
NIL: Large-Scale Detection of Large-Variance Clones
Tasuku Nakagawa
Osaka University
Suita, Osaka, Japan

t-nakagw@ist.osaka-u.ac.jp

Yoshiki Higo
Osaka University
Suita, Osaka, Japan

higo@ist.osaka-u.ac.jp

Shinji Kusumoto
Osaka University
Suita, Osaka, Japan

kusumoto@ist.osaka-u.ac.jp

ABSTRACT
A code clone (in short, clone) is a code fragment that is identical or
similar to other code fragments in source code. Clones generated
by a large number of changes to copy-and-pasted code fragments
are called large-variance (modifications are scattered) or large-gap
(modifications are in one place) clones. It is difficult for general
clone detection techniques to detect such clones and thus special-
ized techniques are necessary. In addition, with the rapid growth
of software development, scalable clone detectors that can detect
clones in large codebases are required. However, there are no ex-
isting techniques for quickly detecting large-variance or large-gap
clones in large codebases. In this paper, we propose a scalable clone
detection technique that can detect large-variance clones from large
codebases and describe its implementation, called NIL. NIL is a
token-based clone detector that efficiently identifies clone candi-
dates using an N-gram representation of token sequences and an
inverted index. Then, NIL verifies the clone candidates by mea-
suring their similarity based on the longest common subsequence
between their token sequences. We evaluateNIL in terms of large-
variance clone detection accuracy, general Type-1, Type-2, and Type-
3 clone detection accuracy, and scalability. Our experimental re-
sults show thatNIL has higher accuracy in terms of large-variance
clone detection, equivalent accuracy in terms of general clone de-
tection, and the shortest execution time for inputs of various sizes
(1–250 MLOC) compared to existing state-of-the-art tools.

KEYWORDS
Clone Detection, Large-Variance Clone, Scalability
ACM Reference Format:
Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto. 2021. NIL: Large-
Scale Detection of Large-Variance Clones. In Proceedings of The 29th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2021).ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A code clone (in short, clone) is a code fragment that is identi-
cal or similar to other code fragments in source code. Clones are
generated by copying, pasting, and modifying code fragments for
reuse [16, 27]. Clones are amajor problem in softwaremaintenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

because they lead to bug propagation. Therefore, clone detection
techniques, which automatically detect clones in the target code-
base, are essential. Many clone detection techniques have been
proposed [1, 20, 36] and applied in applications, such as refactor-
ing [6, 21, 35], debugging [3, 12, 19], and mining software reposi-
tories [11, 14, 22].

It is important for clone detection techniques to detect clones
that have been heavily edited. A clone generated by inserting or
deleting a large number of statements in one place in a copy-and-
pasted code fragment is called a large-gap clone [37]. Such clones
are common in software development and should thus be detected
along with general clones. Wang et al. pointed out that it is dif-
ficult for existing clone detectors to detect large-gap clones; they
proposed a technique for detecting such clones and presented its
implementation, called CCAligner [37]. Wu et al. pointed out that
CCAligner targets only clones inwhich statement insertion or dele-
tion is made in a single place and cannot detect clones in which
modifications are scattered [40]. They called the latter type of clone
large-variance clones and proposed LVMapper, a clone detector
for large-variance clones.

It is also important for clone detection techniques to be scalable.
Highly scalable clone detectors are required for analyzing large-
scale projects or source files in an inter-project repository. Many
scalable clone detectors have been proposed [18, 29, 34]. To achieve
scalable clone detection, SourcererCC [29] and CloneWorks [34]
use heuristics to reduce the number of code block comparisons
needed to detect clones, and SAGA [18] uses a GPU to parallelize
its clone detection process.

However, clone detectors that can detect clones with a large
number of edits fail for large inputs [37] or require a long time
to detect clones [40]. Scalable clone detectors target only identical
or strongly similar clones (near-miss clones). They are incapable
of detecting large-variance clones, in which many statements have
been inserted or deleted. Therefore, the scalable detection of large-
variance clones is challenging.

In this paper, we propose a scalable technique for detecting large-
variance clones and describe its implementation, calledNIL1, which
uses an N-gram representation, an inverted index, and the longest
common subsequence (LCS). NIL is a token-based clone detector.
One of the features of large-variance clones is that the order of
many tokens is preserved (i.e., the common subsequence between
token sequences of large-variance clones is long). Hence, to detect
large-variance clones,NILmeasures the similarity between the to-
ken sequences of two code fragments based on the LCS. In addi-
tion, large-variance clones share many consecutive tokens. Hence,
for scalable clone detection, NIL uses an N-gram representation of
token sequences and an inverted index to reduce the number of

1A clone detector using N-gram, Inverted index, and LCS.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto

1 protected int run(Commandline cmd) {
2 try {
3 Execute exe = new Execute(new LogStreamHandler(this,

Project.MSG_INFO, Project.MSG_WARN);
4 exe.setAntRun(getProject());
5 exe.setWorkingDirectory(getProject().getBaseDir());
6 exe.setCommandline(cmd.getCommandline);
7 exe.setVMLauncher(false);
8 return exe.execute();
9 } catch (java.io.IOException e) {

10 throw new BuildException(e, getLocation());
11 }
12 }
a
a
a
a
a
a
a
a
a
a

(a) Clone A

1 protected int run(Commandline cmd) {
2 try {
3 Execute exe = new Execute(new LogStreamHandler(this,

Project.MSG_INFO, Project.MSG_WARN);
4 if (serverPath != null) {
5 String[] env = exe.getEnvironment();
6 if (env == null) {
7 env = new String[0];
8 }
9 String[] newEnv = new String[env.length + 1];

10 System.arrayCopy(env, 0, newEnv, 0, env.length);
11 newEnv[env.length] = "SSDIR=" + serverPath;
12 exe.setEnvironment(newEnv);
13 }
14 exe.setAntRun(getProject());
15 exe.setWorkingDirectory(getProject().getBaseDir());
16 exe.setCommandline(cmd.getCommandline);
17 exe.setVMLauncher(false);
18 return exe.execute();
19 } catch (java.io.IOException e) {
20 throw new BuildException(e, getLocation());
21 }
22 }

(b) Clone B

Figure 1: Example of large-gap clones

code block comparisons needed to detect clones. First, NIL trans-
forms code blocks extracted from source files into token sequences
and creates an inverted index from the N-gram representation of
the token sequences. Next, it identifies the clone candidates for
each code block using the code block and the inverted index. Fi-
nally, it verifies the clone candidates by measuring the similarity
between the code block and the clone candidates.

