
Type-2 Code Clone Detection for Dockerfiles
Tomoaki Tsuru, Tasuku Nakagawa, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
E-mail: {t-tsuru, t-nakagw, shinsuke, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—This paper proposes a Type-2 code clone
detection technique for Dockerfiles. Docker is a plat-
form for realizing containerized virtual environments
that has been attracting significant attention as a tech-
nology support for server infrastructures. In Docker,
the procedure to realize a virtual environment is de-
scribed in the form of a source code called a Dock-
erfile. Therefore, code clones such as repetitions and
duplications with similar structures are often included.
In this study, we propose a Type-2 code clone detec-
tion technique for deriving patterns within Dockerfiles.
More specifically, our technique detects code clones by
normalizing tokens properly, separating Docker syntax
and shell syntax, and then adopting suffix array algo-
rithm for each syntax. We conducted application ex-
periments on approximately 5,000 Dockerfiles available
on GitHub and found that our technique could detect
Type-2 code clones with a high precision. Our technique
derived some patterns in Dockerfiles, such as those used
for building a new distribution on a container.

I. Introduction
Docker has been the gold standard for providing

container-level virtualization. Docker is one of the key
technologies that realizes infrastructure as code (IaC)
where the procedure of container (i.e., virtual environ-
ment) construction is explicitly described as source code
called Dockerfile. IaC enables rapid reproduction of ex-
actly the same infrastructure environment no matter who
executes it or when it is executed [1]. However, it has been
pointed out that there are still some immature domains of
research because Docker and IaC-relating technologies are
in their infancy [2].

This paper focuses on code clones (clones) included in
Dockerfiles. A clone is a code fragment that is identi-
cal or similar to another fragment. In the field of soft-
ware engineering, numerous studies has been conducted
on code clone detection for various programming lan-
guages [3] [4] [5]. Clone detection can be applied for
various applications; recommendation for usage of applica-
tion programming interfaces (APIs) [6], refactoring recom-
mendations for redundant code fragments [7], suggestions
to change fragments requiring the same change [8], and
license violation detection [9].

Clone detection techniques have been proposed for not
only procedural languages such as Java and C but also
various other languages. On the other hand, there have
been a few proposals for Dockerfile clone detection In one
such study, Oumaziz et al. have proposed a duplicate code
detection technique for Dockerfiles [10]. This technique

isolates tokens in Dockerfiles and detects duplicates using
inverted index algorithm. However, this technique cannot
detect clones except for variations in variables (Type-2
clones) because it only targets duplicate code fragments
that match perfectly (Type-1).

In this study, we propose a Type-2 code clone detection
technique for Dockerfiles. The contributions of this study
are as follows:

• Consideration and definition of Type-2 clones in
Dockerfiles: Type-2 clones allow for differences in
tokens that do not affect the behavior of the pro-
gram. Therefore, it is essential that variable names,
function names, and constants be normalized properly
to facilitate for their detection. Dockerfile contains
not only variables but also various constant tokens
such as file paths and usernames. In addition, there
are many notations that do not affect the behavior
of Dockerfiles, such as parameter order and option
aliases. We consider Type-2 clones in Dockerfiles by
organizing the tokens to be normalized.

• Proposal of a clone detection technique in Docker-
files that considers multiple syntaxes: Dockerfile is a
nested language that allows the syntax of multiple
languages to be written in a single file [11] [12]. More
specifically, it uses shell syntax to describe the inter-
nal processing of the container and Docker syntax to
describe processing with the outside of the container
such as copying files from the host operating system
(OS) or specifying the container network ports. Our
proposed clone detection technique first generates ab-
stract syntax trees (ASTs) from the given Dockerfiles
and then normalizes the tokens. Our technique also
separates Dockerfiles into two syntaxes and then uses
suffix array algorithm to achieve multi-syntactic clone
detection.

• Type-2 clone detection for publicly accessible Dock-
erfiles and pattern derivation in Dockerfile: Type-2
clone detection using our proposed technique is per-
formed on 4,817 Dockerfiles in 725 Dockerfile reposi-
tories available on GitHub. The results of these exper-
iments showed that Type-2 clones are detected with
a precision of 95 %. We also visually derive patterns
that appear in multiple Dockerfiles, such as those used
for building a new distribution on a container and
software installations using make commands.

