
Problematic Code Clones Identification using Multiple Detection Results

Yoshiki Higo, Ken-ichi Sawa, and Shinji Kusumoto
Graduate School of Information Science and Technology,

Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {higo,k-sawa,kusumoto}@ist.osaka-u.ac.jp

Abstract—Most code clones are generated by copy-and paste
programming. Copy-and-paste programming shortens a time
required for implementation because pasted code is a template
of the required functionality. However, it sometimes brings
on new bugs to the source code. After copy-and-paste, pasted
code is somewhat changed fitting for the context of the region
surrounding the pasted code. For example, some identifiers are
replaced with other identifiers or a few statements are inserted,
deleted, or changed. If such modifications are incorrectly
performed, bugs occur in code clones. However, not all code
clones are problematic, many code clones have decent reasons
for their existence. Consequently, simple code clone detection
is inefficient for identifying problematic code clones.

Firstly, this paper proposes a classification scheme for
dividing problematic code clones from non problematic ones.
Secondly, it proposes a method for extracting specific code
clones classified as problematic ones. Thirdly, it presents results
of case studies conducted for evaluating the proposed method.
The proposed method uses multiple code clone detection tools,
and it doesn’t directly analyze program source code. After
multiple detections, simple operations are performed to extract
code clones that are likely to be problematic. In the case studies
conducted on an open source software system, the proposed
method could actually identify 22 problematic code clones.

Keywords-code clone; fault detection;

I. INTRODUCTION

No software has no duplicate code. Recently, studies
on duplicate code have been active and it attracts much
attention. In the research area of duplicate code, a region
duplicated to another region is called a code clone.

Copy-and-paste programming is the leading cause why
code clones are introduced to program source code. For
example, Kim et al. reported that developers averagely per-
form copy-and-paste 16 times per hour [1]. Copy-and-paste
is a powerful tool when implementing a new functionality
because it can immediately create a template of the new
functionality. Developers have only to modify the template
fitting for the context of the pasted region [2], [3].

However, code clones often make negative impacts on
software development and maintenance. One of them is
increasing bug occurrences. For example, if an instance of
copy-and-pasted code is changed for fixing bugs or adding
new features, its correspondents have to be changed simulta-
neously. If the correspondents are not changed inadvertently,
bugs are newly introduced to them.

If (i > j)

{

i=0;

}

If (i > j)

{

j = j + 1;

i=0;

}

If (a > b) { b++; a=1;}

If (a > b)

{

b++;

a=1;

}

If (i > j)

{

j++;

i=0;

}

If (i > j)

{

i = i / 2;

j++;

i=0;

}

Type-1 clone Type-2 clone

Statement

insertion

Statement

change

Statement

deletion

resued by ‘copy-andpaste’Code reuse by copy and paste

Identifier replacement

Type-3 clone

If (i > j)

{

i=0;

}

If (i > j)

{

j = j + 1;

i=0;

}

If (a > b) { b++; a=1;}

If (a > b)

{

b++;

a=1;

}

If (i > j)

{

j++;

i=0;

}

If (i > j)

{

i = i / 2;

j++;

i=0;

}

Type-1 clone Type-2 clone

Statement

insertion

Statement

change

Statement

deletion

resued by ‘copy-andpaste’Code reuse by copy and paste

Identifier replacement

Type-3 clone

Figure 1. Code Reuse by Copy-and-Paste

Another example is small modification after copy-and-
paste. Pasted code is often modified fitting for the context
of the pasted region. As shown in Figure 1, identifiers
such as used variables or invoked methods are changed, or
some statements are added, deleted, or changed, or the both
are performed. If such small modifications are incorrectly
performed or forgotten to be performed, bugs are newly
introduced into the pasted code. Here, we assume that a
variable is forgotten to be replaced with another variable
after paste: if the pasted code has different namespace from
its original code, compiling the code is aborted and the
mistake is identified; however, if the pasted code has the
same namespace as the original code, compiling the code
succeeds and the mistake isn’t identified. It is difficult and
costly to identify such a bug.

