORK

A. Pattern Mining Algorithms

A variety of techniques have been proposed for mining pat-
terns. Apriori [22] and Backtracking [28], [29] are algorithms
to find frequent subsets from a set of multiple items. Apriori is
a breadth-first search algorithm, and Backtracking is a depth-
first one. PrefixSpan [30] has been proposed as an algorithm
for finding frequent subsequences from multiple sequences.
PrefixSpan is used in a study on mining patterns in the source
code [31], [32], [33].

In addition to FREQT [15], TreeMiner [34] is another
algorithm for mining frequent tree patterns. TreeMiner, like
FREQT, performs rightmost expansion to find frequent sub-
trees. However, unlike FREQT, TreeMiner mines subtrees
based on whether given two nodes are a pair of an ancestor and
its descendant or not, rather than whether given two nodes are
pair of a parent and its direct child or not, when searching for
frequent tree patterns. That is, TreeMiner finds frequent tree
patterns containing different parts. In this research, to avoid
such frequent tree patterns in unified trees, we utilize FREQT.

B. Identifying AST Differences

ChangeDistiller [35] is an algorithm for calculating the
differences in ASTs in addition to GumTree. GumTree and
ChangeDistiller were compared in literature [16], and the
comparison results are as follows.

• GumTree was able to identify code moves more accu-
rately than ChangeDistiller.

• ChangeDistiller tended to produce longer edit scripts
than GumTree.

For the above reasons, we selected to use GumTree in this
research.

C. Detecting Change Patterns

The work of Negara et al. [14] is already described in
Section II. Herein, we describe some other techniques to
detect change patterns. CPatMiner presents code changes with
program dependence graphs and mines graph patterns to detect
change patterns [23]. Figure 11 shows the change described
in literature [23] as an example of how CPatMiner success-
fully detected change patterns. For the change, CPatMiner
was able to find a pattern that “statement.close();” was
replaced with “closeQuietly(statement);” by utilizing the
data dependence for “statement”. On the other hand, TC2P
can identify a change pattern that including the following
manipulations because it considers the tree structure.



• A try-block and a finally-block were inserted.
• The statements of lines 2∼9 were moved into the try-

block.
• “statement.close();” was deleted and

“closeQuietly(statement);” was inserted.
By using this example, we can conclude that TC2P is superior
to CPatMiner in the following points.

• TC2P can capture the change of any kind of inner block
insertions and deletions by using parent node information.
On the other hand, CPatMiner can capture the change of
only conditional block insertions and deletions by using
control dependences. In Java programs, there are many
change patterns that are related to try-blocks as shown
in Figures 8 and 11. Only TC2P can detect such change
patterns as try-block related change patterns. CPatMiner
cannot detect them as try-block related ones because
try-blocks and their inner statement have no control
dependences.

• TC2P can capture code moves by using the parent node
information of the manipulated nodes while CPatMiner
technique cannot.

On the other hand, CPatMiner is superior to TC2P in the
following point.

• CPatMiner can capture statement-level replacements by
using data and control dependencies while such changes
are captured as deletions and insertions in TC2P.

There are other techniques that detect change patterns. In
Nguyen et al.’s work [4], only subtrees with the same height
are used as candidates for change patterns. In Martinez et
al.’s work [36], change patterns whose only a single subtree
is modified are detected. In other words, if two different
subtrees in ASTs are manipulated in a change, a change pattern
including the two manipulations is not detected. That is, both
the techniques have certain constraints in detecting change
patterns while TC2P does not have such constraints.

There are some techniques to detect change patterns in
method invocations [6], [12], [37]. Those techniques are
specialized to detect method invocation patterns, and they
cannot detect general change patterns. Coming [13] is a
technique to mine instances of specific change patterns from
Git repositories. This technique mines changes by using pre-
defined change patterns while TC2P detects unknown ones.
LASE is a technique that generates common change pattern
from given multiple change instances [38]. This technique
is not suited for detecting unknown changes from commit
histories.

VII. CONCLUSION

We proposed a technique for detecting change patterns
in this paper. Our technique constructs a unified tree from
an edit script generated by GumTree, and then it mines
frequent tree patterns in the unified trees. We treat detected
frequent tree patterns as tree-based change patterns in this
research. We have implemented a software tool, TC2P, based
on the proposed technique, and we evaluated it on 202 open
source projects. In the evaluation, we compared TC2P with
two prior techniques, Negara’s technique [14] and Nguyen’s
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private boolean isIdentifierIfAlreadyExisting(Person_Identifier id, 
PreparedStatement statement = null;
try {

statement = connect.prepareStatement(READ_QUERY_PERSON_IDENTIF
statement.setString(1, id.getId());
statement.setString(2, id.getType());
statement.setLong(3, personID);
ResultSet rs = statement.executeQuery();
if (rs.first()) {

return true;
}

} finally {
closeQuietly(statement);

}
return false;

}

1
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3
4
5
6
7
8
9

10
11
12
13

private boolean isIdentifierIfAlreadyExisting(Person_Identifier id,
PreparedStatement statement;
statement = connect.prepareStatement(READ_QUERY_PERSON_IDENTIFIER
statement.setString(1, id.getId());
statement.setString(2, id.getType());
statement.setLong(3, personID);
ResultSet rs = statement.executeQuery();
if (rs.first()) {

return true;
}
statement.close();
return false;

}

Before change

After change

-
-
-
-
-
-
-
-

-

Fig. 11. “Closing resources” pattern in project anHALytics/anhalytics-core

technique [23]. The former detects change patterns by finding
frequent edit operations in given edit scripts, and the latter
detects change patterns by finding isomorphic subgraphs in
given program dependence graphs. Through the evaluation,
we confirmed that TC2P was able to detect change patterns
more adequately.

In the future, we are going to use TC2P with the following
situations.

• We are going to use TC2P to find inconsistencies in
the source code. Several studies have already conducted
inconsistency detections [8], [39], [40], [41], but they
used text-based or graph-based patterns. We confirmed
that TC2P was able to detect change patterns more
adequately than text-based and graph-based techniques in
this paper. Thus, we believe new inconsistencies in the
source code can be revealed with TC2P.

• Edit scripts generated by GumTree consist of basic edit
operations such as inserting, deleting, moving, and up-
dating AST nodes. If we could name TC2P’s change
patterns by using tree structure information, we may
able to define new higher-level edit operations. Higo
et al. defined a special sequence of insert actions as a
copying-and-pasting operation by using GumTree [42].
Naming higher-level edit operations will make it easier
for developers to understand given changes.
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