
A Technique to Detect Multi-grained Code Clones
Yusuke Yuki, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
{y-yusuke, higo, k-kusumoto}@ist.osaka-u.ac.jp

Abstract—It is said that the presence of code clones makes
software maintenance more difficult. For such a reason, it is
important to understand how code clones are distributed in
source code. A variety of code clone detection tools has been
developed before now. Recently, some researchers have detected
code clones from a large set of source code to find library
candidates or overlooked bugs.

In general, the smaller the granularity of the detection target
is, the longer the detection time. On the other hand, the larger
the granularity of the detection target is, the fewer detectable
code clones are.

In this paper, we propose a technique that detects in order
from coarse code clones to fine-grained ones. In the coarse-to-
fine-grained-detections, code fragments detected as code clones at
a certain granularity are excluded from detection targets of more
fine-grained detections. Our proposed technique can detect code
clones faster than fine-grained detection techniques. Besides, it
can detect more code clones than coarse detection techniques.

Index Terms—multi-grained detection technique, file-level
clone, method-level clone, code-fragment-level clone

I. INTRODUCTION & RELATED WORK

A code clone (hereafter, clone) is a code fragment that is
similar or identical to another code fragment in source code.
Copy-and-paste operation in code implementation is the main
reason of clone occurrences [1] [2]. For example, if a code
fragment includes a bug, we need to check its clones too. For
such a reason, it is important to understand how clones are
distributed in source code. A variety of clone detection tools
has been developed before now.

Recently, some researchers have detected clones from a
large set of source code to find library candidates or over-
looked bugs [3]. Merging the same function in multiple
software into a library is beneficial from the viewpoint of
development efficiency improvement.

The existing clone detection techniques detect only single
granularity clones, such as file-level ones or code-fragment-
level ones. The existing clone detection techniques can be
roughly classified into the following two detection tech-
niques [4].

Coarse detection technique: detecting files, methods, and
blocks as clones.

Fine-grained detection technique: detecting any code frag-
ments as clones. Some clones are large but others are not so
large. Any size duplicated code fragments are found as clones
if they are larger than a given threshold. Fine-grained detection
techniques can detect clones whose code fragments are parts
of classes, methods, or blocks.

Method

Block

File

Code-Fragment

Short

Long

public class A {
public void B(int x) {
if (x > 0) {

}
}

}

public class A {
public void B(int x) {
if (x > 0) {

}
}

}

public class A {
public void B(int x) {
if (x > 0) {

}
}

}

public class A {
public void B(int x) {
if (x > 0) {

}
}

}

Many

Few

Th
e

N
u

m
b

er
 o

f
D

et
ec

ta
b

le
 C

lo
n

es

D
et

ec
ti

o
n

 T
im

e

Fig. 1. The Features of Each Detection Techniques

Coarse and fine-grained detection techniques have the fol-
lowing advantages and disadvantages, respectively. The fea-
tures of those detection techniques are shown in Figure 1.

Detection Time: the smaller the granularity of the detection
target is, the longer the detection time. The number of files,
methods, and blocks is much fewer than the number of
statements, tokens, vertices in tree structures. Therefore, coarse
detection techniques can detect clones at a higher speed than
fine-grained detection ones.

The number of detectable clones: the larger the granularity
of the detection target is, the fewer detectable clones are.
Coarse detection techniques cannot detect clones whose code
fragments are parts of files, methods, or blocks. Therefore,

class A {
methodB (int x) {

if (x > 0) {

}
}

methodC (int y) {
while (y > 0) {

}
}

}

Method-level
clone

class D{
methodE (int x) {

if (x > 0) {

}
}

methodF (int y) {
while (y > 0) {

}
}

}

Method-level
clone

File-level
clone

Fig. 3. Secondary Merit of Our Proposed Technique

STEP1: File-Level Clone Detection

A.java B.java

C.java D.java Detect C.java D.java

A.java B.java

STEP2: Method-Level Clone Detection

A.java

C.java D.java

A.java method1

A.java method2

C.java method3

C.java method4

D.java method5Detect

A.java method1

A.java method2

C.java method4

D.java method5

A.java C.java

STEP3: Code-fragment-Level Clone Detection

Detect

Fig. 2. Overview of Our Proposed Technique

fine-grained detection techniques can detect more clones than
coarse detection ones.

