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Scalable Large-Variance Clone Detection

Tasuku Nakagawa1,a) Yoshiki Higo1,b) Shinji Kusumoto1,c)

Abstract: A code clone (in short, clone) is a code fragment that is identical or similar to other code frag-
ments in source code. Clones generated by a large number of changes to copy-and-pasted code fragments
are called large-variance clones. It is difficult for general clone detection techniques to detect such clones
and thus specialized techniques are necessary. In addition, with the rapid growth of software development,
scalable clone detectors that can detect clones in large codebases are required. However, there are no existing
techniques for quickly detecting large-variance clones in large codebases. In this paper, we propose a scalable
clone detection technique that can detect large-variance clones from large codebases and describe its imple-
mentation, called NIL. NIL is a token-based clone detector that efficiently identifies clone candidates using
an N-gram representation of token sequences and an inverted index. Then, NIL verifies the clone candidates
by measuring their similarity based on the longest common subsequence between their token sequences. We
evaluate NIL in terms of large-variance clone detection accuracy, general Type-1, Type-2, and Type-3 clone
detection accuracy, and scalability. Our experimental results show that NIL has higher accuracy in terms
of large-variance clone detection, equivalent accuracy in terms of general clone detection, and the shortest
execution time for inputs of various sizes (1–250 MLOC) compared to existing state-of-the-art tools.

1. Introduction

A code clone (in short, clone) is a code fragment that is

identical or similar to other code fragments in source code.

Clones are generated by copying, pasting, and modifying

code fragments for reuse. Clones are a major problem in

software maintenance because they lead to bug propagation.

Therefore, clone detection techniques, which automatically

detect clones in the target codebase, are essential. Many

clone detection techniques have been proposed [1].

It is important for clone detection techniques to detect

clones that have been heavily edited. A clone generated by

inserting or deleting a large number of statements in var-

ious places in a copy-and-pasted code fragment is called a

large-variance clone. Such clones are common in software

development and should thus be detected along with gen-

eral clones. Wu et al. pointed out that it is difficult for

existing clone detectors to detect large-variance clones; they

proposed a technique for detecting such clones and presented

its implementation, called LVMapper [2].

It is also important for clone detection techniques to be

scalable. Highly scalable clone detectors are required for an-

alyzing large-scale projects or source files in an inter-project

repository. Many scalable clone detectors have been pro-

posed [3, 4]. For example, to achieve scalable clone detec-

tion, SourcererCC [3] uses heuristics to reduce the number

of code block comparisons needed to detect clones.
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However, clone detectors that can detect clones with a

large number of edits fail for large inputs [5] or require a long

time to detect clones [2]. Scalable clone detectors target only

identical or strongly similar clones (near-miss clones). They

are incapable of detecting large-variance clones, in which

many statements have been inserted or deleted. Therefore,

the scalable detection of large-variance clones is challenging.

In this paper, we propose a scalable technique for detect-

ing large-variance clones and describe its implementation,

called NIL*1, which uses an N-gram representation, an in-

verted index, and the longest common subsequence (LCS).

NIL is a token-based clone detector. One of the features

of large-variance clones is that the order of many tokens

is preserved (i.e., the common subsequence between token

sequences of large-variance clones is long). Hence, to de-

tect large-variance clones, NIL measures the similarity be-

tween the token sequences of two code fragments based on

the LCS. In addition, large-variance clones share many con-

secutive tokens. Hence, for scalable clone detection, NIL

uses an N-gram representation of token sequences and an

inverted index to reduce the number of code block compar-

isons needed to detect clones. First, NIL transforms code

blocks extracted from source files into token sequences and

creates an inverted index from the N-gram representation of

the token sequences. Next, it identifies the clone candidates

for each code block using the code block and the inverted

index. Finally, it verifies the clone candidates by measuring

the similarity between the code block and the clone candi-

dates.