This paper proposes a new method for efficiently iden-
tifying bugs caused by copy-and-paste programming. The
method utilizes the fact that results of different detection
tools are different from one another [4], [5]. At present,
there are various code clone detection methods and im-
plementations [6], and code clones are often operationally
defined by individual detection methods. That is why some
code clones detected by a certain detection method are not
detected by another detection method. The proposed method
detects code clones using multiple detection results, and

If (a > b)

{

b++;

a=1;

}

If (i > j)

{

j++;

i=1;

}

If (x > y)

{

x++;

y=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

If (a > b)

{

b++;

a=1;

}

If (i > j)

{

j++;

i=1;

}

If (x > y)

{

x++;

y=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

(a) Original Code

If ($1 > $2)

{

$2++;

$1=1;

}

If ($1 > $2)

{

$2++;

$1=1;

}

If ($1 > $2)

{

$1++;

$2=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

If ($1 > $2)

{

$2++;

$1=1;

}

If ($1 > $2)

{

$2++;

$1=1;

}

If ($1 > $2)

{

$1++;

$2=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

(b) Transformed Code with p-match

If ($ > $)
{
$++;
$=1;

}

If ($ > $)
{
$++;
$=1;

}

If ($ > $)
{
$++;
$=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

If ($ > $)
{
$++;
$=1;

}

If ($ > $)
{
$++;
$=1;

}

If ($ > $)
{
$++;
$=1;

}

Code Fragment 1 Code Fragment 2 Code Fragment 3

(c) Transformed Code without p-match

Figure 2. Example of Code Transformation with and without Parameter-
ized Match

analyzes their differences. The analysis identifies suspicious
code clones. The analysis is fast and easy to implement, so
that it can easily applied to practical size software systems.

II. PRELIMINARIES

A. Existing Classification Scheme

Bellon et al. classified code clones based on how each
code clone instance is different from its correspondents [4].
The classification is composed of three types (Figure 1
illustrates processes of each type code clone occurrence).

Type-1: Code clones that are identical to their correspon-
dents. This type permits only the differences of
white spaces and tabs.

Type-2: Code clones that include different identifiers
from their correspondents.

Type-3: Code clones that include further differences than
Type-2. Pasted code including statement insertion,
deletion, or change is classified into this type.

B. Parameterized Match

Before introducing a new code clone classification
scheme, parameterized match (p-match) must be explained.
P-match is a code transformation rule for detecting more
significant code clones. It transforms the same identifiers
into the same special tokens before detection process. Figure
2 is an example of the code transformation. If a detection
tool adopts p-match, the code is transformed as shown in

Figure 2(b). In this example, code fragment 1 and code
fragment 2 are detected as code clones. However, code
fragment 3 is not regarded as a code clone of code fragments
1 and 2 because its special tokens don’t correspond to the
special tokens of the code fragments 1 and 2. If p-match is
not used, the code is transformed as shown in Figure 2(c).
In this example, each of the code fragments 1, 2, and 3 is
detected as a code clone of the other code fragments.

P-match was initially proposed by Baker [7], and there are
several detection tools that adopt p-match at present [8], [7].
P-match prevents from detecting code clones whose patterns
of identifier use are different from their correspondents.
In this paper, p-match is a key technique that divides
problematic code clones from non problematic ones.

III. NEW CLASSIFICATION SCHEME

The main purpose of a new classification scheme is di-
viding problematic code clones from non problematic ones.
The new scheme is based on the Bellon’s scheme described
in Section II-A, and it is defined as follows.

Type-1a: Code clones that are exactly identical to their
correspondents. Any kinds of textual differences
are not permitted.

Type-1b: Code clones that include differences of white
spaces and tabs. Any more differences are not
permitted.

Type-2a: Code clones that include different identifiers.
However, their patterns of identifier use are the
same. This type code clones are detected by p-
match detection tools.

Type-2b: Code clones that include different identifiers
with different patterns of identifier use. This type
code clones are not detected by p-match detection
tools.