In this paper, we propose a technique that detects in
order from coarse clones to fine-grained ones (multi-grained
detection technique). More concretely, our proposed technique
detects clones in the order of file-level, method-level, and
code-fragment-level. In the coarse-to-fine-grained-detections,
code fragments detected as clones at a certain granularity
are excluded from detection targets of more fine-grained
detections. Our proposed technique can detect clones faster
than fine-grained detection techniques. Besides, it can detect
more clones than coarse detection techniques.

In a previous study, equivalence files partitioning is con-
ducted to the input source files prior to the code-fragment-
level (token-level) detection [5]. This preprocessing is similar
to the file-level clone detection. However, the number of file-
level clones is fewer than the number of method-level clones.
Excluding method-level clones in addition to file-level clones
is more effective to save the detection time. Thus, our proposed
technique detects method-level clones in addition to file-level
ones and code-fragment-level ones. Moreover, our proposed

technique can generate clone detection results which are easier
to understand than the technique in the previous study. This is
because our proposed technique detects file-level clones, not
as preprocessing, and clearly indicates the granularity levels
of detected clones.

We have developed a tool based on our proposed technique
and applied it to some open source software. Then, we eval-
uated our proposed technique compared to coarse detection
techniques and fine-grained detection ones.

The main contributions of this research are as follows.
• We proposed a technique that detects in order from coarse

clones to fine-grained ones.
• We confirmed that our multi-grained detection technique

can detect clones faster than fine-grained detection tech-
niques.

• We confirmed that our multi-grained detection technique
can detect more clones than coarse detection techniques.

• We confirmed that our multi-grained detection technique
can generate clone detection results that are easier to
analyze than coarse detection techniques and fine-grained
detection ones.

II. PROPOSED TECHNIQUE

We propose multi-grained detection technique to solve the
disadvantages described in Section I.

A. Overview of Our Proposed Technique
Our proposed technique detects clones in the order of file-

level, method-level, and code-fragment-level. An image of our
proposed technique is shown in Figure 2.

In the file-level clone detection, files detected as clones
are excluded from detection targets of the next method-level
clone detection. In the method-level clone detection, methods
detected as clones are excluded from detection targets of the
next code-fragment-level clone detection.

There is a research report that about 49% of methods in
about 13,000 software were method-level clones [3]. Since
there are a large number of method-level clones across soft-
ware. The authors expect that the code-fragment-level clone

E.html F.java

A.java B.java

C.java D.java

STEP1-4.
Generating
hash values

A.java

$A
B.java

$B

C.java

$C
D.java

$D

STEP1-2.
Normalizing files

STEP1-5.
Making
hash groups

A.java

10
B.java

10

C.java

20
D.java

30

STEP1-1.
Identifying
detection
target files

A.java B.java

C.java D.java

F.java

A.java

$A
B.java

$B

C.java

$C
D.java

$D

F.java

$F

A.java

10
B.java

10

C.java

20
D.java

30

STEP1-3.
Filtering out files

Input

(a) File-Level Clone Detection

STEP2-1.
Extracting
methods

A.java method1

A.java method2

C.java method3

C.java method4

D.java method5

D.java method6

method1 $1 10

method2 $2 20

method3 $3 10

method4 $4 30

method6 $6 40

STEP2-2.
Normalizing
methods

method1 $1

method2 $2

method3 $3

method4 $4

method5 $5

method6 $6

STEP2-3.
Filtering out methods

method1 $1

method2 $2

method3 $3

method4 $4

method6 $6

STEP2-4.
Generating
hash
values

STEP2-5.
Making
hash
groups

method1 $1 10

method2 $2 20

method3 $3 10

method4 $4 30

method6 $6 40

A.java

C.java D.java

(b) Method-Level Clone Detection

STEP3-1.
Identifying
statements

STEP3-2.
Generating
hash values

10

20...