We evaluate NIL’s (1) large-variance clone detection accuracy,
(2) general Type-1, Type-2, and Type-3 clone detection accuracy,
and (3) scalability. We compared NILwith existing state-of-the-art
tools, namely LVMapper [40], CCAligner [37], SourcererCC [29],
and NiCad [4]. The experimental results show that NIL has high
precision of 87% in large-variance clone detection. It also has high
recall of 100%, as determined in our evaluation of large-variance
clone detection using amutation technique. In general clone detec-
tion, the accuracy of NIL is equivalent to that of the existing tools.
In addition, we confirmed that NIL has high scalability; it can de-
tect clones faster than the existing tools for large inputs (codebases
with 250 MLOC).

The main contributions of this paper are as follows.

(1) We proposed a scalable technique for detecting large-variance
clones. The proposed technique identifies clone candidates
efficiently by using an N-gram representation of token se-
quences and an inverted index and verifies clone candidates
precisely bymeasuring the similarity between token sequences
based on the LCS.

(2) We implemented the proposed technique as a tool, called
NIL. The executable file is available at https://github.com/
kusumotolab/NIL.

(3) We evaluated the usefulness of NIL through three experi-
ments. The results show that NIL has high large-variance
clone detection accuracy, high scalability, and equivalent

general clone detection accuracy compared to that of ex-
isting state-of-the-art tools. We have published our experi-
ment data to facilitate replication studies.

The remainder of this paper is organized as follows. Section 2
describes the definition of general clones, large-gap clones, and
large-variance clones. Section 3 describes NIL in detail. Section 4
gives an overview of our evaluation and presents the results. Sec-
tion 5 describes threats to validity. Section 6 reviews related stud-
ies. Section 7 concludes this paper with a discussion and sugges-
tions for future work.

2 PRELIMINARIES
2.1 Definition
A code fragment is a consecutive segment of source code. It can be
represented by the tuple (f ile_name, start_line, end_line). A code
block is a code fragment within braces. This study treats a func-
tion, which is a code block, as a clone detection unit, as done in
previous studies [29, 37, 40]. Clones are code fragments identical
or similar to other code fragments in source code. A pair of similar
code fragments is called a clone pair. Clones are classified based
on the degree of the similarity between them as follows.

Type-1 is an exact copy without modifications (except for
white space and comments).

Type-2 is a syntactically identical copy; only variable, types,
or function identifiers are different.

Type-3 is a copy with further modifications; statements have
been changed, added, or removed.

The minimum length of clones is the minimum number of lines
that a code fragment must be to be treated as a clone. It is often set
to six lines or 50 tokens [1].

https://github.com/kusumotolab/NIL
https://github.com/kusumotolab/NIL

NIL: Large-Scale Detection of Large-Variance Clones ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1 protected String getPrompt(InputRequest request) {
2 String prompt = request.getPrompt();
3 if (request instanceof MultipleChoiceInputRequest) {
4 StringBuffer sb = new StringBuffer(prompt);
5 sb.append("(");
6 Enumeration e = ((MultipleChoiceInputRequest) request)

.getChoices().elements();
7 boolean first = true;
8 while (e.hasMoreElements()) {
9 if (!first) {
10 sb.append(",");
11 }
12 sb.append(e.nextElement());
13 first = false;
14 }
15 sb.append(")");
16 prompt = sb.toString();
17 }
18 return prompt;
19 }

(a) Clone A

1 protected String getPrompt(InputRequest request) {
2 String prompt = request.getPrompt();
3 String def = request.getDefaultValue();
4 if (request instanceOf MultipleInputChoiceRequest) {
5 StringBuilder sb = new StringBuilder(prompt).append("(");
6 boolean first = true;
7 for (String next : ((MultipleInputChoiceRequest) request)

.getChoices()) {
8 if (!first) {
9 sb.append(",");
10 }
11 if (next.equals(def)) {
12 sb.append('|');
13 }
14 sb.append(next);
15 if (next.equals(def)) {
16 ab.append('|');
17 }
18 first = false;
19 }
20 sb.append(")");
21 return sb.toString();
22 }
23 else if (def != null) {
24 return prompt + "[" + def + "]";
25 }
26 else {
27 return prompt;
28 }
29 }

(b) Clone B

Figure 2: Example of large-variance clones

2.2 Large-gap clone
A large-gap clone is a clone generated by inserting or deleting a
large number of statements in one place in a copy-and-pasted code
fragment. Figure 1 shows an example of large-gap clones. In this
example, a 10-line if-statement is inserted into Clone A (lines 4–13
of Clone B). Wang et al. pointed out that existing clone detectors
are incapable of large-gap clone detection because most target to
the detection of near-miss clones [37]. Wang et al. defined large-
gap clone as follows. Consider two code blocks c1 and c2 with LOC
values of L1 and L2, respectively, where L1 ≤ L2. Let λ = Li/Lj (i.e.,
λ is the ratio of the code lengths of two code blocks). If c1 and c2
are Type-3 clones and the corresponding λ ≤ 0.7, then these clones
are large-gap clones. The clone pair shown in Figure 1 fits the def-
inition of large-gap clones because the ratio of the code lengths of
Clone A and Clone B is 12/22 ≃ 0.55 < 0.7.

Wang et al. proposedCCAligner [37], a large-gap clone detector.
CCAligner detects clones using a code window (a code fragment
composed of k consecutive lines in a code block). First, CCAligner
transforms code blocks into codewindows. Then, it identifies clone
candidates as pairs of code blocks that share at least one code win-
dow with considering e edit distance. Finally, it verifies clone can-
didates based on their similarity, which is calculated as follows:

sim(c1, c2) =
|Wc1 ∩Wc2 |

min(|Wc1 |, |Wc2 |)

where c1 and c2 are two code blocks, andWc1 andWc2 are the cor-
responding sets of code windows, respectively.

2.3 Large-variance clone
A large-variance clone is a clone generated by inserting or delet-
ing many statements in various places in a copy-and-pasted code

Large-gap clones

Large-variance clones

Type-3 clones

CCAligner

LVMapper
&

NIL

All clones

Figure 3: Relation among clone types and target clone types
for several tools

fragment. Figure 2 shows an example of large-variance clones. In
this example, statements have been inserted into and deleted from
various places in Clone A to create Clone B. Wu et al. pointed out
that CCAligner targets the detection of large-gap clones, making
it incapable of large-variance clone detection [40]. Wu et al. de-
fined large-variance clones as clones whose code length ratio is
less than 0.7. This means that large-gap clones are a special case of
large-variance clones. They proposed LVMapper, a large-variance
clone detector. Figure 3 shows that the relation among clone types
and the clone types targeted by CCAligner, LVMapper, and NIL.
CCAligner targets large-gap clones, whereas LVMapper and NIL
target large-variance clones, which include large-gap clones.

