NLP-assisted Web Element Identification
Toward Script-free Testing

Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan
{h-kirink, higo, shinsuke, kusumoto} @ist.osaka-u.ac.jp

Abstract—End-to-end test automation is important in modern
web application development. However, existing test automation
techniques have challenges in implementing and maintaining test
scripts. It is difficult to keep correct locators, which test scripts
require to identify web elements on web pages. The reason is
that locators depend on the metadata in web elements or the
structure of each web page. One efficient way to solve the problem
of locators is to make test cases written in natural language
executable without test scripts. As the first step of script-free
testing, we propose a technique to identify web elements to be
operated and to determine test procedures by interpreting test
cases. The test cases are written in a domain-specific language
without relying on the metadata of web elements or the structural
information of web pages. We leverage natural language process-
ing techniques to understand the semantics of web elements. We
also create heuristic search algorithms to find promising test
procedures. To evaluate our proposed technique, we applied it to
two open-source web applications. The experimental results show
that our technique successfully identified 94% of web elements
to be operated in the test cases.

Index Terms—Script-free Testing, Web Testing, Locator

I. INTRODUCTION

In recent years, frequent software updates have become
increasingly important in order to respond to rapid changes
in market conditions. Developers need to confirm that their
software works properly before its release. The cost of re-
gression testing is dominant in software maintenance [1], [2].
Therefore, test automation is an important topic in software
development.

Web application developers often use tools that automate
end-to-end testing, and they need to implement and maintain
test scripts. Dobslaw et al. [3] showed that, compared to man-
ual testing, the initial implementation time was close to 90% of
the total cost up until reaching the return on investment. One
reason for the high cost of test script implementation is that
most end-to-end test automation tools depend on the metadata
in web elements or the structure of web pages. For example,
Selenium [4], a de facto standard end-to-end test automation
tool, requires locators that identify web elements. Some lo-
cators depend on metadata such as id or name attributes
described in HTML documents, and other locators depend on
structural information such as XPath. Developers often have
to understand the detailed implementation of web pages to
determine locators. In this way, test script implementation is
obstructed by the dependencies on metadata and the structure
of each web page.

driver.get('http://.../index.php")

driver.find_element_by_id('mod-login-username").send_keys('admin"')
driver.find_element_by_id('mod-login-password').send_keys('admin')
driver.find_element_by_xpath('/html/body/div[1]/div/div/form/fieldset/
div[4]/div/div/button').click()
driver.find_element_by_xpath('/html/body/div[2]/section/div/div/div[2]
/div[1]/div/div/div/ul[1]/1i[2]/a").click()

Selenium test script
(a) Conventional web testing

open "http://.../index.php" 2
enter "admin" in "username"
enter "admin" in "password"
click "Log in" ® | Langu

System under test

click "article"

Natural-language-like test case
(b) Script-free testing

Fig. 1. Difference between conventional web testing and script-free testing

The dependencies are also an obstacle to maintaining test
scripts. Test scripts with locators are known to be fragile.
Christophe et al. [5] investigated eight open-source software
repositories that have Selenium test scripts. The study showed
that 75% of Selenium test scripts changed more than once
every nine commits (once every 2.05 days). Hammoudi et
al. [6] examined breakages in Selenium IDE test scripts across
453 versions of eight web applications, and classified the
causes of test breakages. Their experimental results showed
that 73.62% of the breakages were caused by locators.

Another significant problem of end-to-end testing is the
cost of writing and maintaining test cases. Note that this
paper defines a test case as a specification of test procedures
and expected results. This paper also defines a test script
as an automated program to verify the specification. Writing
test cases is important for all people involved in testing to
understand the content of tests. The test cases also require
maintenance. When both test cases and test scripts are present,
developers need to keep them consistent. Thus, writing and
maintaining test cases are costly activities, especially for fast-
evolving applications.

