JTDog:
a Gradle Plugin for Dynamic Test Smell Detection

Masayuki Taniguchi, Shinsuke Matsumoto, Shinji Kusumoto
Graduate School of Information Science and Technology
Osaka University
Osaka, Japan
{m-tanigt, shinsuke, kusumoto} @ist.osaka-u.ac.jp

Abstract—The concept of the test smell represents potential
problems with the readability and maintainability of the test code.
Common test smells focus on static aspects of the source code,
such as code length and complexity. These are easy to detect and
do not cause problems in terms of test execution. On the other
hand, dynamic smells, which are based on test runtime behavior,
lead to misunderstanding of the test results. For example, rotten
green tests give developers the false impression that the test was
passed without any problems, even though the test was poorly
executed. Therefore, we should detect dynamic smells and take
countermeasures as early as possible through the development.
In this paper, we introduce JTDog, a Gradle plugin for dynamic
smell detection. JTDog has high portability due to its integration
into the build tool. We applied JTDog to 150 projects on GitHub
and confirmed that the JTDog plugin has high portability. In
addition, JTDog detected 958 dynamic smells in 55 projects. JT-
Dog is available at https://github.com/kusumotolab/JTDog, and
the demo video is available at https://youtu.be/t374HYMCavl.

Index Terms—software testing, test smell, Gradle plugin, build
tool, dynamic analysis

I. INTRODUCTION

Test smells represent potential problems with the readability
and maintainability of the test code [1]. The presence of
test smells can lead to poor test quality, and it is desirable
to detect test smells early and eliminate them through code
improvements, such as refactoring. Typical examples of test
smells are excessively long code and duplicate tests [2]. While
these smells are also in production code, there are test-specific
smells that are based on practices inherent in test design. For
example, the use of control statements in the test code can
result in increased test complexity and bugs in the test code
itself [2].

These general test smells focus on static aspects of test code,
and their negative effects are limited to static problems such as
maintainability. In this paper, we call these smells static smells.
For instance, a test code that is too long results in difficulty
in understanding the code and increased maintenance costs.
Howeyver, such a code does not affect the test execution results.
Similarly, test codes containing control statements indicate
potential problems that can lead to test complexity and bugs
in the tests themselves, which are not problematic in terms of
test execution.

On the other hand, there are smells that affect the results
of test execution. We call these dynamic smells. For example,

a rotten green test [3] is a passed test that contains unexe-
cuted assertions. Rotten green tests give developers the false
impression that the test was passed without any problems,
even though verification by assertions is insufficient. Dynamic
smells, like the rotten green test, can lead to more serious
problems than static smells. Dynamic smells cause problems
with test execution results and lead to misunderstanding of test
results.

Many studies have been conducted on test smells [4]-[7],
and none of these studies consider the classification of test
smells (static or dynamic). In addition, many tools have been
proposed to detect test smells, such as TestHound [8] and
tsDetect [9], and these tools detect only static smells. To our
knowledge, there is no tool for dynamic smell detection.

In this paper, we introduce JTDog, a Gradle plugin for
detecting dynamic smells. Although static smells can be de-
tected only by static analysis of the test code, dynamic smells
require dynamic analysis and various processes, such as test
execution and coverage analysis of the test code. The user
of a dynamic smell detection tool must input a great deal of
information, including source code location and classpath, and
a dynamic smell detection tool is difficult to use immediately.
Therefore, the portability of dynamic smell detection tools
tends to be lower than that of static smell detection tools. As
a countermeasure to the problem of reduced portability, we
can achieve high portability by incorporating a dynamic smell
detection technique into the Gradle build tool. JTDog detects
the three major dynamic smells: the rotten green test [3], the
flaky test [10], and the dependent test [11].

In order to confirm the portability of JTDog, we applied the
proposed plugin to 150 projects on GitHub. As a result, JTDog
worked correctly in 122 projects and detected 958 dynamic
smells in 55 of these projects.

IT. JTDoG

JTDog is a Gradle plugin for dynamic test smell detection
for Java projects. JTDog detects three types of dynamic test
smells, i.e., the rotten green test [3], the flaky test [10], and
the dependent test [11], and outputs the results to a JSON file.
JTDog was developed as open-source software on GitHub',
and the JTDog plugin is available on the Gradle Plugin Portal®.

