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Abstract—Software testing is being leveraged in programming
education for automated assessment of programming assign-
ments. When using software testing in programming education,
program specifications are provided as unit or integration tests,
and students create programs that pass these tests. Although
this method has various advantages, such as ensuring objective
program specifications and automating the operation check, it
also has many disadvantages. For example, detecting innovations,
such as original specifications and functional extensions by an
individual student, is difficult. The purpose of this research
is to automatically detect functional differences among student
programs in programming education using tests. In our proposed
method, automatic test generation is applied to student programs,
and the generated tests are mutually executed for other student
programs. Furthermore, we classify the tests based on the
execution path to obtain sets of tests that are capable of detecting
functional differences.

Index Terms—automated assessment, automated test genera-
tion, programming education, test execution path

I. INTRODUCTION

Many researches propose using software testing in pro-
gramming education (hereinafter referred to as test-based
education) [1]–[4]. In test based education, the specifications
of a class assignment can be explicitly defined as a unit
test or an integration test (hereinafter referred to as pre-test).
Providing pre-tests has various advantages to both students and
instructors, such as ensuring objective task specifications and
automating the task completion check. Test based education
also has a high affinity with modern and practical software de-
velopment such as test-driven development [5] and continuous
integration [6]. In addition to the acquisition of programming
skills, it is expected to gain practical experience in software
development.

A problem with test-based education is that it is difficult
to detect integuity made by individual students. Integuity is
a functional difference between student source codes. This
includes functional improvements and extensions that students
implement in order to achieve a better grade. A typical
example of integuity is the process of checking the validity
of parameters, such as checking whether an object is null or

checking the range of an integer value. Furthermore, original
additional specifications and functional extensions that are not
checked by the pre-tests are also considerable. So, integuity
can be said as implementations outside the scope of pre-
testing. We believe that teachers should detect integuity, give
positive feedback and encourage their efforts, rather than
forcing everyone to implement minimal functions.

However, it is fundamentally impossible to test all possible
behaviors that exist [7]. Excessive testing, while effective in
terms of software quality, is not an adequate strategy for
education because it not only obscures the essence of the task
specification, but also inhibits free thinking in programming.
We believe that the implementation of humor that contributes
to the enjoyment of programming, such as easter eggs, should
be detected and praised in some way, rather than ruthlessly
rejected by pre-tests. Moreover, other researches that focus
on automatic assessment, such as AUTOGRADER [8], only
assess functions that instructors expect and cannot detect
integuity.

The goal of this research is the automatic detection of
integuity among student source code in test-based education.
In order to achieve this goal, we set the following challenges,
as shown in Fig. 1.

• Challenge 1: How to generate tests with the ability to
detect integuity and classify these tests.

• Challenge 2: How to automatically detect integuity using
the generated tests.

In Challenge 1, we generate tests from each source code
developed by students that have the ability to detect integuity,
which cannot be achieved by the pre-tests alone. In Challenge
2, the resulting tests are applied to each source code to detect
the presence of integuity.

In this paper, we propose a test clustering method that uses
automatic test generation and execution path information to
achieve Challenge 1. In this method, we first apply automatic
test generation to all submitted source code to obtain tests with
the ability to detect integuity. Furthermore, every generated test
is applied to all of the students, and the execution paths are
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Fig. 1: Two challenges in automatic detection of functional
differences

measured in order to extract the steps to verify the behavior
of each test. Finally, by vectorizing and clustering the paths of
each test, we identify the tests that have the same verification
procedure. In this paper, we also report the results of a
preliminary experiment on a programming subject having a
few lines of code.

II. MOTIVATING EXAMPLE

In this section, we explain the motivation of this research
using simple java source code. The subject is the PortNumber
class, which represents port numbers in the TCP/IP protocol.
An example code of this class and a pre-test for the constructor
are shown in Fig. 2. This PortNumber class consists of
the following elements: an int type field number (line 2)
representing the port number, the constructor (line 3), a getter
method for number (line 4), and a stringification method for
number (lines 5 through 8).

As the first implementation task of this class, students are
told to write their own PortNumber class constructor that
passes the pre-test shown in Fig. 2(b). Two possible answers
are shown in Fig. 3. The constructor of Student A (Constructor
A) in Fig. 3(a) is exactly the same as the example constructor
and implements only the minimum functionality that passes
the pre-test. On the other hand, Constructor B in Fig. 3(b)
implements a validation check of the port number and does
not accept negative values.