In this study, we propose script-free testing, that is, a novel
test automation approach distinct from conventional test script
implementations using locators like that of Selenium. Figure 1
shows difference between conventional web testing and script-
free testing. Conventional web testing requires test scripts
depending on the implementation of a system under test. On
the other hand, in script-free testing, developers can execute
test cases that are close to natural language as automated

tests. As the first step of script-free testing, we propose a
technique to identify web elements to be operated in test
cases. The test cases that we are focusing on are written in a
domain-specific language (DSL) without relying on metadata
in web elements or the structural information of web pages.
Even non-developers can interpret our DSL as if it were
natural language, so non-developers can communicate with
developers by using the test cases and can also write them
without knowledge of programming language. We leverage
natural language processing (NLP) techniques to understand
the semantics of web elements. We also create heuristic search
algorithms to find promising test procedures. To evaluate our
proposed technique, we applied it to two open-source web
applications. The experimental results show that our technique
successfully identified 94% of web elements to be operated in
the test cases. The results also show that all the web elements
to be operated are identified successfully in 68% of the test
cases.

II. EXISTING APPROACHES

To reduce the cost of test script implementation, many re-
searchers have attempted to automatically generate test scripts
for web applications [7]-[9]. The approaches can generate
effective test scripts for particular situations. However, it is
difficult to generate test scripts that meet the developers’
requirements because the techniques generate test scripts
according to some criteria, not test cases written by the
developers.

Some researchers have sought to address the fragility of test
scripts to improve their maintainability. One effective solution
is to make locators more robust by using metadata that is
unlikely to change [10], [11] or by using images of web
elements as locators [12], [13]. Leotta et al. proposed a robust
XPath algorithm, ROBULA+ [10]. The study showed that
ROBULA+ reduced the fragility of Selenium IDE locators
by 63%, but these algorithms still depend on metadata or the
structural information of web pages.

Several other researchers have leveraged NLP techniques
into testing or operating web applications. Lin et al. [14]
proposed a technique to identify the topic of input fields
for crawling-based test automation techniques, which can be
applied to mine behavioral models. However, their technique
only considers input fields, and only pre-trained topics are
identified. Pasupat et al. [15] proposed a machine-learning-
based technique to convert a natural language command (e.g.,
clicking on the second article) into the web element to be
operated on the page. Their technique can be applied to end-
to-end testing, but many of the given commands in their study
are indirect and difficult to interpret with their model. In
our technique, we define a DSL that is sufficient to describe
test cases and incorporate heuristic search algorithms to find
promising test procedures.

III. OUR APPROACH

In order to achieve script-free testing, our first target is to
identify web elements to be operated in test cases. The test

click “save and end”

B—

Input:
Test case

click | v Save&C\ose

S =
Proposed technique Output:

Test procedure

Explore

System under teg\
STEP 1. Vectorization

+ | Save & Close

<button onclick="Joomla.submitbutton('user.save');"
class="btn btn-small button-save">

target
Save & Close
click “save and end” </button>
Test step Web Element

‘ Extract words

[save, and, end] [save, close] [joomla,submitbutton,user,save]

Target words Text words Attribute words
‘ Vectorize with fastText

[0.42, .18, ..]
Target vector Text vector Attribute vector

‘\\\"--___;__4444_¥__<—-'*“//,

Calculate similarity between target and each web element.

STEP 2. Heuristic Search

A. Page-level search

[0.34, 0.13, ..] [0.93, 0.34, ..]

@ @

enter “article” in “title” — -
enter “test” in “description” ? [re———— ®
.

click “save and end”

Menu Details

Test steps closed to a web page

Menu Typ @
Description @

Find plausible page-wise procedures with page-wise scores calculated
from the similarities. (3 — & — (D is one of the page-wise procedures)

B. Transition-level search

enter “article” in “title”
enter “test” in “description”
click “save and end”

iti score: 0.3
Page transition e o4

: page-wise score: 0.2
i score: 0.8

©-6-8] ———Ic=0-0

score
Page-wise procedures

(Test steps in the next page)

Page-wise procedures for page X

score: 0. 6
score:
score: e 3

Page-wise procedures for page Y

Explores multiple possible sequences of page-wise procedures for
__accurate conversions throughout the test case.