1

2021 IEEE 15th International Workshop on Software Clones (IWSC)

Work licensed under Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/
DOI 10.1109/IWSC53727.2021.00007

1.
Construct
ASTs

2.
Normalize
tokens

3.
Hashing per
instructions

0
1

2
54

4.
Integrate by
syntax

5.
Construct & compare
suffix array (SA)

Dockerfile Original ASTs Normalized ASTs Arrays of
hash values

6.
Output
clone sets

3
1

0
1
52

0 3 0 4

Docker syntax

1 2 1 1 2

Shell syntax

0 3 0 4

SA of Docker syntax

3 0 4
0 4

4

1 2

SA of shell syntax

1 2 1 1 2
2
2 1 1 2

1 1 2

Blue Docker syntax
Orange Shell syntax

Different token
Normalized token
Delimiter of files

1

1 2 2
0 3 0 41 2 1 1 2

Docker & shell syntax
0 41 2

SA of Docker & shell syntax

0 3 0 41 2 1 1 2
3 0 41 1 2

0 41 1 2
41 2

4 2

3 0 41 2 1 1 2

3 0 42 1 1 2
2

0 0 1

Fig. 1: Overview of Type-2 clone detection for Dockerfiles

II. Preliminaries
A. Code Clone

A code clone (clone) is a code fragment that is identical
or similar to another fragment. A set of code fragment that
is identical or similar to another fragment is called a clone
set. Clones are classified as follows based on the degree of
similarity to their correspondences [3].

• Type-1: an identical copy except for variations in
white spaces and comments.

• Type-2: a syntactically identical copy except for vari-
ations in identifiers such as variables and functions.

• Type-3: a copy with further statement-level modifica-
tions such as added or removed statements.

So far, numerous clone detection techniques and
tools have been proposed for general programming lan-
guages [3] [4] [5]. General applications of clone detection
include recommendation for usage of application program-
ming interfaces (APIs) [6], refactoring recommendations
for redundant code fragments [7], suggestions for changes
to fragments requiring the same change [8], and license
violation detection [9]. Clone detection research has also
been tackled in various languages other than programming
languages, such as build tools [13] and requirement speci-
fications [14].

B. Docker
Docker is a platform that implements operation-system-

level virtualization called container. Docker has attracted
significant amounts of attention in recent years; 87 % of
information technology companies and a variety of open-
source software use Docker [15] [16].

Docker is one of the key technologies to realize infras-
tructure configuration automation called infrastructure
as code (IaC) by describing the procedure for building

containers as source code. Dockerfile is the source code de-
scribing the procedure for building containers. Dockerfile
composes an image which is the template of the container.
Dockerfiles is a nested language within which shell syntax
in the RUN instruction can be embedded [11] [12].
Docker and other IaC-related technologies are in their

infancy, and there are various IaC-related studies such as
characterizing Dockerfiles smells [17] and code completion
for Dockerfiles [18]. On the other hand, it has been pointed
out that there are some IaC domains that are still under-
researched [2].

C. Duplicates in Dockerfiles
There are a few studies on code clone detection in Dock-

erfiles. Oumaziz et al. propose a duplicate code detection
technique for Dockerfiles [10]. They use inverted index
algorithm [19] with some Dockerfile instructions as a chunk
to detect duplicate code after parsing the Dockerfiles.
The size of chunks goes from one Dockerfile instruction
to the maximal number of instructions contained in the
Dockerfile. In Dockerfile, there is the practice of writing
multiple shell commands inside a single RUN instruction.
In their technique, RUN instructions are separated into
internal shell commands during parsing in order to detect
duplicate codes inherent in shell commands.
Oumaziz et al. only detect exact duplicates (Type-1

clones) because they do not apply token normalization.
This means their technique cannot detect Type-2 clones,
which are caused by variations in the tokens such as
variables. In addition, even if similar Docker instruction
or shell command sequences appear in multiple Dockerfile
projects, their technique cannot be applied to pattern
derivation in Dockerfiles due to the presence variations in
token strings.