LVMapper detects clones using codewindows, just likeCCAligner.
Its clone detection has three phases, namely the locating, filtering,
and verifying phases. In the locating phase, LVMapper identifies
pairs of code blocks that share at least one code window as clone

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto

Locate
&

Filter

Clone
candidate

Verify
Clone pair

Source
code

Tokenized
code block

Extract
&

Tokenize

Select each
code block

N-gramsTokenized
code block

Inverted
Index

N-gramsN-gramsN-grams

Generate
N-grams

Preprocessing

Clone detection

Create

Generate
N-grams

Figure 4: Overview of NIL

candidates. Then, in the filtering phase, it calculates the propor-
tions of common code windows for each clone candidate and re-
moves clone candidates whose proportions are lower than filtering
threshold θ . Finally, in the verifying phase, it verifies each clone
candidate based on similarity measured using a common subse-
quence of lines between each clone candidate’s code block pair.

3 APPROACH
Figure 4 shows an overview of the proposed technique. The input
is a set of source code files, and the output is the clone pairs in the
source code. In the proposed technique, large-variance clones are
detected based on the similarity between token sequences based
on the LCS, taking advantage of the fact that the order of many to-
kens in a large-variance clone pair is preserved. In addition, large-
variance clones share many consecutive tokens. Hence, to achieve
scalable large-variance clone detection, the proposed technique re-
duces the number of code block comparisons using an N-gram rep-
resentation of token sequences and an inverted index. The pro-
posed technique transforms code blocks in source code into token
sequences in the Preprocessing phase and detects clones by com-
paring the token sequences in the Clone detection phase. In this
study, we implemented the proposed technique as a tool, called
NIL. NIL is written in the Kotlin language and currently targets
only Java source code. The following subsections describe the Pre-
processing and Clone detection phases.

3.1 Preprocessing
In the Preprocessing phase,NIL extracts code blocks from the target
source code and transforms them into token sequences. NIL does
not perform lexical analysis but simply divide each code block’s
text based on symbols (e.g., “+”, “−”, or braces), white spaces, or
newlines, as done by SourcererCC. For example, when the code
block shown in figure 2(a) is transformed into the token sequence,
protected, String, getPrompt, InputRequest, request,

protected String getPrompt(InputRequest request) { Source code

protected String getPrompt InputRequest request Token sequence

protected String getPrompt

protected String getPrompt InputRequest

protected getPrompt InputRequest request

3-grams

Divide

Generate 3-grams

Figure 5: Example of generating 3-grams

With this transformation, lexical analyzers for other languages do
not need to be implemented to extend NIL. The token sequence
transformation is fast because lexical analysis is not necessary. In
addition, NIL has a relatively low rate of false positives because
it does not normalize identifiers, such as variable and function
names. However, it may not detect clones whose identifiers have
been changed (i.e., Type-2 clones). We discuss the impact of the
lack of identifier normalization in Section 4.

Next, NIL generates N-grams from each token sequence. An N-
gram is a chunk of consecutive N tokens. Figure 5 shows an ex-
ample of generating 3-grams from the code block shown in fig-
ure 2(a). In this example, three 3-grams are generated from the
five tokens on the first line in the code block. Even though large-
variance clones include many modifications (statement insertions
and deletions), many tokens other than the statements match con-
secutively (i.e., many N-grams match). Therefore, using N-grams
is effective for scalable large-variance clone detection.

Then,NIL creates an inverted index from the generatedN-grams.
An inverted index is an information retrieval technology that al-
lows the fast retrieval of documents that contains a word given as
a query [15]. It is often used in clone detection techniques [7]. NIL

NIL: Large-Scale Detection of Large-Variance Clones ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

code block

Clone pair

code block

Inverted
Index

2. Create

code block

Inverted
Index

4. Create

2n+1. Clone detection

5. Clone detection

3. Clone detection

code block

Inverted
Index

2n. Create

…

…

First group Second group n-th group

1. Divide into n groups

All code blocks

Figure 6: Concept of partial inverted indexes

uses a dictionary whose keys are the hash values of N-grams, and
values are the code blocks containing the corresponding N-gram
as an inverted index. All code blocks containing an N-gram can be
quickly obtained by looking up the hash value of the N-gram in
the inverted index. Therefore, a pair of code blocks that share an
N-gram (i.e., the pair is possibly a large-variance clone pair) can be
obtained quickly using the inverted index.

However, an inverted index consumes a lot of memory. Hence,
creating an inverted index from all code blocks may lead to large
memory consumption. To avoid this, we apply partial inverted in-
dexes [34]. Code blocks are divided into several groups and an in-
verted index is created for each group (i.e., a partial inverted in-
dex) instead of creating a single inverted index for all code blocks.
Figure 6 shows the concept of partial inverted indexes. First, code
blocks extracted from source code are divided into n groups (Step
1), where n is set to a value such that the memory consumption
of a partial inverted index is manageable. Next, an inverted index
is created from one group of code blocks (Step 2). Based on the
partial inverted index created in Step 2 and all code blocks, clone
pairs between the code blocks in the group and all code blocks are
detected in Step 3 (the clone detection process is described in the
following Section 3.2). Steps 2 and 3 are performed for each group
of code blocks.

3.2 Clone detection
After the Preprocessing phase, NIL performs Clone detection us-

ing the inverted index created in the Preprocessing phase and all
code blocks. Clone detection is divided into three phases: location,
filtration, and verification, as done by LVMapper [40]. First,NIL se-
lects a code block from all code blocks prepared in the Preprocessing
phase as the target code block. Then, in the location and filtration
phases,NIL identifies the clone candidates of the target code block
using an N-gram and the inverted index. Next, in the verification
phase, NIL verifies that the target code block and the clone can-
didates are clone pairs by calculating the LCS. These phases are

Algorithm 1: Clone Detection

Input: C is a list of tokenized code blocks {c1, c2, . . . , cn },
Inverted Index I of C , N for size of N-gram, θ for filtering
threshold, δ for verifying threshold

Output: All clone pairs CP
1: CP ← φ;
2: for all each ci in C do
3: // Location phase
4: // CC represents clone candidates
5: CC ← φ
6: for j = 1, 2, . . . , (ci .len − N + 1) do
7: // ci [j] is j-th token in ci ’s token sequence
8: n_дram = concat(ci [j], ci [j + 1], . . . , ci [j + N − 1]);
9: key = hash(n_дram);
10: /* дet is a function that returns values to which a given

key is mapped in a given dictionary */
11: CC = CC ∪ дet(I ,key);
12: end for
13:
14: // Filtration phase
15: for all each cc j in CC do
16: /* common_nдrams is a function

that computes the number of common N-grams between
two given code blocks */

17: cn = common_nдrams(ci , cc j);
18: m =min(ci .len, cc j .len);
19: f iltration_sim = cn/(m − N + 1);
20: if f iltration_sim < θ then
21: CC = CC \ {cc j };
22: end if
23: end for
24:
25: // Verification phase
26: for all each cc j in CC do
27: /* lcs is a function that computes the length of the LCS

between token sequences of two given code blocks */
28: lcs_len = lcs(ci , cc j);
29: veri f ication_sim = lcs_len/min(ci .len, cc j .len);
30: if veri f ication_sim ≥ δ then
31: CP = CP ∪ (ci , cc j);
32: end if
33: end for
34: end for
35: return CP ;

performed for each code block to detect all clone pairs in the tar-
get source code. Algorithm 1 shows the Clone detection algorithm.
The three phases of Clone detection are described in detail below.