Fig. 2. An overview of our approach

cases are written in a DSL that is close to natural language. A
test case written in the DSL is a sequence of test steps, which
are atomic operational units. Figure 2 shows an overview
of our approach. The proposed technique interprets a test
case and determines a test procedure while exploring the
page transitions of a system under test. First, our approach
vectorizes web elements and strings specifying the target of
the operation by using NLP techniques to understand their

semantics. Next, our approach also determines a test procedure
by using heuristic search algorithms to consider multiple
possibilities of promising test procedures.

Table I shows the specification of our DSL. Since our DSL
is close to natural language, it does not require knowledge
of programming language to write. Our DSL can currently
handle only simple operations such as clicking, inputting, and
selecting. We introduce assertions to our DSL only to extend
the expressions of test cases. The assertions do not affect the
process of the heuristic search algorithms that are explained
in Section III-B.

A. Vectorization

To determine a test procedure, we need to identify the web
element corresponding to the target string specified in the test
case. For this purpose, we measure the similarity between the
web elements and target strings. One key idea is to vectorize
both web elements and target strings in order to represent their
semantics.

Word embedding techniques (e.g., Word2Vec) are often used
to represent the semantics of a word or a sentence as a vector.
We devise an approach to represent the semantics of a web
element because web elements include information that is
irrelevant to the semantics. First, we extract the values of
attributes and visible texts from a web element separately.
Visible texts include inner text and labels associated with a
web element by for attributes of HTML. The reason for
separating attributes and visible text is that we assume visible
text represents the semantics of the web element more directly
and is more important than attribute values. Here, we ignore
some attributes that are mainly used for visual layouts such as
class, style and so on.

STEP 1. in Figure 2 shows an example of vectorizing a
target string and a web element in the content management
system Joomla! [16]. In this example, the text “Save & Close”
that is rendered on the button is extracted as ftext words.
Only the value of the onclick attribute is extracted as
attribute words. The value of the onclick attribute is an
important piece of information because it is often the name

TABLE I
THE SPECIFICATION OF OUR DSL

Operation Description

open url
click target

Open a specified url

Click a button, link, etc., specified
with target

Enter value in an input field, specified
with rarget

Select value from a drop-down list,
specified with target

A separator between pages for the
heuristic search algorithm, explained
in Section III-B

Assert that a specified string exists on
the current page.

Assert that the title of the current page
is a specified string

enter value in target

select value from target

assert string exists

assert title is string

of a JavaScript function and represents the feature of the web
element. The other attributes (e.g., class, area-hidden)
are ignored.

Next, we convert these words into vectors representing their
semantics. Among the available word-embedding algorithms,
we selected fastText [17] because of its ability to handle
unknown words by using subword embedding. The fastText
model has one million word vectors and is pre-trained on
Wikipedia 2017, UMBC WebBase corpus, and statmt.org news
dataset. Since web elements often include abbreviations and
proper nouns, we believe that a technique using subwords is
suitable. The proposed technique vectorizes each word and
takes their mean to obtain a text vector from the text words
and an attribute vector from the attribute words.

In addition, we introduce tf-idf to weight each word. Intu-
itively, if the same word appears in a web element frequently,
the word could be considered to uniquely represent the web
element. However, if the same word appears across multiple
web elements, the word would not be considered to represent
the web elements. Therefore, although tf-idf is usually used
to weight words among documents, we apply tf-idf to weight
words among elements in this study.

Let M be the number of text words, and w; be the ¢-th
unique word. Vector v; is the resulting vector after applying
fastText to w;. The text vector viext Of a web element e
is calculated by the weighted mean of v; with tf-idf as the
weight:

S (thdE (wy, e, B) % v;)
M thdf (w;, e, E)

where tfidf(w, e, E) is the weight of tf-idf calculated by a
word w, a set of web elements F/, and a web element e (€ FE).
The attribute vector vag, 1S also calculated in the same way
as the text vector.