Thttps://github.com/kusumotolab/JTDog
Zhttps://plugins.gradle.org/plugin/com.github.m-tanigt.jtdog

A. Usage

JTDog provides a task labeled sniff that detects dynamic
smells. Developers can detect dynamic smells present in a
project by simply running the command gradle sniff. Further-
more, we can use this task by adding a single line of usage
declaration to the plugins{} block in the build.gradle file, as
shown below.

plugins {
id ’com.github.m-tanigt. jtdog’
}

version ’latestVersion’

B. Design

Dynamic Smell Detection Methods: In this subsection, we
show the detection methods for each of three dynamic smells:
the rotten green test, the flaky test, and the dependent test.

Rotten green test We follow the method of Delplanque et
al. [3] to detect rotten green tests. First, we statically analyze
the test code to determine the elements of each method,
including assertions and method calls. Then, we run each test,
and if each test is passed, then we analyze the coverage data to
determine whether the test contains any unexecuted assertions.

Flaky test A flaky test is a test that both passes and fails
periodically with same code. Many methods for detecting flaky
tests have been proposed in recent years. One of the simplest
methods, called RERUN, is to rerun a failed test multiple times
and to check whether the test passes even once [10]. Other
methods include monitoring changes in coverage due to code
changes and classifying failed tests using machine learning
[12], [13]. JTDog detects flaky tests by RERUN.

Dependent test A dependent test is a test that depends on
other tests. If the test order changes, then the dependent test
results will also change. A dependent test can be detected by
running tests in a default order once, and then rerunning the
tests in reverse order or randomly [11]. If the test results are
different from those in the default order, then we can judge
the test to be a dependent test. In the present study, we detect
dependent tests by rerunning the test several times in random
order.

Workflow: Using the detection method described in the
previous section, we detect dynamic smells by the following
procedure:

1) Statically analyze the test code and collect method
information.

2) Embed coverage measurement instructions in the byte-
code of test classes.

3) Run each instrumented test in default order.

4) If a test passes, then check whether the test is a rotten
green test. If a test fails, then check whether the test is
a flaky test.

5) After the tests are executed in default order, run the tests
in random order to detect dependent tests.

C. Implementation

Smell Detection: In order to detect dynamic smells, JTDog
first generates ASTs of test codes using Eclipse JDT and

JTDog Plugin Gradle Java Plugin

User
1. Invoke
—_—

=" 3. Compile src/test
ET-I

SourceSet

L}
o
LD ! 5 Detect dynamic smells src files
LI | - Rotten green test analysis (£:%¥%8) test files
S i - Flaky test analysis (%) class files
! - Dependent test analysis (1¥) classpath ...
Il Task Test exec. $£FAST traversal £¥ Coverage analysis

Fig. 1. Detection process using Gradle API

analyzes these ASTs to collect method information. JTDog
then instruments test classes with JaCoCo to measure the
coverages and run the tests in default order using JUnit.

Second, for each test method, if the test passes, then JTDog
checks whether it is a rotten green test. JTDog obtains the line
numbers of the assertions that the test method contains from
the method information collected in advance. By analyzing the
coverage data to check whether the instruction in that line has
been executed, JTDog can determine whether the test contains
any unexecuted assertions. If the test includes method calls,
JTDog also checks the method recursively to ascertain whether
the test contains unexecuted assertions. In case of a test failure,
JTDog reruns the test multiple times, and if the test passes at
least once, then the test is considered to be a flaky test.

After the tests are executed in default order, JTDog performs
a test execution in random order several times. Each test
execution is performed on a different JVM. For each test
method, the test result is compared with the result in a default
order, and if the results differ, then the test is determined to
be a dependent test. If the test has already been judged to be
a flaky test, then the test is treated as not being a dependent
test, because the test result will change independently of the
order.

Using Gradle API: In addition to production code and
test code, various other information, including class files and
external library paths, is required in order to perform the dy-
namic smell detection process described above. Gradle, a build
tool, can automatically manage source folders and resolve
dependencies. By incorporating the dynamic smell detection
technique into Gradle, all of the information necessary for
execution can be retrieved from Gradle and high portability
can be achieved.

Figure 1 shows an overview of the detection process using
the Gradle API. In a Java project using Gradle, the Java plugin
is applied to compile and test. The sniff task provided by
JTDog depends on the testClasses task provided by the Java
plugin. This means that when the sniff task is executed, the
testClasses task is executed first and performs preprocessing,
such as file compilation.