2

III. Proposed Technique

We propose a Type-2 clone detection technique for
Dockerfiles. This technique can derive patterns that ap-
pear in multiple Dockerfiles. Figure 1 shows an overview
of Type-2 clone detection for Dockerfiles. The input of
our technique is a set of Dockerfiles and the output is
the detected clone sets. The flow of our technique is
described in Figure 1. This technique first constructs ASTs
corresponding to each of the multiple Dockerfiles given as
input (step 1) and then normalizes each token (step 2).
This normalization process allows us to extend the Type-
1 clone detection to Type-2 clone detection. Next, per-
instruction hashing (step 3) and per-syntax integration
(step 4) are applied. Finally, Docker syntax and shell
syntax are separated in advance, followed by suffix array
algorithm (step 5) and clone set detection (step 6) to
achieve per-syntax clone detection.

Suffix array, which is a kind of data structure used in
string search algorithms, consists of an array of suffixes
in a search string that have been sorted in lexicographic
order [20]. Suffix array has also been applied in the field
of clone detection [21] [22]. Inverted index algorithm can
detect clones scalably by setting the appropriate size of
chunks [19]. The smaller the size of chunks in inverted
index algorithm, the longer it takes to detect clones using
that algorithm. On the other hand, suffix array algorithm
can detect clones in linear time without predetermining
the chunk size [20]. Therefore, our proposed technique
uses suffix array for code clone detection. Figure 2 shows
the procedure for constructing a suffix array based on the
token sequence “A B A C D A B” and the clone detection
technique. First, each suffix of the input token sequence
is stored in an array via suffix enumeration (step 1).
Next, the suffix array is sorted in lexicographic order
(step 2). Finally, this algorithm outputs clone sets forward
matching subtokens for suffixes in the suffix array (step 3).
In the token sequence example of “A B A C D A B”, there
are three clones: “A”, “A B”, and “B”.
Our proposed technique adopted the technique of con-

structing ASTs in Dockerfiles by Henkel et al. [11]. This
is because their ASTs have tokens parsed not only at
Docker syntax level but also at the shell command level,
which makes it easier to normalize the tokens and sep-
arate Docker syntax and shell syntax with our proposed
technique. Henkel et al. presents ASTs in Dockerfiles as
JavaScript Object Notation (JSON) format. They take
Dockerfiles as input and output ASTs according to the
following procedure. First, they convert Dockerfiles into
concrete syntax trees at the Docker syntax level. Next,
they construct syntax trees at the shell script grammar
level for the RUN instruction whose argument is shell
syntax. In their technique, Bash Shell, which is generally
used in Dockerfiles, is adopted as shell script for parsing.
Finally, shell command is parsed to construct AST, which
is output in JSON. Note that Henkel et al. limit the

A B A C D A B

Index Suffix
0 A B A C D A B

1 B A C D A B

2 A C D A B

3 C D A B

4 D A B

5 A B

6 B

1. Enumerate suffixes

2. Sort in lexicographic order
Index Suffix

5 A B

0 A B A C D A B

2 A C D A B

6 B

1 B A C D A B

3 C D A B

4 D A B

Sequence of tokens

3. Output clone sets

Clone set “A”
0 2 5

Clone set “A B”
0 2

Clone set “B”
1 3

Fig. 2: Procedure for constructing a suffix array and clone
detection technique

parsing to the top 50 shell commands that are most
frequently used in Dockerfile.
In the following sections, we discuss the tokens to be

normalized in step 2 (Section III-A) and the reason for
pre-separating Docker syntax and shell syntax in step 4
(Section III-B).

A. Considering Normalized Tokens
To detect Type-2 clones, it is necessary to properly

normalize the tokens in source codes. In general clone
studies targeting Java, C and other similar programming
languages, identifier names such as variable names and
function names are often selected as the normalization
targets [23]. This is because variable and function names
are a kind of label information, and the same behavior
can be realized even if the labels are different. This is also
true in Dockerfiles, where there are temporary variables
(variables declared with ARG instructions), etc., that are
subject to normalization. Furthermore, in terms of the
identity of the behavior in source codes, the order of
parameters and options in shell script (ls -l . and
ls . -l) and the aliases of option names (ls -list and
ls -l) in shell script, there are many other notations that
can achieve the same behavior. Hence, Type-2 clones in
Dockerfile can be detected by properly normalizing these
tokens.
This study defines the tokens to be normalized as shown

in Table I and the tokens that are not to be normalized
as shown in Table II. Figure 3 shows an example of token
normalization using our proposed technique. One of the
tokens to be normalized is the order parameters and
options in shell commands. Shell commands define the
order of the parameters and options for each commands.
Some commands allow the order of parameters and
options to be different. As a result, commands that
have the same behavior despite having variations of
parameters and options can exist in multiple Dockerfiles.
RUN apt install --yes --no-install-recommends
and RUN apt install --no-install-recommends --yes