*1 A clone detector using N-gram, Inverted index, and LCS. NIL
is available at https://github.com/kusumotolab/nil.
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1 protected String getPrompt(InputRequest request) {
2   String prompt = request.getPrompt();
3   if (request instanceof MultipleChoiceInputRequest) {
4     StringBuffer sb = new StringBuffer(prompt);
5     sb.append("(");
6     Enumeration e = ((MultipleChoiceInputRequest) request)

.getChoices().elements();
7     boolean first = true;
8     while (e.hasMoreElements()) {
9       if (!first) {
10         sb.append(",");
11       }
12       sb.append(e.nextElement());
13       first = false;
14     }
15     sb.append(")");
16     prompt = sb.toString();
17   }
18   return prompt;
19 }

(a) Clone A

1 protected String getPrompt(InputRequest request) {
2   String prompt = request.getPrompt();
3   String def = request.getDefaultValue();
4   if (request instanceOf MultipleInputChoiceRequest) {
5     StringBuilder sb = new StringBuilder(prompt).append("(");
6     boolean first = true;
7     for (String next : ((MultipleInputChoiceRequest) request)

.getChoices()) {
8       if (!first) {
9         sb.append(",");
10       }
11       if (next.equals(def)) {
12         sb.append('|');
13       }
14       sb.append(next);
15       if (next.equals(def)) {
16         ab.append('|');
17       }
18       first = false;
19     }
20     sb.append(")");
21     return sb.toString();
22   }
23   else if (def != null) {
24     return prompt + "[" + def + "]";
25   }
26   else {
27     return prompt;
28   }
29 }

(b) Clone B

Fig. 1: Example of large-variance clones

We evaluate NIL’s (1) large-variance clone detection ac-

curacy, (2) general Type-1, Type-2, and Type-3 clone de-

tection accuracy, and (3) scalability. We compared NIL

with existing state-of-the-art tools, namely LVMapper [2],

CCAligner [5], SourcererCC [3], and NiCad [6]. The exper-

imental results show that NIL has a high precision of 87%

in large-variance clone detection. It also has a high recall

of 100%, as determined in our evaluation of large-variance

clone detection using a mutation technique. In general clone

detection, the accuracy of NIL is equivalent to that of the

existing tools. In addition, we confirmed that NIL has high

scalability; it can detect clones faster than the existing tools

for large inputs (codebases with 250 MLOC).

2. Preliminaries

2.1 Definition

A code fragment is a consecutive segment of

source code. It can be represented by the tuple

(file name, start line, end line). A code block is a

code fragment within braces. This study treats a function,

which is a code block, as a clone detection unit, as done in

previous studies [2,3,5]. Clones are code fragments identical

or similar to other code fragments in source code. A pair

of similar code fragments is called a clone pair. Clones

are classified based on the degree of the similarity between

them as follows.

Type-1 is an exact copy without modifications (except

for white space and comments).

Type-2 is a syntactically identical copy; only variable,

types, or function identifiers are different.

Type-3 is a copy with further modifications; statements

have been changed, added, or removed.

The minimum length of clones is the minimum number of

lines that a code fragment must be to be treated as a clone.

It is often set to six lines or 50 tokens [1].

2.2 Large-variance clone

A large-variance clone is a clone generated by inserting or

deleting a large number of statements in various places in a

copy-and-pasted code fragment. Figure 4 shows an example

of large-variance clones. In this example, statements have

been inserted into and deleted from various places in Clone A

to create Clone B. Wu et al. pointed out that existing clone

detectors are incapable of large-variance clone detection be-

cause most target to the detection of near-miss clones [2].

They defined large-variance clone as follows. Consider two

code blocks c1 and c2 with LOC values of L1 and L2, re-

spectively, where L1 ≤ L2. Let λ = Li/Lj (i.e., λ is the

ratio of the code lengths of two code blocks). If c1 and c2

are Type-3 clones and the corresponding λ ≤ 0.7, then these

clones are large-variance clones. They proposed LVMapper,

a large-variance clone detector.