The method to vectorize target strings is almost the same
as that to vectorize web elements. We extract the words from
a target string in the same way as for web elements. We
vectorize each word by using fastText and calculate the mean
of the words without tf-idf. Thus, we obtain the vector of a
target String Viarget-

Then, we can calculate the similarity between a target string
and a web element by using Viarget» Vtext» and Vagyr. The
similarity (¢, e) between a target string ¢ and a web element e
is calculated as a weighted mean of the two cosine similarities:

Vtext =

@ X cos_sim(Vtarget s Veext) + COS_SIM(Viarget, Vattr)
a+1

(D

where o (> 1) is a constant to add weight to the text words,
and cos_sim is the cosine similarity of two vectors.

B. Heuristic search algorithm

The vectorization step can identify a web element that is
most similar to the target string. However, the vector repre-
sentation of the web element depends on its implementation,
so the accuracy of the representation is uncertain. To handle
such uncertainty, associated with the word-embedding-based

similarity, we create two heuristic search algorithms: page-
level search and transition-level search.

1) Page-level search: The page-level search algorithm con-
tributes to determining a part of a test procedure closed to
one web page. To clarify which test steps are closed to one
web page, we introduce page separator “——-" to our DSL.
It is necessary to know that the web elements specified by
the target string exists on the same page. First, the algorithm
calculates the similarities of all possible pairs of a target string
and a web element on a particular web page. We consider
permutations of web elements corresponding to target strings.
When a permutation is selected, a procedure to be operated
on the web page is determined. We define such a part of a test
procedure closed to one web page as a page-wise procedure.

Next, the algorithm calculates scores of all possible page-
wise procedures and then sorts by the score. Let us call this
score a page-wise score. When N test steps are performed on a
web page, the page-wise score sy, is calculated as the mean of
the sum of similarities between each target string and each web
element: + Zi\il similarity(¢;, e;) where ¢; is the i-th target
string, and e; is a web element corresponding to ¢;. The more
promising page-wise procedure has higher page-wise scores.

2) Transition-level search: We obtained multiple page-wise
procedures with page-wise scores by applying the page-level
search algorithm. However, the page-wise procedure with the
highest page-wise score is not always correct. In the example
of STEP 2-B. in Figure 2, page-wise procedure @ — & — O
has a higher page-wise score than page-wise procedure @) —
(® — (@. However, considering the next page after the page
transition, all the page-wise scores with the next page are low.
Therefore, we can assume that the page-wise procedure G) —
(® — @ is more plausible in this page.

Transition-level search explores multiple possible sequences
of page-wise procedures. It contributes to determining a test
procedure throughout the test case. We determine the most
promising procedure by considering the transition-wise scores.
The transition-wise score is calculated as the sum of the page-
wise scores up to the current web page. Generally, there are
many possible page-wise procedures and page transitions, so
it takes too much time to explore all of the possible sequences
within the page-wise procedures. Hence, we adopt the beam
search algorithm, which explores a graph by expanding the
most promising node in a limited set. The beam search
algorithm has two parameters: a search width W, and a
beam width W;. The algorithm searches the top W, page-
wise procedures at each step. Therefore, if the beam search
considers N states at the current step, the number of states
at the next step will be W, x N. The algorithm then prunes
the states, leaving the W, states with the highest transition-
wise scores. Let M be the number of page-wise procedures
executed up until the current state. The transition-wise score
s¢ is calculated by Zf\il sp, where s, is the page-wise score
of the i-th page-wise procedure. The sequence of page-wise
procedures with the highest transition-wise score is assumed
to be the most promising test procedure for the test case. Now,
we obtain the test procedure corresponding to the test case.