Constructor B is an implementation that contains positive
features not included in the example, which should be detected
and graded appropriately. However, the pre-test only checks
whether the constructor implements the minimal function
correctly, and does not have the ability to check additional
functions. Although visual confirmation is an option, it is not
realistic considering the number of students in programming

1 public PortNumber {
2 int number;
3 public PortNumber(int n) {number = n;}
4 public getNumber() {return number;}
5 public toString() {
6 if (number == 22) return "ssh";
7 if (number == 80) return "http";
8 ... }
9 }

(a) Example code for PortNumber class

1 @Test public void test1() {
2 int number = new PortNumber(22).getNumber();
3 assertEquals(22, number);
4 }

(b) Pre-test for PortNumber constructor

Fig. 2: Example code and pre-test for PortNumber class

1 public PortNumber(int n) {
2 number = n;
3 }

(a) Constructor of Student A

1 public PortNumber(int n) {
2 if (n < 0) number = 0; // originality
3 else number = n;
4 }

(b) Constructor of Student B

Fig. 3: Student constructor examples

courses, such as university courses which could include 10 to
100 students.

III. PROPOSED METHOD

A. Overview

In order to detect integuity in the source code of multiple
students, we use automatic test generation. First, tests are
generated automatically from each student source code. Then,
each test is applied to every student, not just the base student
used for test generation, to identify functional differences.

Simply applying automated test generation will result in
numerous tests. These tests most likely include tests that can
detect functional differences. However, many redundant tests
are also included, such as tests that only check the same
functionality as the pre-tests. Visual inspection is necessary in
order to understand the “meaning” of a test and the functional
difference that is represented by that test. In order to reduce
the effort required, appropriate classification of the generated
tests is needed.

Therefore, the proposed method is divided into three major
steps, as follows: (1) automatic test generation to generate
tests with the ability to detect integuity, (2) classification of
the generated tests, and (3) visual inspection of the functional
differences. In this paper, we explain Steps 1 and 2. Step 3 is
related to Challenge 2 and is left for a future study.



B. Step 1. Automated Test Generation

First, we apply automatic test generation to every student’s
source code and generate unit tests. There are many studies
on automatic test generation [9], and open-source tools, such
as EvoSuite [10] and Randoop [11] , have been released.
Automatic test generation uses exploratory meta-algorithms,
such as genetic algorithms, and execution path analysis to
generate tests that maximize coverage.

Functional differences between source codes often appear
as differences in branches, i.e., execution paths. Therefore,
tests with the ability to detect integuity can be obtained by
automated test generation, which aims to maximize coverage.

C. Step 2. Test Classification

In Step 2, we first mutually apply the tests generated
in Step 1 to every student’s source code. If a total of M
tests are generated from N source codes, then N ×M test
executions are performed. In addition, for each test execution,
the execution path is recorded. The mutual execution of tests
and the recording of path information are the preprocessing
steps for the following test classification.

Here, we consider the criteria that should be used to
calculate the similarity of tests in the test classification phase.
The goal of this research is to automatically detect integuity.
Therefore, the similarity should be based on the function that
each test is testing.

An option is to use the state of each test execution (pass/-
fail). However, test states are not suitable for classifying these
tests because test states are automatically generated. Since
the true oracle of the tests are unknown [12], automated
test generation assumes that the base source code behaves
correctly. As a result, there is excessive variety in the test
assertions, and some assertions might even be in contradiction.

We decompose a test into two parts: the execution part,
which represents the procedure of the test, and the assertion
part, which checks whether the execution result matches the
expected value. The execution path of only the execution part
best represents what function each test is testing. Therefore, we
record the execution path and use it to classify the generated
tests. Unlike other researches about test prioritization [13]–
[15], by using the path information, classification is possible
from the viewpoint of the check procedure of each test, leaving
out the assertion part.

In order to use the path information, we calculate a vector
for each test. The component of each vector is a hash of a
serialization of the student ID of the class executed and the
execution path. For example, if student source code x is tested
and the execution path is 11101 (meaning that only the fourth
line out of all five lines was not passed), then string x11101
is generated and hashed. Note that each vector component is
a hash value and cannot be treated as a numeral.