LVMapper detects clones using code windows ((a code

fragment composed of k consecutive lines in a code block)).

Its clone detection has three phases, namely the locating, fil-

tering and verifying phases. In the locating phase, LVMap-

per identifies pairs of code blocks that share at least one code

window as clone candidates. Then, in the filtering phase,

it calculates the proportions of common code windows for

each clone candidate and removes clone candidates whose

proportions are lower than filtering threshold θ. Finally, in

the verifying phase, it verifies each clone candidate based on

similarity measured using a common subsequence of lines

between each clone candidate’s code block pair.

3. Approach

Figure 2 shows an overview of the proposed technique.

The input is a set of source code files, and the output is the

clone pairs in the source code. In the proposed technique,

large-variance clones are detected based on the similarity be-

tween token sequences based on the LCS, taking advantage
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Fig. 2: Overview of NIL

of the fact that the order of many tokens in a large-variance

clone pair is preserved. In addition, large-variance clones

share many consecutive tokens. Hence, to achieve scalable

large-variance clone detection, the proposed technique re-

duces the number of code block comparisons by using an

N-gram representation of token sequences and an inverted

index. The proposed technique transforms code blocks in

source code into token sequences in the Preprocessing phase

and detects clones by comparing the token sequences in the

Clone detection phase. In this study, we implemented the

proposed technique as a tool, called NIL. NIL is written in

the Kotlin language and currently targets only Java source

code. The following subsections describe the Preprocessing

and Clone detection phases.

3.1 Preprocessing

In the Preprocessing phase, NIL extracts code blocks from

the target source code and transforms them into token se-

quences. NIL does not perform lexical analysis but sim-

ply divide each code block’s text based on symbols (e.g.,

“+”, “−”, or braces), white spaces, or newlines, as done by

SourcererCC. For example, when the code block shown in fig-

ure 1a is transformed into the token sequence, protected,

String, getPrompt, InputRequest, request, .... With

this transformation, lexical analyzers for other languages

do not need to be implemented to extend NIL. The token

sequence transformation is fast because lexical analysis is

not necessary. In addition, NIL has a relatively low rate of

false positives because it does not normalize identifiers, such

as variable and function names. However, it may not de-

tect clones whose identifiers have been changed (i.e., Type-2

clones). We discuss the impact of the lack of identifier nor-

malization in Section 4.

Next, NIL generates N-grams from each token sequence.

An N-gram is a chunk of consecutive N tokens. Figure 3

shows an example of generating 3-grams from the code block

protected String getPrompt(InputRequest request) { Source code

protected String getPrompt InputRequest request Token sequence

protected String getPrompt

protected String getPrompt InputRequest

protected getPrompt InputRequest request

3-grams

Divide

Generate 3-grams

Fig. 3: Example of generating 3-grams

shown in figure 1a. In this example, three 3-grams are

generated from the five tokens of on the first line in the

code block. Even though large-variance clones include many

modifications (statement insertions and deletions), many to-

kens other than the statements match consecutively (i.e.,

many N-grams match). Therefore, using N-grams is effec-

tive for scalable large-variance clone detection.

Then, NIL creates an inverted index from the generated

N-grams. An inverted index is an information retrieval tech-

nology that allows the fast retrieval of documents that con-

tains a word given as a query. It is often used in clone

detection techniques [4]. NIL uses a dictionary whose keys

are the hash values of N-grams, and values are the code

blocks containing the corresponding N-gram as an inverted

index. All code blocks containing an N-gram can be quickly

obtained by looking up the hash value of the N-gram in the

inverted index. Therefore, a pair of code blocks that share

an N-gram (i.e., the pair is possibly a large-variance clone

pair) can be obtained quickly using the inverted index.