Type-3: Code clones that include statements insertion,
deletion, or change.

In the new scheme, Bellon’s type-1 is divided into type-1a
and type-1b, and Bellon’s type-2 is divided into type-2a and
type-2b. Type-3 of the new scheme is the same as Bellon’s
type-3.

As described above, the new scheme’s purpose is dividing
problematic code clones from non problematic ones. We
consider that type-1b, type-2b, type-3 of the new scheme
are problematic code clones, and type-1a and type-2a are
non problematic ones for the following reasons.

• The presence of type-1b code clones implies that dif-
ferent formats are used for implementing semantically
same logics. Such format differences make code under-
standing more difficult.

• The presence of type-2b code clones implies that there
may be incorrect replacements of identifiers after copy-
and-paste or there may be code clones that were
forgotten to be modified simultaneously when their
correspondents were modified.

• As well as type-2b code clones, the presence of type-
3 code clones implies that there may be incorrect
statements insertion, deletion, or change after copy-
and-paste, or there may be code clones that were
forgotten to be modified simultaneously when their
correspondents were modified.

IV. PROPOSED METHOD

The purpose of the proposed method is extracting only
problematic code clones such as type-1b, type-2b, and type-
3. Section IV-A explains the key idea of the proposed
method, and Section IV-B to Section IV-F describe tech-
niques for enhancing accuracy of the proposed method.

A. Key Idea

The key idea for extracting problematic code clones is
very simple. We utilize the fact that the detection result of a
tool is different from the detection result of another tool. At
present, there are various code clone detection tools and each
of them has a unique definition of code clones, so that the
tools detect different regions of the same source code as code
clones. Table I illustrates a model that different detection
methods detect different types of code clones. For example,
the method β detects only type-1a and type-1b code clones
meanwhile the method ε detects all types of code clones.
Here, we use this model for explaining our method.

In this explanation, we also assume that SA
B is a set of

type-B code clones detected by method A. Additionally, SA
all

is a set of all code clones that method A detects. Using this
assumption, the following formula is formed:

SA
all = SA

1a ∪ SA
1b ∪ SA

2a ∪ SA
2b ∪ SA

3 .

If method A doesn’t have a capability to detect type-B code
clones, SA

B becomes ∅.
Here, we focus on two detection method β and γ in Table

I. Method β detects type-1a and type-1b code clones, and
method γ detects type-1a, type-1b, and type-2a code clones,
so that Sβ

all and Sγ
all are represented as follows:

Sβ
all = Sβ

1a ∪ Sβ
1b

Sγ
all = Sγ

1a ∪ Sγ
1b ∪ Sγ

2a

If Sβ
1a and Sβ

1b are the same as Sγ
1a and Sγ

1b respectively,
Sγ

2a can be obtained by the following operation:

Sγ
2a = Sγ

all − Sβ
all

Table I
MODEL OF DETECTED CODE CLONE TYPES

Detection Method Code Clone Type
1a 1b 2a 2b 3

method α © × × × ×
method β © © × × ×
method γ © © © × ×
method δ © © © © ×
method ε © © © © ©

/* Abuse this field as a pointer to the directory entry, used to

find the expire list pointers */

dentry->d_time = (unsigned long) ent;

if (!dentry->d_inode)

{

inode = autofs_iget(sb, ent->ino);

if (IS_ERR(inode))

{

/* Failed, but leave pending for next time */

return 1;

}

dentry->d_inode = inode;

}

(a) Before Normalization

dentry->d_time=(unsigned long)ent;

if(!dentry->d_inode){

inode=autofs_iget(sb,ent->ino);

if(IS_ERR(inode)){

return 1;}

dentry->d_inode=inode;}

(b) After Normalization

Figure 4. Example of Code Normalization

In a similar way, Sγ
2a, Sδ

2b and Sε
3 can be obtained by the

following operations respectively:

Sδ
2b = Sδ

all − Sγ
all

Sε
3 = Sε

all − Sδ
all

However, the above formulas are realized if the set of
certain type code clones detected by a certain tool is equal to
the set of the same type code clones detected by another tool.
Unfortunately, this assumption is not realistic because each
detection tool has its own definition of code clones, so that
the same type code clones detected by different detection
tools are always not exactly identical.