3.2.1 Location phase. In the location phase,NIL collects the clone
candidates of the target code block using the inverted index. Lines
3–11 in Algorithm 1 are the location phase.

First, NIL generates N-grams from the token sequence of the
target code block. M−N+1 N-grams are generated from a token
sequence with length M . Next, a hash value is calculated for each
N-gram. This hash value is used as a query when looking up values

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto

in the inverted index. Finally, NIL applies the hash values to the
inverted index and collects code blocks that contain the N-gram
whose hash value is the same as the given hash value. The obtained
code blocks are referred to as the clone candidates of the target
code block.

3.2.2 Filtration phase. In the filtration phase, NIL removes code
blocks that unlikely to be clones from the clone candidates col-
lected in the location phase. Lines 14–23 in Algorithm 1 are the
filtration phase. It is necessary to reduce the number of clone can-
didates for scalable and fast clone detection because NIL performs
the LCS calculation, which is a time-consuming process, in the ver-
ification phase. NIL filters clone candidates based on a feature of
large-variance clones.

As described in Section 3.1, the two code blocks of a large-variance
clone pair share a certain number of N-grams. If two code blocks
share few N-grams, the pair is unlikely to be a large-variance clone
pair. Based on this feature, NIL calculates f iltration_sim, defined
below, between the target code block and each clone candidate.

f iltration_sim(c1, c2) =
common_nдrams(c1, c2)

min(nдrams(c1),nдrams(c2))
common_nдrams(c1, c2) = |nдrams(c1) ∩ nдrams(c2)|

where c1 and c2 are two code blocks with lengths |c1 | and |c2 |,
respectively. nдrams(c1) and nдrams(c2) are the numbers of N-
grams generated from code blocks c1 and c2, respectively. Because
of the large number of statement insertions and deletions in large-
variance clones, the two code blocks may have significantly dif-
ferent token sequence lengths. We usemin in the denominator so
that f iltration_sim can be properly calculated even in such cases.
NIL removes clone candidates whose f iltration_sim is less than
filtration threshold θ .

3.2.3 Verification phase. In the verification phase,NIL checkswhether
the target code block and each clone candidate are a true large-
variance clone pair. Lines 25–33 in Algorithm 1 are the verifica-
tion phase. As mentioned in Section 3.2.2, one of the features of
large-variance clones is that the common subsequence between
token sequences of large-variance clones is long even if there are a
large number of insertions and deletions. Therefore,NIL calculates
the LCS between the target code block and each clone candidate
and measures the similarity of the pair based on the length of the
LCS. The similarity function veri f ication_sim(c1, c2) is expressed
as following

veri f ication_sim(c1, c2) =
lcs(c1, c2)

min(|c1 |, |c2 |)
where c1 and c2 are token sequences with lengths |c1 | and |c2 |, re-
spectively, and lcs(c1, c2) is the length of the LCS between c1 and
c2. We usemin as the denominator of the similarity function to de-
tect large-variance clones, as done in the studies onCCAligner [37]
and LVMapper [40] even if the lengths of the token sequences dif-
fer greatly.

Other clone detectors [4, 40] also use the LCS to measure sim-
ilarity. However, they calculate line-based LCS, whereas NIL cal-
culates token-based LCS. In general, the token sequence of a code
block is longer than its line sequence. The time complexity of a
method for LCS calculation based on dynamic programming is

O(|A| × |B |), indicating a very long computation time for a large in-
put size. To reduce time complexity, NIL uses the Hunt-Szymanski
algorithm [8]. With this algorithm, NIL can calculate the LCS in
O(r log |A|+|B | log |B |), whereA andB are token sequences (|A| ≤ |B |)
and r is the number of pairs of common tokens between A and B.

4 EVALUATION
We evaluated NIL in terms of
• large-variance clone detection accuracy,
• general clone detection accuracy, and
• scalability.

In the following subsections, we first optimize the N-gram size
based on a balance between recall and execution time. Next, we
evaluate large-variance clone detection accuracy in terms of pre-
cision and recall. Then, we evaluate general clone detection us-
ing two commonly used benchmarks. Finally, we evaluate scala-
bility by measuring execution time for various input sizes. Addi-
tionally, we compare the above results to those for four state-of-
the-art tools [4, 29, 37, 40]. Table 1 shows these clone detectors
and their settings. These settings were taken from the prior stud-
ies [29, 37, 40]. Note that the threshold δ for verification of LVMap-
per is variable and that δ takes the following values depending on
the number of the lines of clone l .

δ =


0.7 if 6 < l ≤ 10,
1 − 0.03 × l if 10 < l ≤ 20,
0.4 if 20 < l

4.1 Summary
First, we summarize the results of this evaluation. We found that
NIL has high precision of 87% and high recall of 100% in large-
variance clone detection. These values are the highest among the
tested large-variance clone detectors [37, 40]. In general Type-1,
Type-2, and Type-3 clone detection,NIL’s accuracy is equivalent to
that of the existing clone detectors, including large-variance clone
detectors, and its precision is higher than that of large-variance
clone detectors. Moreover, we confirmed that NIL is the fastest
at detecting clones in large codebases (1–250 MLOC) among the
tested clone detectors.

Table 1: Settings for various clone detectors

Tool Settings

Min length 6 lines, window size k = 3,
LVMapper filtering threshold θ = 0.1,

verification threshold δ is variable.

CCAligner
Min length 6 lines, window size q = 6,
edit distance e = 1, min 60% similarity.

SourcererCC Min length 6 lines, min 70% similarity.

Min length 6 lines, max length 20,000 lines,
NiCad blind renaming, identifier abstraction,

min 70% similarity.