The Java plugin also introduces SourceSets into the project.
A SourceSet is a logical group of Java source and resource
files and has information about the compilation of source
and resource files. By using a SourceSet, JTDog can retrieve
source files, class files, classpath, and so on. JTDog obtains
production codes and test codes from a SourceSet and collects
method information by generating and analyzing the ASTs of
test codes. The proposed plugin then acquires the test class
files and classpath from the SourceSet, and instruments and
executes tests to obtain the test results and coverage data.
By combining the collected data, JTDog can detect dynamic
smells.

III. EVALUATION

In order to evaluate the portability of JTDog and its ability
to detect dynamic smells, we applied JTDog to Gradle projects
on GitHub.

A. Subjects

We selected projects on GitHub that met the following
criteria:

e A project that uses the Gradle build tool, or a Maven
project that can be converted to a Gradle project without
problems using the conversion features of Gradle.

o The primary language is Java, and the Gradle Java plugin
has been applied.

o Contains at least one test.

e Uses JUnit as the testing framework.

o Has more than 100 star ratings.

Based on the above conditions, 150 projects were selected as
the target projects.

B. Experimental approach

For each project to be applied, we add a declaration for
using JTDog to its build.gradle file, as shown in Section 2.1.
Then, we run the sniff task and check the contents of the JSON
file in which the detection results are output.

C. Results

Portability: As a result of applying JTDog to 150 selected
projects, JTDog worked correctly in 122 projects, which is
approximately 81% of the total number of projects. This result
shows that JTDog can be applied to a variety of projects by
only adding one sentence to the build file to use this plugin.

For the 28 projects that failed to apply the JTDog plugin,
we visually checked for the cause of failure. The breakdown is
shown in Table I. We investigated the reason for the failure due

TABLE I
CAUSES OF APPLICATION FAILURES

Cause # of projects
Out of memory 10
Failed to create task 9
Incorrect detection result 6
Failed to read file 3

to an out of memory error, and found that this error was caused
by the huge number of methods in the project. Since JTDog
collects and stores method information to detect dynamic
smells, the more methods there are, the more memory is used
to retain the information. In other words, the insufficient heap
space is the cause of the out of memory error. By increasing
the heap space, we can prevent this problem. As for causes
other than out of memory errors, we do not fully understand
the reasons at present and need to analyze the causes of these
errors in detail in the future. However, we consider that there
are few problems caused by the implementation of the tool,
and that JTDog has high portability.

Detection Results: Table II shows the number of dynamic
smell detections in 122 projects in which JTDog worked prop-
erly and the number of projects that contains smells. Based on
the results, 55 out of 122 projects have dynamic smells, which
means that approximately 45% of the successfully applied
projects contain at least one dynamic smell. Moreover, the
rotten green test has the highest number of detections and
many projects include this smell. This is because the rotten
green test is a new test smell introduced in 2019 [3] and
most developers are not familiar with this smell. According
to Delplanque et al. [3], the rotten green test is worse than no
test at all because the rotten green test gives developers the
false impression that the test passed without any problems,
even though the test was poorly executed. Hence, tools that
can detect the rotten green test are important.

We examine the tendency of each smell in each project.
Tables III, IV, and V show the number of each dynamic
smell detected in each project, for the top three projects. For
the rotten green test, the projects with the largest number of
detections shown in Table III contained many smells with the
same cause. For instance, in the traccar project with the highest
number of detections, most of the 224 rotten green tests were
caused by not executing assertions in if statements. By using
JTDog, developers can learn which type of code is a rotten
green test, which can be useful for future development.

Regarding the number of flaky test detections in Table
IV, the number of detections in the http-request project was
outstanding, but was small in the other projects. This may be

TABLE I
DETECTION RESULTS

Dynamic smell # of detections # of projects

Rotten green test 781 48
Flaky test 66 5
Dependent test 111 13
Total 958 55

TABLE III TABLE IV TABLE V

FLAKY TEST
DETECTION PROJECTS

ROTTEN GREEN TEST
DETECTION PROJECTS

DEPENDENT TEST
DETECTION PROJECTS

Project # Project # Project #
traccar 224 http-request 59 ehcache3 57

elki 110 java-jwt 4 http-request 22
Apktool 58 spring-statem. 1 micrometer 11

432 @Test

433 public void clc3IsDisposed() {

434 toV3Completable (Completable.complete())
435 .subscribe (new CompletableObserver () {
436 @Override

437 public void onSubscribe (Disposable d) {
438 //this assertion is not executed.
439 assertFalse (d.isDisposed()) ;

440 }
441 ..
442 1)
443 }

Fig. 2. Example of a detected rotten green test®

because, in addition to the fact that JTDog uses the simplest
detection method, RERUN, this method is supported by many
frameworks, such as Jenkins [14], and many projects deal with
this smell.