3.2 Clone detection

After the Preprocessing phase, NIL performs Clone detec-

tion using the inverted index created in the Preprocessing

phase and all code blocks. Clone detection is divided into

three phases, namely location, filtration, and verification,
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Algorithm 1: Clone Detection

Input: C is a list of tokenized code blocks {c1, c2, . . . , cn},
Inverted Index I of C, N for size of N-gram, θ for filtering

threshold, δ for verifying threshold

Output: All clone pairs CP

1: CP ← ϕ;

2: for all each ci in C do

3: // Location phase

4: // CC represents clone candidates

5: CC ← ϕ

6: for j = 1, 2, . . . , (ci.len−N + 1) do

7: // ci[j] is j-th token in ci’s token sequence

8: n gram = concat(ci[j], ci[j + 1], . . . , ci[j +N − 1]);

9: key = hash(n gram);

10: // get is a function that returns values to which a given

key is mapped in a given dictionary

11: CC = CC ∪ get(I, key);

12: end for

13: // Filtration phase

14: for all each ccj in CC do

15: /* common ngrams is a function

that computes the number of common N-grams between

two given code blocks */

16: cn = common ngrams(ci, ccj);

17: m = min(ci.len, ccj .len);

18: filtration sim = cn/(m−N + 1);

19: if filtration sim < θ then

20: CC = CC \ {ccj};
21: end if

22: end for

23: // Verification phase

24: for all each ccj in CC do

25: /* lcs is a function that computes the length of the LCS

between token sequences of two given code blocks */

26: lcs len = lcs(ci, ccj);

27: verification sim = lcs len/min(ci.len, ccj .len);

28: if verification sim ≥ δ then

29: CP = CP ∪ (ci, ccj);

30: end if

31: end for

32: end for

33: return CP ;

as done by LVMapper [2]. First, NIL selects a code block

from all code blocks prepared in the Preprocessing phase as

the target code block. Then, in the location and filtration

phases, NIL identifies the clone candidates of the target code

block using an N-gram and the inverted index. Next, in the

verification phase, NIL verifies that the target code block

and the clone candidates are clone pairs by calculating the

LCS. These phases are performed for each code block to de-

tect all clone pairs in the target source code. Algorithm 1

shows the Clone detection algorithm. The three phases of

Clone detection are described in detail below.

3.2.1 Locaion phase

In the location phase, NIL collects the clone candidates of

the target code block using the inverted index. Lines 3–11

in Algorithm 1 are the location phase.

First, NIL generates N-grams from the token sequence of

the target code block. M−N+1 N-grams are generated from

a token sequence with length M . Next, a hash value is cal-

culated for each N-gram. This hash value is used as a query

when looking up values in the inverted index. Finally, NIL

applies the hash values to the inverted index and collects

code blocks that contain the N-gram whose hash value is

the same as the given hash value. The obtained code blocks

are referred to as the clone candidates of the target code

block.

3.2.2 Filtration phase

In the filtration phase, NIL removes code blocks that un-

likely to be clones from the clone candidates collected in the

location phase. Lines 13–22 in Algorithm 1 are the filtra-

tion phase. It is necessary to reduce the number of clone

candidates for scalable and fast clone detection because NIL

performs the LCS calculation, which is a time-consuming

process, in the verification phase. NIL filters clone candi-

dates based on a feature of large-variance clones.

As described in Section 3.1, the two code blocks of a

large-variance clone pair share a certain number of N-grams.

Hence, if two code blocks share few N-grams, the pair is un-

likely to be a large-variance clone pair. Based on this fea-

ture, NIL calculates filtration sim, defined below, between

the target code block and each clone candidate.

filtration sim(c1, c2) =
common ngrams(c1, c2)

min(ngrams(c1), ngrams(c2))

common ngrams(c1, c2) = |ngrams(c1) ∩ ngrams(c2)|

where c1 and c2 are two code blocks with lengths |c1| and
|c2|, respectively. ngrams(c1) and ngrams(c2) are the

numbers of N-grams generated from code blocks c1 and

c2, respectively. Because of the large number of state-

ment insertions and deletions in large-variance clones, the

two code blocks may have significantly different token se-

quence lengths. We use min in the denominator so that

filtration sim can be properly calculated even such cases.