STEP3-3.
Identifying similar hash
sequences

STEP3-4.
Outputting
clone
information

C.java

...

A.java

method1 $1 10 20 30 40 50 60

method4 $4

10 20 30 50 60

void $ () {

$. $. $ ($) ;

method1 $1

method2 $2

method4 $4

method6 $6

Output

(c) Code-Fragment-Level Clone Detection

Fig. 4. The Details of Each Clone Detection

detection time can be greatly saved by excluding detected
methods from detection targets of the next code-fragment-level
clone detection.

B. Secondary Merit of Our Proposed Technique

Detecting multiple clone pairs as a single clone pair can
reduce the number of detected clones. An example is shown
in Figure 3. For example, in the method-level clone detection,
two clone pairs of method B and method E, method C and
method F are detected. However, it is possible to detect as a
single clone pair of class A and class D in the file-level clone
detection prior to the method-level clone detection. In other
words, by detecting such contiguous clones at a stage with
coarser detections, our proposed technique can generate clone

detection results which are easier to analyze than fine-grained
detection techniques.

III. IMPLEMENTATION

We have developed a tool, Decrescendo based on our
proposed technique. The inputs of Decrescendo are as follows:

• single or multiple software (currently, Decrescendo tar-
gets only source code written in Java),

• minimum clone length (minimum number of tokens con-
sidered to be clones), and

• maximum gap rate (ratio of gapped tokens in the detected
tokens).

The outputs are clone detection results, such as location
information and types. The detection results are output to a
database. A simplified procedure of Decrescendo is as follows.

STEP1: File-level clone detection

STEP1-1: identifying detection target files
STEP1-2: normalizing files
STEP1-3: filtering out files
STEP1-4: generating hash values
STEP1-5: making hash groups

STEP2: Method-level clone detection

STEP2-1: extracting methods
STEP2-2: normalizing methods
STEP2-3: filtering out methods
STEP2-4: generating hash values
STEP2-5: making hash groups

STEP3: Code-fragment-level clone detection

STEP3-1: identifying statements
STEP3-2: generating hash values
STEP3-3: identifying similar hash sequences
STEP3-4: outputting clone information

Decrescendo can switch detection on/off for each granu-
larity by setting. Even if the method-level clone detection is
off, the inputs of the code-fragment-level clone detection are
methods. Besides, even if the file-level and, or the method-
level clone detection are off, filterings (STEP1-3, STEP2-3)
are not conducted.

The details of each STEP are described below.

A. File-level Clone Detection

The procedure for detecting file-level clones is as follows.
An overview is shown in Figure 4(a).

STEP1-1: identifying detection target files
Decrescendo identifies detection target files from single or
multiple software given as the inputs. Decrescendo currently
analyzes only source code written in Java.

STEP1-2: normalizing files
The following normalization processing is conducted to files
identified in STEP1-1.

• Removing white space, tabs, blank lines, annotations, and
comments.

• Replacing variables and literals with special tokens.
This process makes it possible to detect two files as clones

even if their coding styles differ between them, or their
variables and literals are different.

STEP1-3: filtering out files
If the number of tokens included in a normalized file is
less than a given minimum clone length, the file is excluded
from the detection targets. The reasons for the filtering are as
follows:

• saving time required for the matching process in STEP1-
5,

• excluding files not to be detected as clones.
STEP1-4: generating hash values

Hash values are generated for each detection target file. Files
with the same hash value are a file-level clone. Decrescendo
uses MD5 as a hash function.

STEP1-5: making hash groups
Decrescendo groups files whose hash values are the same. If
a group consists of two or more files, it is detected as a file-
level clone. For example, in Figure 4(a), A.java and B.java are
a file-level clone. In the file-level clone detection, Type-1 and
Type-2 clones are detected.

B. Method-level Clone Detection

The procedure for detecting method-level clones is as fol-
lows. An overview is shown in Figure 4(b).