3

FROM ubuntu:18.04
...
ARG PGP_KEYSERVER=ha.pool.sks-keyservers.net
...
RUN set -eux; ¥
¥
savedAptMark="$(apt-mark showmanual)"; ¥
apt-get update; ¥
apt-get install --yes --no-install-recommends ¥
...
; ¥
rm -rf /var/lib/apt/lists/*; ¥
...
for key in $OPENSSL_PGP_KEY_IDS; do ¥
gpg --batch --keyserver "$PGP_KEYSERVER" --recv-keys "$key"; ¥

done; ¥
...
chown -R rabbitmq:rabbitmq "$RABBITMQ_HOME"; ¥
...

...

3

16

59
60
61
62
63

72
73

83
84
85

255

(a) Before normalization

FROM ubuntu:$$TAG
...
ARG $$VAR=ha.pool.sks-keyservers.net
...
RUN set –e –u -x; ¥
¥
$$VAR="$(apt-mark showmanual)”: ¥
apt-get update; ¥
apt-get install --no-install-recommends –-yes ¥
...
; ¥
rm –-force --recursive $$PATH; ¥
...
for $$VAR in $OPENSSL_PGP_KEY_IDS; do ¥
gpg --batch --keyserver "$$OP_ARG” --recv-keys ”$$OP_ARG"; ¥

done; ¥
...
chown -R $$USER:$$GROUP "$RABBITMQ_HOME"; ¥
...

...

3

16

59
60
61
62
63

72
73

83
84
85

255

Brown: Normalization of tokens
Bule-green: Alias of options
Underline: Separate or reordering options
Gray: Remove options

$OPENSSL_PGP_KEY_IDS
is not normalized
because it is
the environment variable

(b) After normalization

Fig. 3: Example of normalization for an actual Dockerfile 1

are examples of clones with variations of the order of
options.

The option controlling logs and the option controlling
interactions are also contained in the tokens to be normal-
ized in our proposed technique. The options for controlling
logs, such as the log output option --verbose in wget
command and the error output option --show-error in
curl command, only control the log output. The pres-
ence or absence of these options does not change the
behavior of Dockerfiles. Additionally, assuming that the
Dockerfiles have been built without errors, the options

1https://github.com/docker-library/rabbitmq/blob/master/
Dockerfile-ubuntu.template

for controlling interactions such as --force, which is a
force execution option for rm command, do not change
the behavior of Dockerfiles with or without those options.
Therefore, our proposed technique also normalizes the
options for controlling logs and the options for control-
ling interactions. These options are removed during the
normalization process because their presence or absence
do not change the behavior of Dockerfiles. For example,
the command RUN curl -fsSL $URL has four options: the
--fail option (-f) to prohibit log output in case of con-
nection failure, the --silent option (-s) to prohibit log
output, the --show-error option (-S) to allow log output

TABLE I: Normalized tokens
Token Reason and example of normalization
Temporary variables Temporary variables do not affect the external processes in Docker container.

ARG tag=bionic → ARG $$VAR=bionic
File paths Variations of file paths do not affect behavior.

cd webapps/convertigo → cd $$PATH
URLs URLs do not affect resources outside Docker container.

wget http://example.com/app/app.tar.gz → wget $URL
Username and group names Variations of usernames and group names do not affect behavior.

USER spark:spark → USER $$USER:$$GROUP
Tags included FROM instruction Differences in container functionality among variations of tags are insignificant.