NIL: Large-Scale Detection of Large-Variance Clones ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

4.2 Parameter setting
NIL requires three parameters, namely N for N-grams, filtration
threshold θ , and verification threshold δ . We set δ to 0.7, which
is often used in clone detectors [4, 29]. We set θ to 0.1, as done
for LVMapper. N must be carefully selected because it has a large
impact on performance (e.g., execution time and clone detection
accuracy). If N is set to a too small value, the recall of clone detec-
tion will increase because more code blocks will share the same N-
grams. However, because more code blocks are identified as clone
candidates in the location phase, the number of comparison tar-
gets in the filtration and verification phases increases, resulting
in a longer execution time. Therefore, to optimize the N , we ex-
ecuted NIL with N = 1–9 and measured the execution time and
clone detection recall for eachN value. We used BigCloneEval [33]
to measure recall. BigCloneEval automatically measures the recall
of clone detectors using BigCloneBench [32].

Table 2 shows the results for eachN value. ForN <5, an increase
in N significantly reduces the execution time without lowering re-
call by more than one point compared to when N = 1. For N = 5
and 6, execution time decreases but recall also decreases. ForN >6,
execution time does not significantly decrease. Therefore, consid-
ering the balance between execution time and recall, N = 5 is the
optimal value.

4.3 Large-variance clone detection
We evaluated the large-variance clone detection accuracy of NIL
in terms of precision and recall and compared the results to those
for existing large-variance and large-gap clone detectors, namely
CCAligner and LVMapper.

4.3.1 Precision. Precision is the ratio of correct clones detected
to all clones detected. A clone detector with higher precision pro-
vides more accurate results. In general, precision is measured via
a manual validation of the clones detected by the target tool. In
this study, we used Ant and Maven, used in the prior studies on
CCAligner [37] and LVMapper [40] to measure precision. JDK1.2.2
and OpenNLP, also used in the above studies, were not used here
because we could not find the source code for JDK1.2.2, which has

Table 3: Target systems

System # Files LOC

Ant 1.10.1 895 109,073
Maven 3.5.0 698 60,471

been end-of-lifed and we considered OpenNLP to be unsuitable for
manual validation because it is a machine learning library whose
source code is difficult to read (e.g., it includes repetitive array ma-
nipulation code). We used the following procedure to measure the
precision of each tool:

(1) we input the target source code into each tool,
(2) we randomly selected 100 large-variance clone pairs with

more than ten lines for each tool and target system, and
(3) we manually confirmed whether the clone pairs were cor-

rect.

To remove bias in the manual validation, the detected large-
variance clone pairs of a given tool were validated without knowl-
edge of the tool used for detection. Table 3 shows the number of
files and total LOC for Ant and Maven.

Table 4 shows the number of large-variance clone pairs detected
by each tool and the precision for each tool2. The number of large-
variance clones detected by NIL detected was almost the same as
that of LVMapper and more than that of CCAligner. The man-
ual validation results indicate that NIL had high average precision
of 87% whereas LVMapper and CCAligner had low average preci-
sion values of about 60% and 40%, respectively. We considered this
difference in precision to be due to LVMapper and CCAligner nor-
malizing the identifiers in code blocks. After checking the large-
variance clones detected by LVMapper and CCAligner, we found
that code blocks with consecutive assignment statements, such as
constructors, and consecutive if-statements were incorrectly de-
tected as large-variance clones. In contrast, NIL detected large-
variance clones more precisely because it does not perform iden-
tifier normalization.

Table 4: Large-variance clone detection results

Tool System # Large-variance clones Precision (%)

NIL
Ant 354 86.0
Maven 398 88.0

LVMapper
Ant 355 64.0
Maven 389 60.0

CCAligner
Ant 184 43.0
Maven 284 40.0

2Manual validation descriptions are available at https://zenodo.org/record/4490845

Table 2: Recall and execution time results for each N value

N 1 2 3 4 5 6 7 8 9

Type-2 97.5 97.5 97.5 97.5 96.6 96.3 96.1 95.8 93.3
Very Strongly Type-3 93.5 93.5 93.5 93.5 93.5 93.1 92.9 92.7 92.5

Strongly Type-3 68.4 68.4 68.4 68.3 67.1 65.3 64.6 63.7 62.0
Moderately Type-3 11.2 11.2 11.2 11.1 10.6 9.9 9.3 8.7 7.8

Execution time > 24h 2h 13m 52s 21m 42s 5m 56s 2m 58s 1m 13s 1m 4s 1m 2s 57s

https://zenodo.org/record/4490845

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto

In addition, NIL had higher precision than that of LVMapper
and detected a similar number of large-variance clone pairs, indi-
cating that it can detect many large-variance clones that LVMap-
per cannot. After checking large-variance clones thatNIL detected
but LVMapper did not, we found that the large-variance clone pairs
share a small number of consecutive lines. LVMapper regards three
consecutive lines in code blocks as code windows (see Section 2)
and identifies clone candidates based on these codewidows. There-
fore, if a pair of code blocks shares a little or no code window,
LVMapper cannot detect the pair as a large-variance clone pair. In
contrast, NIL can detect such large-variance clones because it uses
an N-gram representation of token sequences.

4.3.2 Recall. Recall is the ratio of clones detected by a tool to the
total number of true clones in the target codebase. A clone detec-
tor with higher recall can detect true clones more exhaustively. To
evaluate recall, all true clone pairs in the codebase are required.
However, it is not realistic to manually check all code block pairs
in the codebase to determine the total number of true clone pairs.

Therefore, we generated large-variance clone pairs automati-
cally using mutation techniques to evaluate recall. Mutation tech-
niques are frequently used for clone detector recall evaluation [31].
The studies on CCAligner [37] and LVMapper [39] used them to
evaluate large-variance clone detection recall. In this study, we
reproduced large-variance clones by randomly inserting various
numbers of statements into original code blocks (i.e., the large-
variance clones are mutants of the original code blocks). We tar-
geted JDK6 and Apache Commons because they were used in the
study on CCAligner [37]. We randomly selected 100 functions
with 15–50 lines in these systems as the original code blocks. A
minimum length of 15 lines is often used for recall evaluation us-
ing mutation techniques [29, 31]. We used a maximum length of 50
lines because if the number of lines of the original code blocks is
too large, even if a large number of statements are inserted into the
code blocks, the generated clones will not be large-variance clones.
For example, if 20 lines of statements are inserted into an original
code block, if the number of lines of a code block is 100, the ratio of
lines of the clone pair is 100/120 > 0.7, and thus the clone pair does
not satisfy the large-variance clone definition. To reproduce large-
variance clone pairs, 1–20 one-line statements were inserted into
each code block at random locations. 20 clone pairs were generated
per original code block, for a total of 2,000 clone pairs, including
large-variance clone pairs3.