STEP2-1: extracting methods
The inputs are files which did not have the same hash values
in STEP1-5. In addition, Decrescendo randomly selects a file
from each group including two or more files whose hash values
are the same. Those files are added to the inputs as files
representing the groups. For example, in Figure 4(a), A.java
and B.java are a file-level clone. In Figure 4(b), A.java is
added to the input as a representing file. This is a process
for preventing oversight in the method-level clone detection.
If the inputs were normalized files, types of method-level
clones could not be classified. Thus, the inputs are files before
the normalization. Then, Decrescendo builds abstract syntax
trees for every file and extract their subtrees corresponding to
methods.

STEP2-2: normalizing methods
Decrescendo normalizes methods identified in STEP2-1 as
well as STEP1-2.

STEP2-3: filtering out methods
If the number of tokens included in a normalized method is
less than a given minimum clone length, it is excluded from
the detection targets.

STEP2-4: generating hash values
Hash values are generated for each detection target method.
Methods with the same hash value are a method-level clone.
Decrescendo uses MD5 as a hash function.

STEP2-5: making hash groups
Decrescendo groups methods whose hash value are the same.
If a group consists of two or more methods, it is detected as
a method-level clone. For example, in Figure 4(b), method1

of A.java and method3 of C.java are a method-level clone. In
the method-level clone detection, Type-1 and Type-2 clones
are detected.

C. Code-fragment-level Clone Detection

The procedure for detecting code-fragment-level clones is
as follows. An overview is shown in Figure 4(c).

STEP3-1: identifying statements
The inputs are methods which did not have the same hash
values in STEP2-5. In addition, Decrescendo randomly selects
a method from each group including two or more methods
whose hash values are the same. Those methods are added to
the inputs as methods representing the groups. For example,
in Figure 4(b), method1 of A.java and method3 of C.java
are method-level clones. In Figure 4(c), method1 is added
to the input as a representing method. Then, Decrescendo
identifies statements for these input methods. We define a
statement as every subsequence between semicolon, opening
brace and closing brace. Decrescendo records the number of
tokens included in every statement.

STEP3-2: generating hash values
Hash value is generated for every statement identified in
STEP3-1. Decrescendo uses MD5 as a hash function.

STEP3-3: identifying similar hash sequences
We use Smith-Waterman algorithm [6] to identify similar
hash sequences. Smith-waterman algorithm is used in the
field of biology. This algorithm detects pairs of similar partial
alignments from two alignments. It has an advantage that it
can identify similar alignments even if they include some gaps.
The reason why we uses Smith-Waterman algorithm is that the
clone detection tool to which Smith-Waterman algorithm is
applied is faster to detect than the other Type-3 clone detection
tools [7]. Decrescendo identifies similar hash sequences for
each combination of detection target methods.

STEP3-4: outputting clone information
If the following two conditions are satisfied, clone information
is output. In the code-fragment-level clone detection, Type-1,
Type-2 and Type-3 clones are detected.

• match ≥ θ,
• gap/match ≤ ϕ,
where match, gap, θ, and ϕ represent the number of tokens

included in the similar statements, the number of tokens
included in the mismatch statements, a given minimum clone
length, and a given maximum gap ratio.

IV. EXPERIMENT

We applied Decrescendo to some open software. Then, we
evaluated our proposed technique compared to coarse detec-
tion technique and fine-grained detection technique. In this
experiment, minimum clone length is 50 tokens, and maximum
gap rate is 0.3. These are based on previous studies [8] [9].

A. Experimental Questions

EQ1: can the multi-grained detection technique detect
clones faster than fine-grained detection technique?

TABLE II
EXPERIMENTAL RESULTS

Detection Granularity # of Detected Clone Pairs Detection Time [s]
File Method Code-fragment File Method Code-fragment Sum
✓ 1,067 - - 1,067 4.0

✓ - 31,807 - 31,807 15.3
✓ - - 202,537 202,537 4,695.4

✓ ✓ 1,067 31,291 - 32,358 15.9
✓ ✓ 1,067 - 202,021 203,088 4,137.7

✓ ✓ - 31,807 170,730 202,537 690.2
✓ ✓ ✓ 1,067 31,291 170,730 203,088 671.6

EQ2: can the multi-grained detection technique detect more
clones than coarse detection technique?