FROM ubuntu:16.04 → FROM ubuntu:$$TAG
Arguments of options The roles of tokens set as arguments are assigned for each option.

gpg --keyserver $KEY_SERVER → gpg --keyserver $OP_ARG
Order of parameters and options Variations of the order of options allow for equivalent commands to be executed.

set -xe → set -e -x
Aliases of options Aliases of options allow for equivalent commands to be executed.

rm -fr → rm --force --recursive
Options for controlling logs Variations with or without options for controlling logs do not affect behavior.

wget -q → wget
Options for controlling interactions Variations with or without options for controlling logs do not affect behavior if Dockerfiles have no errors.

apt-get install wget -y → apt-get install wget
Options for controlling output files Variations of file paths do not affect behaviors.

wget -o $file → wget

TABLE II: Denormalized tokens
Tokens Reason
Environment Variables Environment variables affect external processes in the Docker container.
Images of the Docker Container Each image contains a different package manager.
Network Ports of the Docker Container Variations in port numbers affect processes outside the Docker container.

4

only in case of error, and the --location redirection
option (-L). The --fail, --silent, and --show-error
options are classified as options for controlling logs, and
the --location option is an option controlling interac-
tion. Therefore, the command RUN curl -fsSL $URL is
normalized to RUN curl $URL.

B. Docker Syntax and Shell Syntax Segregation
Dockerfile is a nested language that contains the shell

syntax [11] [12]. We expect to derive patterns that do not
depend on a specific Dockerfile by detecting clones in each
syntax. Therefore, we separate Docker syntax and shell
syntax to detect Type-2 clones. Clones that contain both
Docker syntax and shell syntax are also detected because
such clones that contain both syntaxes are useful.

IV. Experiments
This study confirms that our proposed technique can

detect Type-2 clones of Dockerfiles and patterns. As a
comparison, we use the Type-1 clone detection technique
without normalization in our proposed technique, which is
referred to hereafter as the “no-normalization” detection
technique. The metrics are the number of detected clone
segments, the number of detected clone sets, the number of
clone segments per detected clone set, the length of clone
segments per detected clone set, and the precision. The
number of clone segments per clone set and the length
of clone segments per clone set by our proposed technique
are expected to increase since Type-2 clones include Type-
1 clones. Precision is the rate of candidates that are actual
clones among the detected clones. The higher the precision
is, the fewer false clone are detected by the clone detec-
tion technique. Therefore, a higher precision of a clone
detection indicates a superior clone detection technique.
We sampled the detected clone sets to a confidence level of
95 % and a confidence interval of 5 % for each techniques.
The precision is based on visual confirmation because the
set of true clones in the target Dockerfiles is unknown.

A. Subjects
This experiment targets 4,817 Dockerfiles contained in

725 repositories that are popular on GitHub. In Docker,
there is a practice that the entire flow of container build-
ing is often described in a template file, within which
the defining minor differences between distributions and
versions in temporary variables that can be replaced with
text are defined [10]. The target Dockerfiles are automat-
ically generated by executing or compiling this template.

Technically, these automatically generated Dockerfiles are
Type-2 clones, but since they are obvious clones that
have been generated automatically, they should not be
detected. Therefore, for repositories that contain template
files, we exclude the Dockerfiles in the repository and use
the template files themselves as clone detection targets.

B. Results

1) Number of clones and precisions: Table III shows the
experimental results with the number of clone segments,
the number of clone sets, the number of clone segments per
clone set, the length of clone segments per clone set, and
the precision detected in this experiment. Comparing our
proposed and no-normalization detection techniques, per
detected clone set, our proposed technique has a larger
number of clone segments and a longer length of clone
segment than those for the no-normalization detection
technique. The increased number and lengths of clone
segments per detected clone set identified by our proposed
technique met expectations. On the other hand, our pro-
posed technique detected fewer clone sets than the no-
normalization detection technique. The reason why our
proposed technique detects fewer clone sets than the no-
normalization detection technique is that segments that
are not related to Type-1 clones are detected as Type-2
clones by the normalization process. As a result, indepen-
dent clone sets in Type-1 are considered as equivalent clone
sets in Type-2.
Comparing the precision of our proposed technique

with that of the no-normalization detection technique, the
presicion of our proposed technique is lower than that
of the no-normalization detection technique. The more
normalization is applied, the lower the precision tends to
be in general [4]. Generally speaking, Type-2 clones are
more difficult to detect than Type-1 clones, and Type-3
clones are even more difficult to detect than Type-2 clones.
However, our proposed technique has a high precision of
95 % and is useful as a Type-2 clone detection technique.
However, the high precision of 95 % achieved by our
proposed technique demonstrates its usefulness as a Type-
2 clone detection technique, particularly since, as reported
by Sheneamer et al., the precisions of most clone detection
techniques for general programming languages are less
than 50 % [4]. It should also be noted that the reason
why the precision of our proposed technique is higher than
that of clone detection techniques for general programming
languages is that, unlike general programming languages,