The remainder of this section describes countermeasures
for the fact. Figure 3 depicts where each countermeasure is
performed in the proposed method. In this paper, if code
clones detected by different tools satisfy all the following
conditions (Conditions 1 and 2), they are regarded as the
same code clones and they are delisted from candidates of
suspicious code.

B. Preparation 1: Code Normalization

Existing detection tools adopts various algorithms and
heuristics for detecting more significant code clones [4].
For example, handling blank lines and comment lines are
different between the tools. In order to reduce this problem, a
code normalization is used. The code normalization consists
of the following operations:

• blank lines and comment lines are removed;
• while spaces and tabs before/between/after lexical to-

kens are removed;

source code

code

normalization

code clone

filtering
Bellon’s

threshold

code clone

merging
inclusion

detection

tool

subtraction

result

preparation subtraction

source code

code

normalization

code clone

filtering
Bellon’s

threshold

code clone

merging
inclusion

detection

tool

subtraction

result

preparation subtraction

Figure 3. Overview of the Proposed Method

• lines including just a single open or close brace are
removed, and the brace is joined to its above line.

Figure 4 represents an example of code before and after
applying the code normalization. As shown in Figure 4, the
code normalization reduces lines of code of source files.
Therefore, if we use line-based detection techniques, we
should carefully specify the length of code clones to be de-
tected. We should specify a lower threshold than a value for
the original source code. If we use other kinds of detection
techniques, it is no problem that we use the same threshold
for both original and normalized code. Other techniques such
as token-based or AST-based are not affected by how each
line consists of lexical tokens.

C. Preparation 2: Code Clone Filtering

Not all code clones detected by tools are beneficial for
us. Code clone filtering introduced here is designed to re-
move unnecessary code clones and reduce false positives of
subtraction result. We remove code clones in the same files,
which overlap each other more than 30%. The condition is
the same as the Kapser’s study [9].

Code clones satisfying this condition are very like to
be trivial ones such as consecutive variable declarations or
consecutive case entries of switch statement, which are not
worth to be investigated. We assume that a clone pair con-
sists of two code clones, CF1 and CF2, overlap(CF1, CF2)
can be defined as follows:

overlap(CF1, CF2) =
| lines(CF1) ∩ lines(CF2) |
| lines(CF1) ∪ lines(CF2) |

(1)

lines(CF1) and lines(CF2) are sets of lines included in
code fragments CF1 and CF2 respectively.

D. Preparation 3: Code Clone Merging

If two clone pairs overlap each other, they are merged as a
single clone pair. For example, we assume that there are two
clone pairs, CP1 and CP2. Clone pair CP1 (CP2) consists
of two code clones CP1.CF1 (CP2.CF1) and CP1.CF2

(CP2.CF2). If CP1.CF1 overlaps CP2.CF1 and CP1.CF2

overlaps CP2.CF2 respectively, the two code clones are
removed from the set of detected clone pairs, and a clone
pair CP3 is added to it. In this case, CP3 consists of two

CP1

CP2

CP2.CF1

CP1.CF1 CP1.CF2

CP2.CF2

Clone Pair: CP1, CP2

Code Fragments in CP1: CP1.CF1, CP1.CF2

Code Fragments in CP2: CP2.CF1, CP2.CF2

CP1

CP2

CP2.CF1

CP1.CF1 CP1.CF2

CP2.CF2

Clone Pair: CP1, CP2

Code Fragments in CP1: CP1.CF1, CP1.CF2

Code Fragments in CP2: CP2.CF1, CP2.CF2

Figure 5. An Example for Explaining Bellon’s Threshold

code clones, CP3.CF1 and CP3.CF2. Here the two code
cones are as follows:

CP3.CF1 = lines(CP1.CF1) ∪ lines(CP2.CF1)
CP3.CF2 = lines(CP1.CF2) ∪ lines(CP2.CF2)

E. Condition 1: Bellon’s Threshold

Bellon et al. proposed a threshold for determining whether
code clones detected by different tools are the same or not
[4]. Our proposed method also uses the Bellon’s threshold.
Bellon’s threshold represents how a pair of code clones
detected by a certain tool overlaps with a pair of code
clones detected by another tool. Using formula 1, Bellon’s
threshold, good value, is defined as follows:

good(CP1, CP2) = min(overlap(CP1.CF1, CP2.CF1),
overlap(CP1.CF2, CP2.CF2))

Range of good value is from 0 to 1. If good value is equal
to or greater than threshold p, the two pairs of code clones
are regarded as the same. Bellon et al. said that 0.7 is an
appropriate value for good value [4]. In this paper, we use
the same value as threshold p.

Figure 5 depicts an example for good value calculation. In
this figure, there are two pairs of code clones, CP1 and CP2,
and 4 code fragments (code clones), CP1.CF1, CP1.CF2,

CP2.CF1, and CP2.CF2. Code fragment CP1.CF1 over-
laps with CP2.CF1, and CP1.CF2 overlaps with CP2.CF2

respectively. In this case good values becomes:

good(CP1, CP2) = min(
5
8
,
6
8
) =

5
8
≤ 0.7

In this case, the good value is less than 0.7, so that the
two pairs of code clones are not regareded as the same.

F. Condition 2: Including

There is an important principle shared by all of the detec-
tion tools, that the tools detect as much region as possible.
The fact implies that, the more different code the tool detects
as code clones, the greater regions are detected as code
clones. Therefore, we introduce the following condition: if
two different tools detect the same code clones, the code
clones detected by high detection capability tool always
include the ones detected by low capability tool.

V. CASE STUDY

In order to examine whether the proposed method can
efficiently identify problematic code clones, a case study
was conducted.

A. Target

The target of this case study is Linux Kernel (ver-
sion 2.6.6). Especially, we focused on a directory, linux-
2.6.6/arch, for closely investigating the result. The directory
consists of 2,699 .c source files, and 769,467 lines of code.
The reason of this choice is that some previous studies
worked on this software [10], [11].

B. Configuration

This case study was intended to efficiently identify two
kinds of bugs caused by copy-and-paste programming. They
are identifier-level and statement-level incorrect modifica-
tions after copy-and-paste. We thought that identifier-level
incorrect modifications generate type-2b code clones, and
statement-level incorrect modifications generate type-3 code
clones.

In order to efficiently obtain type-2b and type-3 code
clones, we used two detection tools, CCFinderX [8] and
Dude [12]. Table II presents the capabilities of the two
detection tools.

Table II
DETECTION CAPABILITIES OF DUDE, CCFINDER, AND CCFINDERX

Detection Method Code Clone Type
1a 1b 2a 2b 3

(a) CCFinderX with p-match © © © × ×
(b) CCFinderX without p-match © © © © ×
(c) Dude with gap=0 © © © © ×
(d) Dude with gap=1 © © © © ©

For extracting type-2b code clones, we subtracted the
detection result of (a) CCFinderX with p-match from the
detection result of (b) CCFinderX without p-match. In the
remainder of this section, sets of code clones detected by
(a) and (b) are represented by S(a) and S(b) respectively,
and the difference set is represented by S(b)−(a).

For extracting type-3 code clones, we subtracted the
detection result of (c) Dude with gap=0 from the detection
result of (d) Dude with gap=1. In the remainder of this
section, sets of code clones detected by (c) and (d) are
represented by S(c) and S(d) respectively, and the difference
set is represented by S(d)−(c).