Figure 7 shows the recall of NIL, LVMapper, and CCAligner
for clone pairs generated by inserting various numbers of state-
ments.NIL detected all generated clone pairs. This is because even
though many statements are inserted into a code block, the order
of many tokens between the large-variance clone pair is preserved,
and thus the clone pair shares a certain number of N-grams and has
a long common subsequence. In summary, using N-gram-based
clone candidate identification and token-LCS-based clone valida-
tion is effective in large-variance clone detection.

On the other hand, as shown in Figure 7, the recall of LVMap-
per and CCAligner decreased with increasing number of inserted
lines. LVMapper can also detect clones in which a large number

3The generated large-variance clone pairs are available at https://zenodo.org/record/
4491016

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Inserted lines

Re
ca

ll
(%

)

CCAligner

LVMapper

NIL

Figure 7: Recall results for various numbers of inserted lines

of statements are inserted because it verifies clones based on line-
based LCS. However, our evaluation results show that the recall
of LVMapper decreased with increasing number of inserted lines.
This is because LVMapper failed to identify many large-variance
clones in its locating phase. LVMapper identifies a pair of code
blocks that share several code windows (see Section 2) as a clone
pair. Therefore, with increasing number of inserted lines, the num-
ber of shared code windows decreases, and thus LVMapper failed
to identify a pair of code blocks as a large-variance clone pair.
CCAligner uses e-mismatch code windows to identify clone can-
didates, and this affects its recall. In addition, CCAligner uses code
windows in verification and thus fails to detect large-variance clones.

4.4 General clone detection
We evaluated the general Type-1, Type-2, and Type-3 clone de-
tection accuracy of NIL using two benchmarks, namely Mutation
Framework [31] and BigCloneEval [33]. In addition, we compared
the results of NIL to those of existing state-of-the-art tools, namely
CCAligner, LVMapper, SourcererCC, and NiCad.

4.4.1 Mutation Framework. Mutation Framework automatically gen-
erates clone pairs based on mutation techniques. We executed Mu-
tation Framework with all the default settings and input the gen-
erated clones4 into each clone detector. Table 5 shows the results
of recall for each tool measured by Mutation Framework. NIL de-
tected all clone pairs generated by Mutation Framework.

Table 5: Recall results for Mutation Framework

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 100.0 100.0 100.0 100.0 100.0
Type-2 100.0 100.0 100.0 100.0 100.0
Type-3 100.0 99.9 99.9 100.0 100.0

4The generated clone pairs are available at https://zenodo.org/record/4491052

https://zenodo.org/record/4491016
https://zenodo.org/record/4491016
https://zenodo.org/record/4491052

NIL: Large-Scale Detection of Large-Variance Clones ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

4.4.2 BigCloneEval. BigCloneEval [33] automaticallymeasures the
recall of clone detectors using BigCloneBench [32]. We also mea-
sured precision, as done in the prior studies [29, 37, 40]. For each
tool, we randomly selected 400 of the detected clone pairs from
BigCloneBench and validated themmanually. The cloneswere shuf-
fled, and the validation was conducted without knowledge of the
clone source.

Table 6 shows the results of recall5 and precision6 for each tool
on BigCloneBench. As shown, NIL has high recall of 96.6% for
Type-2 clone detection even though it does not normalize identi-
fiers in the Preprocessing phase. NIL had the second highest recall
of Moderately Type-3 clones, which contain large-variance clones,
behind only LVMapper. This is because the verifying threshold of
LVMapper is variable, and in some cases it can be low as 0.4.

The precision (see bottom of Table 6) of both LVMapper and
CCAligner, which are large-variance and large-gap clone detec-
tors, was low. In contrast, that of NIL was very high (94.0%). Even
though SourcererCC and NiCad also had high precision, they had
poor large-variance clone detection performance. Therefore, com-
pared to the existing tools,NIL has equivalent general clone detec-
tion accuracy and higher precision than that of the existing large-
variance clone detectors.

4.5 Scalability
We evaluated the scalability of NIL using codebases with vari-
ous sizes and compared the execution time of NIL to those of the
existing tools. We used IJaDataset [24], a large inter-project Java
dataset, as done in the prior studies [29, 37, 40].We created datasets
with 1, 10, 100, and 250 MLOC7. We used CLOC [26] to measure

5Note that in our experiments, BigCloneEval reported different recall of the existing
clone detectors from the prior studies. Type-1 recall of several clone detectors was
99.9% because BigCloneBench contains faulty clone pairs [9].
6Manual validation descriptions are available at https://zenodo.org/record/4493069
7These datasets and an executable file of NIL are available at https://zenodo.org/
record/4491208.

Naive

Filtered

Located

10!

10

10"

10#

10$

10%

10&

1

Cl

on
e

ca
nd

id
at

es

Code blocks

1 10,0005,000 7,5002,500

10'

Figure 8: Growth in the number of clone candidates with the
increased number of code blocks

the LOC of the datasets. A computer with a quad-core CPU and 12
GB of memory was used for the evaluation, as done in the prior
studies [29, 37].

Table 7 shows the execution times for each tool for various in-
put sizes. As shown, the execution time of NIL is the shortest for
all input sizes. Even though both LVMapper and SourcererCC de-
tected clones from the 250-MLOC codebases, their execution times
are longer than three days, indicating poor scalability. In addition,
CCAligner and NiCad were not able to complete detecting clones
from the 100- and 10-MLOC codebases, respectively, indicating
their limited scalability. Therefore, NIL has the highest scalability.

Moreover, we examined how effective the location and filtration
phases are forNIL’s scalability. Figure 8 shows growth in the num-
ber of clone candidates with the increased number of code blocks.
Note that this figure is a logarithmic graph. “Naive” is comparing

Table 6: Recall and precision results for BigCloneBench

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 Recall 99.9 99.9 99.8 93.8 99.9
Type-2 Recall 96.6 99.2 98.9 96.6 99.2

Very Strongly Type-3 Recall 93.5 98.1 97.4 68.2 98.4
Strongly Type-3 Recall 67.1 81.8 69.0 59.0 69.7

Moderately Type-3 Recall 10.6 19.1 10.0 4.8 0.5

Precision 94.0 58.5 33.7 99.2 80.2

Table 7: Scalability results

Tool NIL LVMapper CCAligner SourcererCC NiCad

1 M 10s 29s 52s 3m 1s 1m 48s
10 M 1m 38s 13m 38s 26m 3s 27m 37s —
100 M 1h 38m 29s 17h 23m 39s — 19h 38m 5s —
250 M 7h 40m 7s 3d 13h 47m 39s — 5d 6h 55m 1s —

https://zenodo.org/record/4493069
https://zenodo.org/record/4491208
https://zenodo.org/record/4491208

ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto

all pairs of code blocks for clone detection8. As shown, both the
location and filtration phases reduced the number of clone candi-
dates drastically. For example, when there were 10,000 code blocks,
the number of clone candidates was reduced from 49,995,000 in
Naive to 1,449,634 (about one-thirty) in the location phase. In the
filtration phase, their number was further reduced to 54,000 (about
one thirty-fifth) from the location phase. Therefore, the two phases
reduced their number to about one-thousandth from Naive and
very effective for scalable clone detection.