TABLE III: Number of clones and precisions
Proposed technique (no-normalization) Proposed technique (normalization)

Docker syntax Shell syntax Both syntaxes Docker syntax Shell syntax Both syntaxes
of clone segments 217,766 433,161 930,134 240,639 458,737 987,597
of clone sets 50,608 87,126 204,840 50,756 84,011 203,103
of clone segments per clone set 4.30 4.97 4.54 4.74 5.46 4.86
Length of clone segments per clone set 18.36 11.96 20.78 18.64 12.63 21.30
Precision 100.00 % 98.70 % 99.48 % 95.31 % 98.44 % 96.09 %

5

FROM scratch
MAINTAINER James Mills, prologic at shortcircuit dot net dot au
ADD rootfs.tar.xz /
CMD ["/bin/bash"]

1
2
3
4

(a) Clone segments in a Dockerfile of CRUX image 4

FROM scratch
MAINTAINER Vlad Glagolev <stealth@sourcemage.org>
ADD smgl-stable-0.62-docker-x86_64.tar.xz /
CMD ["/bin/bash"]

1
2
3
4

(b) Clone segments in a Dockerfile of Source Mage image 5

Fig. 4: Distribution building pattern for Type-2 clone detected by our proposed technique

RUN SWIPL_VER=7.5.11 && ¥
...
&& cd swipl-$SWIPL_VER && ./configure && make

&& make install ¥

3

12

(a) Clone segments in a Dockerfile of SWI-Prolog image 6

RUN wget https://github.com/protocolbuffers/protobuf/releases/
download/v3.7.1/protobuf-cpp-3.7.1.tar.gz ¥

...
&& cd protobuf-3.7.1 ¥
&& ./configure --disable-shared --with-pic && make

&& make install && ldconfig ¥

49

51
52

(b) Clone segments in one Dockerfile on GitHub 7

Fig. 5: Software installation pattern using make commands for Type-2 clone detected by our proposed technique

Docker syntax and shell syntax assign runtime roles to
tokens.

2) Examples of detected Type-2 clone: We visually de-
rived some Dockerfiles patterns from among the Type-2
clones detected by our proposed technique in this exper-
iment. Figure 4 and Figure 5 show some of the derived
patterns.

Figure 4 shows the pattern used for building a new dis-
tribution on a container. Dockerfiles copy the tar archive
from the host OS to an empty container, called scratch,
and then extract the tar archive on the container to build
a new distribution. Note that the MAINTAINER instruction
sets the author as metadata in the container. We consider
the MAINTAINER instruction to be a comment when it is
used in general languages to detect clones because this
instruction does not change the behavior of the container.
This pattern was derived as 13 clone segments from 5
repositories.

Figure 5 shows the software installation pattern using
make commands. Both Dockerfiles configure a Makefile
under the directory where the target software is located
after being changed to that directory. Next, the binary
file generated by make command is installed into the
directory specified by install label in the Makefile. The
--disable-shared option in configure command (line
52 of Figure 5(b)) controls the output of dynamic and
static libraries while the --with-pic option in the same
command controls the output of position-independent
codes. These option are classified as options for controlling
output files. This experiment detects line 12 of Figure 5(a)
and lines 51-52 of Figure 5(b) as Type-2 clones because
these options are classified as options for controlling out-

4https://github.com/cruxlinux/docker-crux/blob/master/
Dockerfile

5https://github.com/vaygr/docker-sourcemage/blob/master/
stable/Dockerfile

6https://github.com/swi-prolog/docker-swipl/blob/master/7.5.
11/alpine/Dockerfile

7https://github.com/eclipse-openj9/openj9/blob/master/
buildenv/docker/jdk8/x86 64/ubuntu16/jitserver/buildenv/
Dockerfile

put files. This pattern was derived as 12 clone segments
from 5 repositories.