C. Result

For 4 sets of code clones, S(b), S(b)−(a), S(d), and
S(d)−(c), we measured 2 values, the number of the code
clones and the total LOC of the code clones. Table III
summarizes the measurement results. In the case of type-
2b, the number of code clones is dramatically decreased by
the subtraction (6,980 → 524, decreasing 92%). However,
in the case of type-3, the number of code clones is not so
decreased by the subtraction (8,819 → 2,915, decreasing
70%).

We browsed the source code of all the code clones
included in S(b)−(a) and S(d)−(c) to check whether each
code clone falls under the following categories or not:

(I) known bugs, which have been already fixed in the
later versions,

(II) likely to be bugs, which have not been fixed in the
latest version yet,

(III) other kinds of issues, such as programming style.

Table III summarizes detection results, subtraction results,
and the number of identified bugs. Note that we could not
browse all the code clones included in S(d)−(c) because the
number of them was very large. The subtraction result of
(c) and (d) was far from our expectation. We had thought
that the number of code clones in S(d)−(c) would be less
than 1,000 as well as S(b)−(a).

Table III
THE NUMBER OF CLONE PAIRS

Type-2b Clone Identification
S(b) S(b)−(a)

LOCs of clone pairs 172,097 10,614
of clone pairs 6,980 524

of identified problems - 11

Type-3 Clone Identification
S(d) S(d)−(c)

LOCs of clone pairs 217,794 69,521
of clone pairs 8,819 2,915

of identified problems - 11

1146: } else if (number == 2){

1147: MACIO_BIC(KEYLARGO_FCR0, (KL0_USB1_PAD_SUSPEND0 |

KL0_USB1_PAD_SUBPEND1));

1148: UNLOCK(flags);

1149: (void)MACIO_IN32(KEYLARGO_FCR0);

1150: mdelay(1);

1151: LOCK(flags);

1152: MACIO_BIS(KEYLARGO_FCR0, KL0_USB1_CELL_ENABLE);

1153: } else if (number == 4){

(a) Original Code (linux-2.6.6/arch/ppc/platforms/pmac feature.c)

1153: } else if (number == 4){

1154: MACIO_BIC(KEYLARGO_FCR1, (KL1_USB2_PAD_SUSPEND0 |

KL1_USB2_PAD_SUBPEND1));

1155: UNLOCK(flags);

1156: (void)MACIO_IN32(KEYLARGO_FCR1);

1157: mdelay(1);

1158: LOCK(flags);

1159: MACIO_BIS(KEYLARGO_FCR0, KL1_USB1_CELL_ENABLE);

1160: } else if (number < 4){

1153: } else if (number == 4){

1154: MACIO_BIC(KEYLARGO_FCR1, (KL1_USB2_PAD_SUSPEND0 |

KL1_USB2_PAD_SUBPEND1));

1155: UNLOCK(flags);

1156: (void)MACIO_IN32(KEYLARGO_FCR1);

1157: mdelay(1);

1158: LOCK(flags);

1159: MACIO_BIS(KEYLARGO_FCR0, KL1_USB1_CELL_ENABLE);

1160: } else if (number < 4){

(b) Pasted Code (linux-2.6.6/arch/ppc/platforms/pmac feature.c)

Figure 6. A Real Bug in Identified Type-2b Code Clones in the second case study

094: int retval = 0;

095: int real_seconds, read_minutes, cmos_minutes;

096: unsigned char save_freq_select;

097:

098: /* Tell the clock it’s being set */

099: save_control = CMOS_READ(RTC_CONTROL);

100: CMOS_WRITE((save_control(RTC_SET), RTC_CONRTOL);

094: int retval = 0;

095: int real_seconds, read_minutes, cmos_minutes;

096: unsigned char save_freq_select;

097:

098: /* Tell the clock it’s being set */

099: save_control = CMOS_READ(RTC_CONTROL);

100: CMOS_WRITE((save_control(RTC_SET), RTC_CONRTOL);

(a) Buggy Code (linux-2.6.6/arch/mips/dec/time.c)

531: int retval = 0;

532: int real_seconds, read_minutes, cmos_minutes;

533: unsigned char save_freq_select;