In all of the top three projects in Table V, the main cause of
the dependent test was sharing of static variables between tests.
Such tests may change the test results by changing the test
code, including adding tests that use the same static variables.
It is desirable to detect dependent tests at an early stage and
take countermeasures, so detection tools such as JTDog are
important.

Hlustrative Case: The test method c1c3lsDisposed() of
the RxJavalnterop project shown in Figure 2 is a rotten green
test that JTDog detected. The onSubscribe() method (line
437), an action of the event listener, has an internal assertion
and is never executed. Therefore, the program is not verified
by the assertion in line 439, and the test is insufficient. This
kind of callback function makes difficult to confirm whether
assertions will be executed or not. JTDog helps developers to
notice such problems that are easily overlooked.

IV. RELATED WORK

Many detection tools have been proposed for test smells.
Breugelmans and Rompaey developed TestQ [15], a tool to
quantify test smells. Greiler et al. introduced new test smells
associated with test fixtures and created a detection tool,
TestHound [8]. In a subsequent study, the authors extended
TestHound to analyze Git and SVN repositories and released
TestEvoHound [16]. Palomba et al. built TASTE [17], a tool
to detect three types of test smells by textual analysis. Bavota
et al. [18] created an unnamed test smells detection tool that
detects nine types of test smells, and Peruma et al. proposed
tsDetect [9], which can detect 19 types of test smells. All of
these tools are capable of detecting only static smells and are
complementary to JTDog.

Detection tools have been created for each of the three test
smells that we have classified as dynamic smells. Delplanque
et al. proposed a rotten green test as a new test smell
and developed DrTest as a detection tool [3]. Since DrTest
targets programs written in the Pharo language, Martinez et
al. developed RTj [19], a rotten green test detection tool for

3https://github.com/akarnokd/RxJavalnterop/blob/3.x/src/test/java/hu/
akarnokd/rxjava3/interop/RxJavalnteropTest.java#L.432

Java programs. To detect dependent tests, Zhang et al. built
DTDetector [11], and Gambi et al. built PRADET [20]. Bell
et al. proposed a new detection method for flaky test and
implemented DeFlaker [12]. These are all standalone tools.
We integrated the detection functions of each dynamic smell
into a Gradle plugin. Integration into a build tool provides high
portability and allows one tool to detect all dynamic smells,
which leads to increased productivity of developers.

There are integrations of test smell detection methods into
IDEs. Bleser et al. developed SoCRATES [21], an IntelliJ
plugin that can detect six types of test smells. Lambiase et
al. created an IntelliJ plugin, DARTS [22], which can detect
three types of test smells and perform automatic refactoring.
Eclipse plugins have also been created. Baker et al. built TReX
[23], and Santana et al. built RAIDE [24]. These plugins
provide support for refactoring. Koochakzadeh and Garousi
developed TeReDetect [25] and TeCReVis [26]. These tools
are integrated into an Eclipse plugin called CodeCover [27].
By integrating test smell detection techniques into the IDE,
they reduce the cost of test smell detection for users. Similarly,
JTDog helps users to detect test smells easily by integrating
dynamic test smell detection methods into Gradle.

V. CONCLUSIONS

In this paper, we introduced JTDog, a Gradle plugin for
detecting dynamic test smells. In order to evaluate the porta-
bility of JTDog and its ability to detect dynamic smells, we
applied JTDog to 150 projects on GitHub. JTDog detected
958 dynamic smells from 55 projects. In the future, we intend
to improve the dynamic smell detection method and to extend
JTDog to detect both static and dynamic smells. Moreover, we
plan to enable JTDog to analyze tests from other Java testing
frameworks, such as TestNG.

ACKNOWLEDGMENTS

This research was partially supported by JSPS KAKENHI
Japan (Grant Number: JP21H04877)

REFERENCES

[1] A. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring Test Code,”
in International Conference on Extreme Programming and Flexible
Processes in Software Engineering, 2001, pp. 92-95.

[2] G. Meszaros, xUnit test patterns: Refactoring test code.
Education, 2007.

[3] J. Delplanque, S. Ducasse, G. Polito, A. P. Black, and A. Etien, “Rotten
Green Tests,” in International Conference on Software Engineering,
2019, pp. 500-511.