V. Related Works
A. Clone Detection Techniques for General Programming
Languages
Numerous clone detection techniques have been pro-

posed for general programming languages [3] [4] [5].
Typical lexical clone detection tools include

CCFinder [24] and Clone Miner [21]. CCFinder [24]
detects token-based clones using suffix tree algorithm [25].
Clone Miner [21] detects token-based clones using suffix
array algorithm [20]. The goal of this study is to derive
patterns in Dockerfiles. We focus on syntactical clone
detection rather than lexical detection because it is
anticipated that clone detection in Dockerfile instructions
enable pattern derivation in Dockerfiles.
Falke et al. detect AST-based clones using suffix tree

algorithm [26]. This algorithm can detect clones in lin-
ear time and space. Suffix array algorithm [20] is more
memory efficient than suffix tree algorithm while the two
algorithms take the same amount of time. Therefore, our
proposed technique uses suffix array algorithm to detect
clones.

B. Clone Detection for Various Other Languages
Clone detection research has also been tackled in various

languages other than programming languages, such as
build tools [13] and requirements specifications [14]. McIn-
tosh et al. detects Type-1 clones for build systems such as
CMake/Autotools (C/C++) and Ant/Maven (Java) [13].
Juergens et al. detects clones with exact word matches
(Type-1) in the quality assessments of software require-
ment specifications [14]. Bellon et al. classifies clones
into three types (Type-1, Type-2, and Type-3) based on
the degree of similarity to their correspondences while
assuming a general programming language [3]. On the
other hand, clones detected in those languages is mostly
an exact duplicate (Type-1) because the classification of
clones in source code written in languages other than

6

general programming languages are undefined. Problems
caused by clones in those languages may be missed because
they do not detect clones that are not perfect matches.
Therefore, this study defines and detects Type-2 clones in
Dockerfiles, which is one of the source codes that describe
the procedure for building a virtual environment.

VI. Conclusion

In this study, we proposed definition and a detection
technique for Type-2 clones in Dockerfiles. We conducted
experiments on 4,817 files in 725 GitHub repositories. The
experiment results showed that our proposed technique
was effective because it achieved the precisions higher than
95 % for Docker syntax, shell syntax, and both syntaxes.
We were also able to visually derive Type-2 clones that
could be patterns, such as those used for building a new
distribution on a container and software installation using
make commands.

As a future work, we plan to propose a technique for
detecting clones with statement-level modifications (Type-
3) in Dockerfiles because some such clones that are caused
by variations in shell commands that have the same
behavior, such as package managers or variations in the
order of Docker instructions or shell commands.

Acknowledgment

This research was supported in part by JSPS KAKENHI
Japan (Grant Numbers: JP21H04877, 20H04166).

References

[1] Y. Jiang and B. Adams, “Co-evolution of Infrastructure and
Source Code - An Empirical Study,” in Proc. Working Confer-
ence on Mining Software Repositories, 2015, pp. 45–55.

[2] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What
is DevOps? A Systematic Mapping Study on Definitions and
Practices,” in Proc. the Scientific Workshop Proceedings of
XP2016, 2016, pp. 1–11.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE
Transactions on Software Engineering, vol. 33, no. 9, pp. 577–
591, 2007.

[4] A. Sheneamer and J. Kalita, “A Survey of Software Clone
Detection Techniques,” International Journal of Computer Ap-
plications, vol. 137, no. 10, pp. 1–21, 2016.

[5] H. Min and Z. Li Ping, “Survey on Software Clone Detection
Research,” in Proc. International Conference on Management
Engineering, Software Engineering and Service Sciences, 2019,
pp. 9–16.

[6] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting Working Code
Examples,” in Proc. International Conference on Software En-
gineering, 2014, pp. 664–675.

[7] N. Yoshida, S. Numata, E. Choiz, and K. Inoue, “Proactive
Clone Recommendation System for Extract Method Refactor-
ing,” in Proc. International Workshop on Refactoring, 2019, pp.
67–70.

[8] M. Mondal, C. K. Roy, and K. A. Schneider, “An Exploratory
Study on Change Suggestions for Methods Using Clone Detec-
tion,” in Proc. International Conference on Computer Science
and Software Engineering, 2016, pp. 85–95.