534:

535: /* irq are locally disabled here */

536: spin_lock(&rtc_lock);

537: /* Tell the clock it’s being set */

538: save_control = CMOS_READ(RTC_CONTROL);

539: CMOS_WRITE((save_control(RTC_SET), RTC_CONRTOL);

(b) Its Correspondant (linux-2.6.6/arch/alpha/kernel/time.c)

Figure 7. A Real Bug in Identified Type-3 Code Clones in the first case study

1) Type-2b Code Clone Extraction: It took about 5 hours
to check all the code clones included in S(b)−(a). In this
investigation, we could identify a total of 11 problematic
code clones. The number of identified problematic code
clones was much less than the number that we had expected.

Figure 6 shows an identifier-level bug identified in
S(b)−(a). The bug in Figure 6(a) is in the line 1159 of Figure
6(b). Variable KEYLARGO FCR0 has to be replaced with
KEYLARGO FCR1.

2) Type-3 Code Clone Extraction: The large number of
code clones in S(d)−(c) (2,915) prevented us from browsing
all the code clones. We randomly chose some code clones
from the set (the number of chosen code clones is 524, which
is the same as the number of code clones in S(b)−(a)). It took
about 5 hours to check the chosen code clones. As a result,
we could identify a total of 11 problematic clone pair.

Figure 7 shows a statement-level bug identified from the
chosen code clones. The bug is that, there is no statement
that calls spin lock function in Figure 7(a). We couldn’t
identify which of Figure 7(a) and 7(b) is original code and
which is pasted code. However, the code clones are very
likely to have been generated by copy-and-paste, and our
method could identify it as problematic one.

D. Discussion

We confirmed that subtraction results were much smaller
than the original one. That means it is costless to use

subtraction result for identifying problematic code clones.
Besides, through this case study, in the case that we used the
original results, we could not what kinds of problem were in
the code clones, so that we had to very carefully investigate
each code clone. On the other hand, in the case that used
the subtraction result, we understand what kinds of problem
were in the code clones. For example, if we investigate type-
2b code clones, we concentrate on only consistency between
code clones. Consequently, it is very likely that the proposed
method shorten investigation time required for investigating
a code clone.

VI. RELATED WORK

There are some static analysis tools for finding latent
bugs and issues that hinder software development and main-
tenance [13], [14]. They analyze program source code or
Java byte code, and they identify problematic code. Their
identifications are mainly based on heuristics, and various
kinds of heuristics are adopted. However, such tools cannot
identify bugs that were identified by the proposed method
because the bugs can be identified only by detecting code
clones. Therefore, the proposed method is not a rival of such
static analysis tools. We can use the both of the proposed
method and the static analysis tools at the same time for
enhancing the quality of the program source code.

Li et al. developed a code clone detection tool, CP-Miner
[11]. CP-Miner has a capability for detecting all types of

code clones of the new classification described in Section III.
CP-Miner also reports copy-and-paste related bugs using a
metric UnchangedRatio. Our approach is different from the
CP-Miner in the following points.

• CP-Miner identifies copy-and-paste related bugs from
C/C++ source code. On the other hand, our approach
is not restricted to a certain programming language
because our approach doesn’t directly analyze program
source code. Our approach can be applied to source
code of any program language if utilized detection tools
can handle it.

• CP-Miner’s bug identification is based on Unchange-
dRatio. The metric represents mapping relationship of
only identifiers, and statements mapping is not counted.
Hence, CP-Miner cannot detect copy-and-paste bugs
on the statement-level. On the other hand, our ap-
proach can detect both identifier-level and statement-
level bugs.

• CP-Miner uses a UnchangedRatio threshold for reduc-
ing false positive on bug identification. However, our
approach doesn’t use any filtering, so that there are so
many false positives. In order to be sophisticated as
more practical approach, some kinds of filtering false
positives are mandatory.