Finally, the tests are classified based on the aforementioned
vectors. Currently, tests that have the exact same vectors are
classified as belonging to the same set. In this way, tests
that have the same execution paths, i.e., tests with the same
functions, will be classified together. This test classification

TABLE I: Subject of the experiment

Name of subject When n < 0 When n > 65535

CheckNone substitute n substitute n
CheckLow-SetAltV substitute 0 *a substitute n
CheckLow-ThrowE throw exception*a substitute n
CheckUpp-SetAltV substitute n substitute 0*b

CheckUpp-ThrowE substitute n throw exception*b

CheckBoth-SetAltV substitute 0*a substitute 0*b

CheckBoth-ThrowE throw exception*a throw exception*b

*aInteguity 1 (lower bound check), *bInteguity 2 (upper bound check)

method can be fully automated even for source codes with
100 participants, and can classify a large number of generated
tests in terms of the similarity of their verification procedures.

IV. PRELIMINARY EXPERIMENTS

We applied our approach to a programming subject having a
few lines of code in order to confirm whether our approach can
generate tests with the ability to detect integuity and classify
them appropriately.

A. Subjects

The subject used in the experiments is the PortNumber class
as described in Section II. The assumed integuity consists of
a combination of two factors. One is whether or not to check
the range of the port number, and the other is the behavior in
case of an error. There are three types of range confirmation:
lower limit confirmation (n < 0), upper limit confirmation
(n > 65535), and both lower limit confirmation and upper
limit confirmation. There are two types of behavior when the
specified port number is out of range: assigning an alternate
value (zero) and raising an exception.

As a result of the combination of the above two factors,
we have created a subject with seven functional differences as
shown in Table I. The names of the subjects are a combination
of range checking and error handling. For example, Chec-
kNone does not perform any range checking and assigns the
specified value as it is. This is the minimum implementation
of the issue requirements and corresponds to the constructor
shown in Fig. 3(a). In CheckLow-SetAltV, if the value is below
the lower limit, then an alternative value is assigned. No upper
limit check is performed. This is equivalent to the constructor
shown in Fig. 3(b).

The integuity assumed in this preliminary experiment is
whether the two types of range checking processes are per-
formed, and the behavior in case of an error should be ignored.
For example, the bottom four lines of Table I (CheckUpp-* and
CheckBoth-*) should all be detected as having the same func-
tional difference (checking the upper bound), although they
behave differently in case of an anomaly. For the definition of
this functional difference, please refer to Section III-C.

B. Experimental Method

First, we manually created seven types of subject source
code as described in Section IV-A. Second, we used EvoSuite,



      Student source
Test

ChkNone ChkLow-
SetAltV

ChkLow-
ThrowE

ChkUpp-
SetAltV

ChkUpp-
ThrowE

ChkBoth-
SetAltV

ChkBoth-
ThrowE

Set
ID

ChkNone1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkNone2 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkNone3 765d 8daa c8a0 a0e6 4f09 214f e04b 2
ChkLow-SetAltV1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkLow-SetAltV2 765d 8daa c8a0 a0e6 4f09 214f e04b 2
ChkLow-SetAltV3 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkLow-ThrowE1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkLow-ThrowE2 258a 9a26 c8a0 e831 e087 54db e04b 3
ChkLow-ThrowE3 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkUpp-SetAltV1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkUpp-SetAltV2 765d 8daa c8a0 a0e6 4f09 214f e04b 2
ChkUpp-SetAltV3 765d cc29 4e8e 849f 7e7a dc18 08f1 4
ChkUpp-SetAltV4 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkUpp-ThrowE1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkUpp-ThrowE2 765d 8daa c8a0 a0e6 4f09 214f e04b 2
ChkUpp-ThrowE3 258a 55aa f528 2da1 7e7a 25a9 08f1 5
ChkUpp-ThrowE4 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-SetAltV1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-SetAltV2 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-SetAltV3 765d cc29 4e8e 849f 7e7a dc18 08f1 4
ChkBoth-SetAltV4 765d 8daa c8a0 a0e6 4f09 214f e04b 2
ChkBoth-SetAltV5 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-ThrowE1 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-ThrowE2 765d cc29 4e8e a0e6 4f09 cc48 e794 1
ChkBoth-ThrowE3 258a 55aa f528 2da1 7e7a 25a9 08f1 5
ChkBoth-ThrowE4 258a 9a26 c8a0 e831 e087 54db e04b 3
ChkBoth-ThrowE5 765d cc29 4e8e a0e6 4f09 cc48 e794 1
# generated tests 3 3 3 4 4 5 5
# path types 2 4 3 4 3 5 3

Fig. 4: List of generated tests and runtime paths

an automatic test generation tool, with the default parameters
to generate tests for the subject source code. Third, we ran
every test for every source code along with JaCoCo1, an
execution path measurement tool, to obtain path information
during the test execution. Finally, we calculated the vector
for each test with the method explained in Section III-C. The
md5sum command was used for hashing.