[9] A. Monden, S. Okahara, Y. Manabe, and K. Matsumoto,
“Guilty or Not Guilty: Using Clone Metrics to Determine Open
Source Licensing Violations,” IEEE software, vol. 28, no. 2, pp.
42–47, 2010.

[10] M. A. Oumaziz, J.-R. Falleri, X. Blanc, T. F. Bissyandé, and
J. Klein, “Handling Duplicates in Dockerfiles Families: Learning
from Experts,” in Proc. International Conference on Software
Maintenance and Evolution, 2019, pp. 524–535.

[11] J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “A Dataset
of Dockerfiles,” in Proc. International Conference on Mining
Software Repositories, 2020, pp. 528–532.

[12] ——, “Learning from, Understanding, and Supporting DevOps
Artifacts for Docker,” in Proc. International Conference on
Software Engineering, 2020, pp. 38–49.

[13] S. McIntosh, M. Poehlmann, E. Juergens, A. Mockus, B. Adams,
A. E. Hassan, B. Haupt, and C. Wagner, “Collecting and Lever-
aging a Benchmark of Build System Clones to Aid in Quality
Assessments,” in Proc. International Conference on Software
Engineering, 2014, pp. 145–154.

[14] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel,
B. Schaetz, S. Wagner, C. Domann, and J. Streit, “Can Clone
Detection Support Quality Assessments of Requirements Spec-
ifications?” in Proc. International Conference on Software En-
gineering, 2010, pp. 79–88.

[15] Portworx, “Annual Container Adoption Report,”
https://portworx.com/wp-content/uploads/2019/05/2019-
container-adoption-survey.pdf, 2019, [Online; accessed 18. Jan.
2021].

[16] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi,
and H. C. Gall, “An Empirical Analysis of the Docker Container
Ecosystem on GitHub,” in Proc. International Conference on
Mining Software Repositories, 2017, pp. 323–333.

[17] Y. Wu, Y. Zhang, T. Wang, and H. Wang, “Characterizing the
Occurrence of Dockerfile Smells in Open-Source Software: An
Empirical Study,” IEEE Access, vol. 8, pp. 34 127–34 139, 2020.

[18] K. Hanayama, S. Matsumoto, and S. Kusumoto, “Humpback:
Code Completion System for Dockerfiles Based on Language
Models,” in Proc. Workshop on Natural Language Processing
Advancements for Software Engineering, 2020, pp. 1–4.

[19] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt,
“Index-Based Code Clone Detection: Incremental, Distributed,
Scalable,” in Proc. International Conference on Software Main-
tenance, 2010, pp. 1–9.

[20] U. Manber and G. Myers, “Suffix Arrays: A New Method for
On-Line String Searches,” Siam Journal on Computing, vol. 22,
no. 5, pp. 935–948, 1993.

[21] H. A. Basit and S. Jarzabek, “Efficient Token Based Clone De-
tection with Flexible Tokenization,” in Proc. European Software
Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 2007, pp. 513–516.

[22] G. Li, Y. Wu, C. K. Roy, J. Sun, X. Peng, N. Zhan, B. Hu, and
J. Ma, “SAGA: Efficient and Large-Scale Detection of Near-
Miss Clones with GPU Acceleration,” in Proc. International
Conference on Software Analysis, Evolution and Reengineering,
2020, pp. 272–283.

[23] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
Evaluation of Code Clone Detection Techniques and Tools:
A Qualitative Approach,” Science of Computer Programming,
vol. 74, no. 7, pp. 470–495, 2009.

[24] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multi-
linguistic Token-Based Code Clone Detection System for Large
Scale Source Code,” IEEE Transactions on Software Engineer-
ing, vol. 28, no. 7, pp. 654–670, 2002.

[25] D. Gusfield,Algorithms on Strings, Trees, and Sequences. Cam-
bridge University Press, 1997.

[26] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of
clone detection using syntax suffix trees,” Empirical Software
Engineering, vol. 13, no. 6, pp. 601–643, 2008.

[27] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing
suffix trees with enhanced suffix arrays,” Journal of discrete
algorithms, vol. 2, no. 1, pp. 53–86, 2004.

7