IV. EXPERIMENT

We applied the proposed technique to test cases written
in our DSL to evaluate the effectiveness of our technique.
We implemented our technique as a tool that determines the
most promising test procedure and that generates a test script
written in Python with Selenium to execute the test procedure.
The generated test scripts contain locators to identify web
elements corresponding to target strings in the test cases.
We manually checked the locators to determine if the web
elements are identified as intended in the test cases. Note
that the fact that the locators are correct does not neces-
sarily mean that the generated test scripts can be executed
correctly. This is because our tool does not currently consider
a waiting time for rendering web elements. Our tool, test
cases, and the generated test scripts are publicly available:
https://zenodo.org/record/4973219.

A. Experimental Setup

The target applications in our experiment were Joomla! and
MantisBT [18], which are non-trivial and popular open-source
web applications. We chose these applications because they are
feature-rich, have dynamic user interfaces, and are widely used
in practice. We first prepared test cases manually for the two
applications as inputs for our tool. We chose 21 representative
use cases of Joomla! and 26 use cases of MantisBT. The use
cases of Joomla! belong to the following three categories,
described in the user manual for administrators [19]: article
management, user management, and menu management. Be-
cause the user manual of MantisBT does not have an organized
categorization like Joomla!, we assumed the following three
features as constituting the main features of MantisBT: issue
management, user management, and others (management of
projects, tags, custom fields, and global profiles).

We wrote 47 test cases to verify the chosen use cases.
The test cases have 453 test steps in total. However, the way
to write test cases depends on the user. The target string
in particular is dominant for the accuracy of our technique.
Therefore, we limit texts used as target strings to rendered
strings on the web browser and its type (button, checkbox,
etc.). We applied the proposed technique with three different
parameters. In this experiment, we set the same values for
the search widths W, and beam widths W, and tried three
different values: Wy, = W, =1, 3, or 5. Wy = W, =1
means that the transition-level search was not performed. In
other words, the page-wise procedure with the highest page-
wise score was adopted on each web page. In this study, we
treat text vectors and attribute vectors separately to identify
web elements accurately. To see if this approach worked well,
we also examined the case where elements are represented
by a single vector without distinguishing between text vectors
and attribute vectors at the vectorization step. This means that
all words in a web element are treated equally. In this case,
we set W, and W}, to 5, both when distinguishing and when
not distinguishing between the vectors. When distinguishing
between the vectors, o = 3 is set as the weight text vector in
Formula (1).

TABLE II
THE NUMBER OF SUCCESSFUL CONVERSIONS

Search/Beam width Ws =W, =5 Ws =W, =3 Ws=W,=1 Ws=W,=25
Distinguish text/attribute Yes Yes Yes No

Test step Test case Test step Test case Test step Test case Test step Test case
Joomla! 179 (90.4%) 13 (61.9%) 179 (90.4%) 13 (61.9%) 163 (82.3%) 9 (42.9%) 162 (81.8%) 9 (42.9%)
MantisBT 247 (96.9%) 19 (73.1%) 245 (96.1%) 18 (69.2%) 231 (90.6%) 15 (57.7%) 240 (94.1%) 18 (69.2%)
Total 426 (94.0%) 32 (68.1%) 424 (93.6%) 31 (66.0%) 394 (86.0%) 24 (51.1%) 402 (88.7%) 27 (57.5%)

B. Results and Discussion

Table II shows the number of successful identifications. 7est
step in the table means the number of test steps correctly
identifying web elements to be operated. Test case in the table
means the number of test cases in which all test steps in the
test case identify web elements correctly. In other words, even
if one of the test steps failed to identify web elements in the
test case, the test case was counted as a failure.

We will explain the results when text vectors and attribute
vectors were distinguished between. The experimental results
show that, when W, = W}, = 5, about 94% of test steps
and about 68% of test cases are successful in identifying web
elements. When Wy, = W;, = 3, the accuracy was slightly
lower than in the case where W, = W, = 5. This result
means that the correct page-wise procedure is proposed in the
top three by the page-level search in most cases. Therefore, we
can say that page-level search worked well in our approach.
We can see that when W, = W}, = 1 (without transition-level
search), the accuracy was rather low compared to the other
cases. By comparing the case W, = W), = 1 and 3, we can
see that the transition-level search contributes significantly to
the accuracy of our technique.