5 THREATS TO VALIDITY
To measure precision for each tool, we manually validated clones
each tool detected, as done in the prior studies [29, 37, 40]. Because
the clone detector names were not disclosed during the manual
validation, there was no bias in the evaluation. However, because
the criteria for whether a pair of code fragments is a clone pair can
vary, manual validation by other researchers may yield different
values. To ensure the validity of this study, the clones used in the
manual validation aremade public so that a third party can conduct
replication studies.

We used the widely used benchmarks, BigCloneEval [33] and
Mutation Framework [31], to evaluate the recall of clone detectors.
Different results may be obtained using other benchmarks [1, 41].

It is known that the accuracy and execution time of a clone de-
tector is greatly influenced by its settings [38]. In this study, we op-
timized the N value for N-grams. However, the filtration threshold
θ and the verification threshold δ were set based on values used by
other clone detectors. The results can be improved by optimizing
these values for NIL.

6 RELATEDWORK
6.1 Complicated Type-3 clone detection
In addition to large-variance clones, because detecting complicated
Type-3 clones is difficult, several techniques specialized for detect-
ing them have been proposed.

Program dependence graph (in short, PDG) [5] is frequently
used for complicated Type-3 clone detection. Krinke was the first
to use PDGs for clone detection [17]. His technique detected iso-
morphic parts of PDGs as clones. He reported that PDG-based clone
detection was good at recall and precision. Zou et al. pointed out
that PDG-based clone detection techniques have still been quite
time-consuming and missed many clones due to their exact graph
matching using subgraph isomorphism. They proposedCCGraph [42],
using an approximate graph matching algorithm based on the re-
forming Weisfeiler-Lehman graph kernel [30].

Intermediate representation (in short, IR) is also used for com-
plicated Type-3 clone detection. Several syntactical differences (e.g.,
for-loop and while-loop) in source code are transformed into the
same or similar instructions in IRs of the source code. Caldeira et al.
proposed a clone detection technique using IRs [2]. They devised a
C-like IR based on LLVMand ranNiCad [4] on it. Their experimen-
tal results suggested that IRs were beneficial for improving clone
detection and had a large impact on complicated Type-3 clones.

8The curve can be represented using y = x (x − 1)/2 quadratic function where x is
the number of code blocks, and y is the number of clone candidates.

Machine learning is also useful for complicated Type-3 clone
detection. Saini et al. proposed a clone detector, Oreo, for Weakly
Type-3 clones [28]. It combines machine learning, information re-
trieval techniques, and software metrics to detect clones.

However, those three techniques based on PDG, IR, or machine
learning do not always detect large-variance clones. For example,
a prior study showed that Oreo has higher precision but lower re-
call in large-variance clone detection than those of LVMapper [40].
Moreover, these techniques require a long execution time and thus
are limited in scalability. PDG-based clone detection requires a
long time to construct PDGs and perform subgraph isomorphism.
IR-based clone detection requires a long time to transform source
code into IRs. Machine learning-based clone detection is necessary
to complete training before clone detection.

6.2 Scalable clone detection
Kamiya et al. proposed CCFinder [13] and its successor, CCFind-
erX [25]. CCFinder transforms the target source code into a token
sequence, normalizes identifiers, and then uses a suffix tree algo-
rithm to detect matching token sequences as clones. As shown in
prior studies [18, 29], CCFinderX has high scalability and can de-
tect clones even for a 100-MLOC codebase.

Ishihara et al. proposed a scalable method-level clone detection
technique [10]. The technique hashes each normalizedmethod and
detects methods whose hash values are the same as clones. They
detected clones in a large codebase (360 MLOC) in 3.5 hours.

Hummel et al. proposed ConQat [7], an index-based clone de-
tector. ConQat creates clone indexes by hashing consecutive six
lines of source code and detects the clone indexes whose hash val-
ues are the same as clones. ConQat is capable of distributed pro-
cessing in clone detection, so that it can be applied for ultra-large
codebase (2.9 GLOC) using cluster computing.

However, those scalable clone detectors cannot detect gapped
clones due to their algorithms. Though there are several tools for
scalable near-miss clone detection [18, 23, 29, 34], they still cannot
detect complicated Type-3 clones, including large-variance clones.
In this study, we proposedNIL, which achieves both large-variance
clone detection and scalability.

7 CONCLUSION
In this study, we proposed a clone detection technique for the scal-
able detection of large-variance clones from a large codebase and
described its implementation, called NIL. NIL uses N-grams, an
inverted index, and the LCS to detect large-variance clones. Our
experimental results show that NIL has higher precision and re-
call in large-variance clone detection than those of existing large-
variance and large-gap clone detectors. In addition, the general
clone detection accuracy of NIL is equivalent to that of existing
state-of-the-art tools. Moreover, NIL can detect clones from large
codebases more quickly than do existing clone detectors.

As future works, we consider doing research on software en-
gineering applications such as code recommendation and comple-
tion, refactoring, and bug propagation for large-variance clones
using NIL.

NIL: Large-Scale Detection of Large-Variance Clones ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

ACKNOWLEDGMENTS
This work was supported by MEXT/JSPS KAKENHI 20H04166.

REFERENCES
[1] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions
on software engineering 33, 9 (2007), 577–591.

[2] Pedro M Caldeira, Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa,
and Takahisa Shimada. 2020. Improving Syntactical Clone Detection Methods
through the Use of an Intermediate Representation. In Proceedings of 2020 IEEE
14th International Workshop on Software Clones. 8–14.

[3] Debarshi Chatterji, Jeffrey C Carver, Beverly Massengil, Jason Oslin, and
Nicholas A Kraft. 2011. Measuring the Efficacy of Code Clone Information in a
Bug Localization Task: An Empirical Study. In Proceedings of 2011 International
Symposium on Empirical Software Engineering and Measurement. 20–29.

[4] James R Cordy and Chanchal K Roy. 2011. The NiCad Clone Detector. In Pro-
ceedings of 2011 IEEE 19th International Conference on Program Comprehension.
219–220.

[5] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems 9, 3 (1987), 319–349.