Jiang et al. proposed a method for detecting bugs in
code surrounding duplicated regions [10]. Inconsistencies of
surrounding conditional statements such as if, while, and
for are identified as bug candidates. For example, if the
type of a conditional statement is different from the type
of its corresponding conditional statement, they are bug
candidates. Their approach can identify bugs not only in
code clones but also in their surrounding code, which is a
big advantage over other techniques for identifying copy-
and-paste related bugs.

VII. CONCLUSION

In this paper, firstly we proposed a new classification
scheme of code clones for dividing problematic code clones
from non problematic ones. The new classification scheme is
based on Bellon’s classification, and it is simple and easy to
understand. Secondly, we proposed a method for efficiently
extracting a set of code clones falling into each category of
the new classification. We can say that the proposed method
can be applied to various kinds of software systems for the
following reasons.

• The proposed method uses existing detection tools, and
it doesn’t directly analyze program source code. That
means the proposed method can be applied to source
code of any programming language if the used detection
tools can handle the programming language. Currently,
there are many detection tools and they can handle
several popular programming languages such as Java,
C/C++, C#, Visual Basic, and so on.

• The proposed method consists of simple operations, and
it has high scalability.

Thirdly, the proposed method was applied to a famous real
system, Linux Kernel. As a result of the application, we
could identify known bugs, likely to be bugs, and other kinds
of issues within a relatively short time frame.

Of course, there are so many things to do. As the next
step of this research, we are going to do the followings.

• In the case study described in this paper, we didn’t
investigate false negatives, which are problematic code
clones that were not extracted by the subtraction.
However, for evaluating the usefulness of the proposed
method more faithfully, we have to investigate false
negatives.

• At present, we have used only three detection tools
(CCFinder, CCFinderX, and Deckard). For evaluat-
ing the versatility of the proposed method, we have to
conduct more case studies using other detection tools.

ACKNOWLEDGMENT

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure, sup-
ported by Ministry of Education, Culture, Sports, Science
and Technology. It has been performed under Grant-in-
Aid for Scientific Research (C)(20500033) supported by the
Japan Society for the Promotion of Science.

REFERENCES

[1] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethno-
graphic Study of Copy and Paste Programming Practices
in OOPL,” in Proc. of 2004 International Symposium on
Empirical Software Engineering, Aug 2004, pp. 83–92.

[2] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier,
“Clone Detection Using Abstract Syntax Trees,” in Proc. of
International Conference on Software Maintenance 98, Mar
1998, pp. 368–377.

[3] M. Fowler, Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp.
804–818, Oct 2007.

[5] E. Burd and J. Bailey, “Evaluating Clone Detection Tools for
Use during Preventative Maintenance,” in Proc. of the 2nd
IEEE International Workshop on Source Code Analysis and
Manipulation, Oct 2002, pp. 36–43.

[6] “Clone Detection Literature,” http://www.cis.uab.edu/tairasr/
clones/literature/.

[7] B. S. Baker, “Parameterized Duplication in Strings: Algo-
rithms and an Application to Software Maintenance,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1343–1362, Oct
1997.

[8] “CCFinderX,” http://www.ccfinder.net/.

[9] C. Kapser and M. W. Godfrey, “Improved Tool Support for
the Investication of Duplication in Software,” in Proc. of the
21st International Conference on Software Maintenance, Sep
2005, pp. 305–314.

[10] L. Jiang, Z. Su, and E. Chiu, “Context-Based Detection of
Clone-Related Bugs,” in Proc. of the the 6th joint meeting
of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software
engineering, Sep 2007, pp. 55–64.

[11] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code,”
IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 176–192, Mar 2006.

[12] R. Wettel and R. Marinescu, “Archeology of Code Duplica-
tion: Recovering Duplication Chanins From Small Duplica-
tion Fragments,” in Proc. of the 7th International Symposium
on Symbolic and Numeric Algorithms for Scientific Comput-
ing, Sep 2005, pp. 63–70.

[13] “FindBugs,” http://findbugs.sourceforge.net/.

[14] “PMD,” http://pmd.sourceforge.net/.