C. Results and Discussion

The hashes for each test obtained from the experiment are
shown in Fig. 4. Each column represents a source code, and
each row represents a test method. Each value represents the
path hash for the execution. Each test vector consists of the
hashes on its right. In order to improve visibility, the same
hash in each column is filled with the same color. The name
of each test method is represented with the name of the
source code from which the test was generated followed by
a sequential number. Note that the order of the tests in the
vertical direction is based on the order generated by EvoSuite
and has no meaning. The set IDs in the right-hand column
of the table are the classification results based on the exact
matching of the vectors. Furthermore, the meaning of each set
is shown in Table II, and examples of a specific generated test
for sets ID1 to ID3 are shown in Fig. 5.

As a result of clustering, most of the tests were assigned
to set ID1. There is a variety of input values n, but we can
see from the test meaning in Table II and the test example
in Fig. 5(a) that all of the tests in set ID1 have inputs in

1https://www.jacoco.org/jacoco/

1 @Test public void CheckNone2() {
2 PortNumber portNumber0 = new PortNumber(992);
3 int int0 = portNumber0.getNumber();
4 assertEquals(992, int0);
5 }

(a) Example of set ID1

1 @Test public void CheckNone3() {
2 PortNumber portNumber0 = new PortNumber(-1);
3 int int0 = portNumber0.getNumber();
4 assertEquals(-1, int0);
5 }

(b) Example of set ID2

1 @Test public void CheckLowThrowException2() {
2 PortNumber portNumber0 = null;
3 try {
4 portNumber0 = new PortNumber(-394);
5 fail("Expecting exception:

IllegalArgumentException");
6 } catch(IllegalArgumentException e) {
7 verifyException("PortNumber", e);
8 }
9 }

(c) Example of set ID3

Fig. 5: Examples of sets ID1 through ID3

the normal range (0 ≤ n ≤ 65535). These set ID1 tests are
generated from all of the source codes and can be interpreted
as a shared function.

Tests in set ID2, such as Fig. 5(b), are tests that check
what happens with a negative input. Both tests that expect the
negative value itself and tests that expect an alternative value
zero were classified as belonging in set ID2. This shows that
tests checking the lower bound are properly classified to the
same set without depending on the assertion part. All tests in
set ID4 likewise check the upper bound.

On the other hand, sets ID3 and ID5 were sets overly
subdivided. Set ID3 is identical to set ID2 in terms of testing n
≤ 0, and ID5 is identical to ID4 in terms of testing n ≥ 65535.
These sets should be classified as the same set. This excessive
division occurs because of unexpected path deviation. As
shown in Fig. 5(c), all tests expect thrown executions and
lack the call to the getter method. The presence or absence
of the getter call affects the execution path, which results in
a difference in the path vectors and the classification. Indeed,
CheckNone takes two different paths, 765d and 258a, as
shown in Fig. 4 even though CheckNone implements only the
minimal function. Tests with 765d include getter calls, while
tests with 258a do not. Only the tests with 258a belong to
sets ID3 and ID5. Tests that expect thrown exceptions tend to
be overly subdivided, and this needs to be addressed.

V. CONCLUSION

We proposed a test classification method that uses auto-
matic test generation and execution path information to detect
integuity among student source code.

In the future, we plan to address the following issues. First,
it is essential to deal with the excessive test segmentation



TABLE II: Set ID of the test and its meaning

set ID Range of n to substitute expectation

1 0 ≤ n ≤ 65535 n

2 n < 0 n or alternative value 0
3 n < 0 Exception
4 65535 < n n or alternative value 0
5 65535 < n Exception

that occurred in the preliminary experiment. In addition, the
automatic detection of integuity using generative tests, which
we mentioned as Challenge 2, is an important remaining task.
In order to achieve Challenge 2, we are considering clustering
based on test state in addition to the current clustering, and
analyzing the characteristics of each group (number of test
passes, number of tests in the same group, etc.) that emerge
from the results. The application of the system to educational
settings is also an important issue, and we are considering
introducing the system to the programming exercises that we
are conducting.
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