[6] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2004.
Refactoring Support Based on Code Clone Analysis. In Proceedings of Interna-
tional Conference on Product Focused Software Process Improvement. 220–233.

[7] Benjamin Hummel, Elmar Juergens, Lars Heinemann, and Michael Conradt.
2010. Index-based code clone detection: incremental, distributed, scalable. In
Proceedings of 2010 IEEE International Conference on Software Maintenance. 1–9.

[8] James W Hunt and Thomas G Szymanski. 1977. A fast algorithm for computing
longest common subsequences. Communications of the ACM 20, 5 (1977), 350–
353.

[9] Katsuro Inoue, YuyaMiyamoto, DanielMGerman, and Takashi Ishio. 2020. Code
Clone Matching: A Practical and Effective Approach to Find Code Snippets.
arXiv preprint arXiv:2003.05615 (2020).

[10] Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. 2012. Inter-Project Functional Clone Detection Toward Building
Libraries - An Empirical Study on 13,000 Projects. In Proceedings of 2012 19th
Working Conference on Reverse Engineering. 387–391.

[11] Takashi Ishio, Yusuke Sakaguchi, Kaoru Ito, and Katsuro Inoue. 2017. Source File
Set Search for Clone-and-Own Reuse Analysis. In Proceedings of 2017 IEEE/ACM
14th International Conference on Mining Software Repositories. 257–268.

[12] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection
of clone-related bugs. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foun-
dations of software engineering. 55–64.

[13] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: AMul-
tilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[14] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An Empir-
ical Study of Code Clone Genealogies. In Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering. 187–196.

[15] Donald Ervin Knuth. 1997. The art of computer programming. Pearson Educa-
tion.

[16] Rainer Koschke. 2007. Survey of Research on Software Clones. In Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[17] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. 301–309.

[18] Guanhua Li, Yijian Wu, Chanchal K Roy, Jun Sun, Xin Peng, Nanjie Zhan, Bin
Hu, and Jingyi Ma. 2020. SAGA: Efficient and Large-Scale Detection of Near-
Miss Clones with GPU Acceleration. In Proceedings of 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering. 272–283.

[19] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. IEEE Trans-
actions on software Engineering 32, 3 (2006), 176–192.

[20] Hou Min and Zhang Li Ping. 2019. Survey on Software Clone Detection Re-
search. In Proceedings of the 2019 3rd International Conference on Management
Engineering, Software Engineering and Service Sciences. 9–16.

[21] Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. 2020. A survey
on clone refactoring and tracking. Journal of Systems and Software 159 (2020),
110429.

[22] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: Combin-
ing Code Metrics with Clone Detection for Just-in-Time Fault Prevention and
Resolution in Large Industrial Projects. In Proceedings of the 15th International
Conference on Mining Software Repositories. 153–164.

[23] Manziba Akanda Nishi and Kostadin Damevski. 2018. Scalable code clone de-
tection and search based on adaptive prefix filtering. Journal of Systems and

Software 137 (2018), 130–142.
[24] [Online]. 2021. Ambient Software Evolution Group: IJaDataset 2.0. http://secold.

org/projects/seclone.
[25] [Online]. 2021. CCFinderX. http://www.ccfinder.net/.
[26] [Online]. 2021. CLOC: Count lines of code. http://cloc.sourceforge.net/.
[27] Chanchal K Roy and James R Cordy. 2007. A survey on software clone detection

research. Queen’s School of Computing TR 541, 115 (2007), 64–68.
[28] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and

Cristina V. Lopes. 2018. Oreo: Detection of Clones in the Twilight Zone. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 354–365.

[29] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In Pro-
ceedings of the 38th International Conference on Software Engineering. 1157–1168.

[30] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[31] Jeffrey Svajlenko and Chanchal Roy. 2019. The Mutation and Injection Frame-
work: Evaluating Clone Detection Tools with Mutation Analysis. IEEE Transac-
tions on Software Engineering (2019).

[32] Jeffrey Svajlenko and Chanchal K Roy. 2015. Evaluating Clone Detection Tools
with BigCloneBench. In Proceedings of 2015 IEEE International Conference on
Software Maintenance and Evolution. 131–140.

[33] Jeffrey Svajlenko and Chanchal K Roy. 2016. BigCloneEval: A Clone Detection
Tool Evaluation Framework with BigCloneBench. In Proceedings of 2016 IEEE
International Conference on Software Maintenance and Evolution. 596–600.

[34] Jeffrey Svajlenko and Chanchal K Roy. 2017. CloneWorks: a fast and flexible
large-scale near-miss clone detection tool. In Proceedings of the 39th International
Conference on Software Engineering Companion. 177–179.

[35] Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami. 2017. Clone
Refactoring with Lambda Expressions. In Proceedings of 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering. 60–70.

[36] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. ACM
SIGAPP Applied Computing Review 19, 4 (2020), 28–39.

[37] PengchengWang, Jeffrey Svajlenko, YanzhaoWu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
40th International Conference on Software Engineering. 1066–1077.

[38] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for
Better Configurations: A Rigorous Approach to Clone Evaluation. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering. 455–465.

[39] Ming Wu, Pengcheng Wang, Kangqi Yin, Haoyu Cheng, Yun Xu, and Chan-
chal K. Roy. 2019. LVMapper: A Large-variance Clone Detector Using Sequenc-
ing Alignment Approach. arXiv:1909.04238 [cs.SE]

[40] Ming Wu, Pengcheng Wang, Kangqi Yin, Haoyu Cheng, Yun Xu, and Chan-
chal K Roy. 2020. LVMapper: A Large-Variance Clone Detector Using Sequenc-
ing Alignment Approach. IEEE Access 8 (2020), 27986–27997.

[41] Yusuke Yuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2016. Gener-
ating clone references with less human subjectivity. In Proceedings of 2016 IEEE
24th International Conference on Program Comprehension. 1–4.

[42] Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020. CCGraph: a PDG-
based code clone detector with approximate graph matching. In Proceedings of
2020 35th IEEE/ACM International Conference on Automated Software Engineer-
ing. 931–942.

http://secold.org/projects/seclone
http://secold.org/projects/seclone
http://www.ccfinder.net/
http://cloc.sourceforge.net/
https://arxiv.org/abs/1909.04238

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definition
	2.2 Large-gap clone
	2.3 Large-variance clone

	3 Approach
	3.1 Preprocessing
	3.2 Clone detection

	4 Evaluation
	4.1 Summary
	4.2 Parameter setting
	4.3 Large-variance clone detection
	4.4 General clone detection
	4.5 Scalability

	5 Threats to validity
	6 Related work
	6.1 Complicated Type-3 clone detection
	6.2 Scalable clone detection

	7 Conclusion
	Acknowledgments
	References