EQ3: are multi-grained detection results easier to analyze
than coarse detection results and fine-grained detection ones?

To research these questions, we executed Decrescendo in
all cases where detection on each granularity was switched
on/off.

B. Experimental Environment

The CPU of the computer used in this experiment is 2.40
GHz Intel Xeon CPU (8 logic processors), and the memory
size is 32.0 GB. Experimental targets and output database were
located on SSD.

C. Experimental Target

Table I shows an overview of target software. We randomly
selected 10 latest software from Apache’s repository1 as of
September 13, 2016. To avoid clone detection from the same
software with different versions, only files under trunk are
detection target.

D. Experimental Results

Table II shows experiment results. Columns of Detection
Granularity indicate whether the detection is on or not. We
answer to each EQ with Table II.

1) EQ1: comparing the case of detecting all granularities
clones and the case of detecting only code-fragment-level
clones, the detection time is greatly saved (4,695.4s→671.6s).
The time required for each STEP is shown in Table III. The
execution time from STEP2-1 to STEP2-4 is slightly saved

TABLE I
OVERVIEW OF TARGET SOFTWARE

software # of Java files LOC
Any23 369 46,957

cTAKES 1253 209,545
Forrest 252 32,491

JSPWiki 491 107,530
jUDDI 938 163,103
Onami 572 43,784
OODT 1,628 223,846

OpenOffice 3871 774,670
Roller 612 96,617
Wink 1,372 210,167
Sum 11,358 1,908,710

1http://svn.apache.org/repos/asf/

(13.4s→10.1s). This is because detected file-level clones are
excluded from the inputs of the method-level clone detection.

Furthermore, the most remarkable point is that the execution
time of STEP3-3 was greatly saved (4,672.0s→637.0s). In
detecting all granularities clones, the execution time is about
1/7 against the code-fragment clone detection. In both cases,
almost all of the total execution time is the execution time
of STEP3-3. Thus, excluding detected files and methods, and
also, files and methods which are less than a given minimum
clone length is effective for saving the detection time.

Moreover, comparing the case of detecting file-level, code-
fragment-level clones and the case of detecting all granularities
clones, excluding detected methods, and also, methods which
are less than a given minimum clone length is especially
effective for saving the detection time.

In conclusion, our answer to EQ1 is YES. The multi-
grained detection technique can detect clones greatly faster
than the fine-grained detection techniques. A large number of
file-level and method-level clones were detected in cases of
detecting clones from a large set of source code in previous
studies [3] [10] [11]. Especially in such cases, the authors
consider that the multi-grained detection technique can save
the detection time effectively.

2) EQ2: comparing the case of detecting file-level,
method-level clones and the case of detecting all granular-
ities clones, the number of detected clone pairs increased
(32,358→203,088). Comparing the case of detecting code-
fragment-level clones and the case of detecting all granularities
clones, the number of detected clone pairs did not differ much
(202,537→203,088).

In conclusion, our answer to EQ2 is YES. The multi-
grained detection technique can detect more clones than the
coarse detection techniques. Moreover, multi-grained detection

TABLE III
THE TIME REQUIRED FOR EACH PROCESS

STEP All [s] Code-fragment [s]
STEP1-1 STEP1-4 3.7 4.0
STEP1-5 0.0 -
Output(File) 2.0 -
STEP2-1 STEP2-4 10.1 13.4
STEP2-5 0.0 -
Output(Method) 1.4 -
STEP3-1 STEP3-2 1.6 1.5
STEP3-3 637.0 4,672.0
Output(Code-fragment) 13.8 3.8

156 public class NewXDoc extends Wizard implements
INewWizard {

...
182 public boolean performFinish() {
183 final String containerName = page.getContainerName();
184 final String fileName = page.getFileName();