Next, we will explain the results when text vectors and
attribute vectors were not distinguished between. When W =
Wy = 5, comparing the case where the two vectors were
distinguished between and the case where they were not,
distinguishing between the vectors increased the accuracy. The
result indicates that distinguishing the vectors is effective for
our approach and that text words represent the semantics of
elements more directly than attribute words. Therefore, the
approach weighting text vectors contributed to the accuracy
of the proposed technique.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed script-free testing, that is, a novel
test automation approach distinct from conventional test script
implementation using locators. If test cases written in natural
language can be executed as automated tests, it will not only
make testing more efficient but will also allow more people
to participate in software development. We also proposed an
approach to identify web elements to be operated in test
cases that are close to natural language, as the first step of
script-free testing. Our approach combines NLP techniques
and heuristic search algorithms to determine a promising test
procedure throughout the test case. The experimental results

showed that the proposed technique can identify web elements
accurately and that our NLP-based approach and heuristic
search algorithms contribute to the accuracy.

In the future, we are going to increase operations of our
DSL to improve the expressiveness of test case descriptions
and apply our approach to real-world software development.
To demonstrate the practical effectiveness of our approach,
we are also going to evaluate our approach by having experts
use it and compare it with existing test script implementation
techniques on robustness, readability, cost-effectiveness, and
o on.

REFERENCES
[1]
[2]

G. Rothermel and M. Harrold, “A safe, efficient regression test selection
technique,” ACM Trans. Software Eng. Method., vol. 6, no. 2, 1997.
H. K. N. Leung and L. White, “Insights into regression testing (software
testing),” in ICSM, 1989, pp. 60-69.

F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. de Oliveira Neto,
and R. Torkar, “Estimating return on investment for gui test automation
frameworks,” in Proc. ISSRE, 2019, pp. 271-282.

(2004) Selenium. [Online]. Available: https://www.selenium.dev/

L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence
and maintenance of automated functional tests for web applications,” in
Proc. ICSME, 2014, pp. 141-150.

M. Hammoudi, G. Rothermel, and P. Tonella, “Why do record/replay
tests of web applications break?” in Proc. ICST, 2016, pp. 180-190.
S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided test generation for web applications,” in Proc. ICSE, 2013, pp.
162-171.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proc. ESEC/FSE, 2019, pp. 142-153.

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing
tests in automated test generation for web applications,” in Proc. ASE,
2014, pp. 67-78.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+: An algorithm
for generating robust xpath locators for web testing,” Journal of Soft-
ware: Evolution and Process, vol. 28, no. 3, pp. 177-204, 2016.

R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust
test automation using contextual clues,” in Proc. ISSTA, 2014, pp. 304—
314.

T. Yeh, T. Chang, and R. C. Miller, “Sikuli: Using gui screenshots for
search and automation,” in Proc. UIST, 2009, pp. 183-192.

A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “Pesto: A tool for
migrating dom-based to visual web tests,” in Proc. SCAM, 2014, pp.
65-70.

J. Lin, F. Wang, and P. Chu, “Using semantic similarity in crawling-
based web application testing,” in Proc. ICST, 2017, pp. 138-148.

P. Pasupat, T. Jiang, E. Liu, K. Guu, and P. Liang, “Mapping natural
language commands to web elements,” in Proc. EMNLP, 2018, pp.
4970-4976.

(2021) Joomla! [Online]. Available: https://www.joomla.org/

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” TACL, vol. 5, pp. 135-146, 2017.
(2021) MantisBT. [Online]. Available: https://www.mantisbt.org/
(2021) Joomla! administrator’s manual. [Online]. Available: https:
/ldocs.joomla.org/Portal: Administrators

[3]

[4]
[5]

[6]
[7]

[8]
[9]

(10]

(11]

(12]

[13]

[14]
[15]
[16]
(17]

[18]
[19]