[4] B. V. Rompaey, B. D. Bois, and S. Demeyer, “Characterizing the
Relative Significance of a Test Smell,” in International Conference on
Software Maintenance, 2006, pp. 391-400.

[5]1 G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in International Conference on Software
Maintenance, 2012, pp. 56-65.

[6] G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “Are
Test Smells Really Harmful? An Empirical Study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052-1094, 2015.

[71 A. Peruma, “What the Smell? An Empirical Investigation on the
Distribution and Severity of Test Smells in Open Source Android
Applications,” Master’s thesis, Rochester Institute of Technology, 2018.

Pearson

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Greiler, A. van Deursen, and M. Storey, “Automated Detection of
Test Fixture Strategies and Smells,” in International Conference on
Software Testing, Verification and Validation, 2013, pp. 322-331.

A. Peruma, K. Almalki, C. Newman, M. Mkaouer, A. Ouni, and
F. Palomba, tsDetect: An Open Source Test Smells Detection Tool.
Association for Computing Machinery, 2020, pp. 1650-1654.

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis
of Flaky Tests,” in International Symposium on Foundations of Software
Engineering, 2014, pp. 643-653.

S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. Ernst, and
D. Notkin, “Empirically Revisiting the Test Independence Assumption,”
in International Symposium on Software Testing and Analysis, 2014, pp.
385-396.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “DeFlaker: Automatically Detecting Flaky Tests,” in International
Conference on Software Engineering, 2018, pp. 433—444.

K. Herzig and N. Nagappan, “Empirically Detecting False Test Alarms
Using Association Rules,” in International Conference on Software
Engineering, 2015, pp. 39-48.

Jenkins RandomFail annotation, “@RandomlyFails,” https://github.com/
jenkinsci/jenkins-test-harness/blob/master/src/main/java/org/jvnet/
hudson/test/RandomlyFails.java, 2017.

M. Breugelmans and B. V. Rompaey, TestQ: Exploring Structural and
Maintenance Characteristics of Unit Test Suites, International Workshop
on Advanced Software Development Tools and Techniques, 2008.

M. Greiler, A. Zaidman, A. van Deursen, and M. Storey, “Strategies
for avoiding text fixture smells during software evolution,” in Working
Conference on Mining Software Repositories, 2013, pp. 387-396.

F. Palomba, A. Zaidman, and A. D. Lucia, “Automatic Test Smell
Detection Using Information Retrieval Techniques,” in International
Conference on Software Maintenance and Evolution, 2018, pp. 311-
322.

G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in International Conference on Software
Maintenance, 2012, pp. 56-65.

M. Martinez, A. Etien, S. Ducasse, and C. Fuhrman, “RTj: A Java
Framework for Detecting and Refactoring Rotten Green Test Cases,”
in International Conference on Software Engineering, 2020, pp. 69-72.
A. Gambi, J. Bell, and A. Zeller, “Practical Test Dependency Detec-
tion,” in International Conference on Software Testing, Verification and
Validation, 2018, pp. 1-11.

J. D. Bleser, D. D. Nucci, and C. D. Roover, “SoCRATES: Scala Radar
for Test Smells,” in Symposium on Scala, 2019, pp. 22-26.

S. Lambiase, A. Cupito, F. Pecorelli, A. D. Lucia, and F. Palomba, “Just-
In-Time Test Smell Detection and Refactoring: The DARTS Project,” in
International Conference on Program Comprehension, 2020, pp. 441—
445.

P. Baker, D. Evans, J. Grabowski, H. Neukirchen, and B. Zeiss, “TRex
- The Refactoring and Metrics Tool for TTCN-3 Test Specifications,”
in Testing: Academic & Industrial Conference - Practice And Research
Techniques, 2006, pp. 90-94.

R. Santana, L. Martins, L. Rocha, T. Virginio, A. Cruz, H. Costa, and
I. Machado, “RAIDE: A Tool for Assertion Roulette and Duplicate
Assert Identification and Refactoring,” in Proceedings of the 34th
Brazilian Symposium on Software Engineering, 2020, pp. 374-379.

N. Koochakzadeh and V. Garousi, “A Tester-Assisted Methodology for
Test Redundancy Detection,” Advances in Software Engineering, vol.
2010, 2010.

N. Koochakzadeh and V. Garousi, “TeCReVis: A Tool for Test Coverage
and Test Redundancy Visualization,” in Testing — Practice and Research
Techniques, 2010, pp. 129-136.

CodeCover, http://codecover.org/index.html.