...
106 }

...
114 private void doFinish(
115 String containerName,
116 String fileName,

...
145 }

...
150 protected void createFile(
151 IResource resource,
152 String fileName,

...
171 }

...
187 }

156 public class NewViewDoc extends Wizard implements
INewWizard {

...
182 public boolean performFinish() {
183 final String containerName = page.getContainerName();
184 final String fileName = page.getFileName();

...
106 }

...
114 private void doFinish(
115 String containerName,
116 String fileName,

...
145 }

...
150 protected void createFile(
151 IResource resource,
152 String fileName,

...
171 }

...
187 }

Method-level
clone

Method-level
clone

Method-level
clone

File-level
clone

Fig. 5. An Example where Multiple Method-level Clones are Detected as a File-level Clone

Not
method-level

clone

Not
method-level

clone

Not
Method-level

clone

File-level
clone

28 public class Menu {

30 private List<MenuTab> tabs = new ArrayList<MenuTab>();

33 public void addTab(MenuTab tab) {
34 this.tabs.add(tab);
35 }

38 public List<MenuTab> getTabs() {
39 return tabs;
40 }

42 public void setTabs(List<MenuTab> menus) {
43 this.tabs = menus;
44 }

46 }

28 public class ParsedMenu {

30 private List<ParsedTab> tabs = new ArrayList<ParsedTab>();

32 public void addTab(ParsedTab tab) {
33 this.tabs.add(tab);
34 }

36 public List<ParsedTab> getTabs() {
37 return tabs;
38 }

40 public void setTabs(List<ParsedTab> tabs) {
41 this.tabs = tabs;
42 }

44 }

Fig. 6. An Example where a File-level Clone can be Refactored

186 public class NeuralEventTimeSelfRelationAnnotator extends
TemporalRelationExtractorAnnotator {

...
168 @Override
169 public List<IdentifiedAnnotationPair>

getCandidateRelationArgumentPairs(
170 JCas jCas,
171 Annotation sentence) {

...
206 return pairs;
207 }

...
283 }

186 public class EventTimeSelfRelationAnnotator extends
TemporalRelationExtractorAnnotator {

...
171 @Override
172 public List<IdentifiedAnnotationPair>

getCandidateRelationArgumentPairs(
173 JCas jCas,
174 Annotation sentence) {

...
209 return pairs;
210 }

...
286 }

Method-level
clone

Not
file-level

clone

Fig. 7. An Example where a Method-level Clone can be Refactored

technique detects as many clones as fine-grained detection
techniques. This indicates that the detection time has saved
without losing detected clones.

3) EQ3: we confirmed three cases generating clone detec-
tion results which were easy to analyze.

The first case is that multiple method-level clone pairs were
detected as a file-level clone pair. An example is shown in Fig-
ure 5. When the file-level clone detection is off, performFinish,
doFinish, and createFile methods were detected as different
method-level clone pairs. However, when the file-level clone
detection is on, they were detected as a single clone pair of

NewXDoc and NewViewDoc classes. In the file-level clone
detection, 516 method-level clone pairs were detected as 404
file-level clone pairs. By detecting such contiguous clones at
a stage with coarser detections, there is a possibility that we
notice refactoring opportunities to merge multiple classes into
a class. In this case, the multi-grained detection technique can
generate clone detection results which are easier to analyze
than fine-grained detection techniques.

The second case is that methods in a file were not detected
in the method-level clone detection although the file was
detected in the file-level clone detection. This is because

all methods in the file-level clone were less than a given
minimum clone length. It is not necessary to detect methods
as method-level clones, but there are cases where the entire
class needs to be detected as a file-level clone. An example
is shown in Figure 6. When the file-level clone detection is
off, addTab, getTabs, and setTabs methods were not detected
because those methods were less than a given minimum clone
length. However, when the file-level clone detection is on,
Menu and ParsedMenu classes were detected as a file-level
clone because those classes were more than a given minimum
clone length. By detecting such file-level clones, there is a
possibility of refactoring opportunities. In this case, the multi-
grained detection technique can also generate clone detection
results which are easy to analyze.

The third case is that methods in files which were not
detected as file-level clones were detected as method-level
clones. An example is shown in Figure 7. In the method-
level detection, getCandidateRelationArgumentPairs methods
in NeuralEventTimeSelfRelationAnnotator and EventTimeSel-
fRelationAnnotator classes were detected as method-level
clones. In addition, NeuralEventTimeSelfRelationAnnotator
and EventTimeSelfRelationAnnotator classes were extended
the same TemporalRelationExtractorAnnotator class, getCan-
didateRelationArgumentPairs methods were overridden. Those
methods can be pulled up to the parent class. The multi-
grained detection technique generates clone detection results
which include granularity levels of detected clones, and from
above examples, each granularity clone is refactored in dif-
ferent ways. Thus, by using the information of granularity
levels, its detection results become easy to analyze because
refactoring techniques to be applied become clearer.

In conclusion, our answer to EQ3 is YES.

V. THREAD TO VALIDITY

Target systems: we targeted only 10 software. If we had
selected other software, the results might have been different
from this experiment. However, even if we select other soft-
ware, we consider that we can obtain the same experimental
results.

Hash collision: we use MD5 as a hash function. If hash
collisions occur, non-duplicated files, methods, and code frag-
ments are accidentally regarded as clones. However, in this
research, MD5 which outputs a 128-bit hash value is used,
and the probability of a hash collision is considered to be
sufficiently low.

Normalization: in this experiment, the normalization de-
scribed in Section III was conducted. If we had conducted a
different normalization, the clone detection results would have
been different from this experiment.

VI. CONCLUSION

We proposed a technique that detects in order from coarse
clones to fine-grained ones (multi-grained detection tech-
nique). We have developed a tool based on our proposed
technique and applied it to some open source software. Then,

we evaluated our proposed technique compared to coarse
detection techniques and fine-grained detection techniques.

The main contributions of this research are as follows.
• We proposed a technique that detects in order from coarse

clones to fine-grained ones.
• We confirmed that our multi-grained detection technique

can detect clones faster than fine-grained detection tech-
niques.

• We confirmed that our multi-grained detection technique
can detect more clones than coarse detection techniques.

• We confirmed that our multi-grained detection technique
can generate clone detection results that are easier to
analyze than coarse detection techniques and fine-grained
detection ones.

Our future works are as follows.
• Supporting for other languages.
• Comparing with other clone detection tools.
• Evaluating the multi-grained detection technique with

traditional quality metrics such as precision, recall, and
f-measure.

• Detecting clones from larger set of source code to find
library candidates or overlooked bugs.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP25220003.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[2] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[3] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project
functional clone detection toward building libraries-an empirical study
on 13,000 projects,” in Proc. of the 19th Working Conference on Reverse
Engineering, 2012, pp. 387–391.

[4] K. Hotta, J. Yang, Y. Higo, and S. Kusumoto, “How accurate is coarse-
grained clone detection?: Comparison with fine-grained detectors,” in
Proc. of the 8th International Workshop on Software Clones, 2014, pp.
1–18.

[5] E. Choi, N. Yoshida, Y. Higo, and K. Inoue, “Proposing and evaluating
clone detection approaches with preprocessing input source files,” IEICE
Transactions on Information and Systems, vol. 98, no. 2, pp. 325–333,
2015.

[6] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[7] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped
code clone detection with lightweight source code analysis,” in Proc.
of the 21st International Conference on Program Comprehension, 2013,
pp. 93–102.

[8] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” Software Engineering,
IEEE Transactions on, vol. 33, no. 9, pp. 577–591, 2007.

[9] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with big-
clonebench,” in Proc. of the 31st International Conference on Software
Maintenance and Evolution, 2015, pp. 131–140.

[10] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file clones
in freebsd ports collection,” in Proc. of the 7th Working Conference on
Mining Software Repositories, 2010, pp. 102–105.

[11] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in open source
java projects: The good, the bad, and the ugly,” in Proc. of the 27th
International Conference on Software Maintenance, 2011, pp. 283–292.