NIL removes clone candidates whose filtration sim is less

than filtration threshold θ.

3.2.3 Verification phase

In the verification phase, NIL checks whether the target

code block and each clone candidate are a true large-variance

clone pair. Lines 23–31 in Algorithm 1 are the verification

phase. As mentioned in Section 3.2.2, one of the features

of large-variance clones is that the common subsequence be-

tween token sequences of large-variance clones is long even if

there are a large number of insertions and deletions. There-

fore, NIL calculates the LCS between the target code block

and each clone candidate and measures the similarity of the

pair based on the length of the LCS. The similarity function

verification sim(c1, c2) is expressed as following

verification sim(c1, c2) =
lcs(c1, c2)

min(|c1|, |c2|)

where c1 and c2 are token sequences with lengths |c1| and
|c2|, respectively, and lcs(c1, c2) is the length of the LCS

between c1 and c2.
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We use min as the denominator of the similarity function

to detect large-variance clones, as done in the studies on

CCAligner [5] and LVMapper [2] even if the lengths of the

token sequences differ greatly.

4. Evaluation

We evaluated NIL in terms of

• large-variance clone detection accuracy,

• general clone detection accuracy, and

• scalability.

In the following subsections, we first optimize the N-gram

size based on a balance between recall and execution time.

Next, we evaluate large-variance clone detection accuracy

in terms of precision and recall. Then, we evaluate general

clone detection using two commonly used benchmarks. Fi-

nally, we evaluate scalability by measuring execution time

for various input sizes. Additionally, we compare the above

results to those for four state-of-the-art tools [2, 3, 5, 6]. Ta-

ble 1 shows these clone detectors and their settings. These

settings were taken from the prior studies [2,3,5]. Note that

the threshold δ for verification of LVMapper is variable and

that δ takes the following values depending on the number

of the lines of clone l.

δ =


0.7 if 6 < l ≤ 10,

1− 0.03× l if 10 < l ≤ 20,

0.4 if 20 < l

4.1 Summary

First, we summarize the results of this evaluation. We

found that NIL has a high precision of 87% and a high re-

call of 100% in large-variance clone detection. These values

are the highest among the tested large-variance clone de-

tectors [2, 5]. In general Type-1, Type-2, and Type-3 clone

detection, NIL’s accuracy is equivalent to that of the exist-

ing clone detectors, including large-variance clone detectors,

and its precision is higher than that of large-variance clone

detectors. Moreover, we confirmed that NIL is the fastest at

detecting clones in large codebases (1–250 MLOC) among

the tested clone detectors.

4.2 Parameter setting

NIL requires three parameters, namely N for N-grams, fil-

tration threshold θ, and verification threshold δ. We set δ

Table 1: Settings for various clone detectors

Tool Settings

Min length 6 lines, window size k = 3,
LVMapper filtering threshold θ = 0.1,

verification threshold δ is dynamic.

CCAligner
Min length 6 lines, window size q = 6,
edit distance e = 1, min 60% similarity.

SourcererCC Min length 6 lines, min 70% similarity.

Min length 6 lines, max length 20,000 lines,
NiCad blind renaming, identifier abstraction,

min 70% similarity.

to 0.7, which is often used in clone detectors [3,6]. We set θ

to 0.1, as done for LVMapper. N must be carefully selected

because it has a large impact on performance (e.g., execu-

tion time and clone detection accuracy). If N is set to a too

small value, the recall of clone detection will increase be-

cause more code blocks will share the same N-grams. How-

ever, because more code blocks are identified as clone can-

didates in the location phase, the number of comparison

targets in the filtration and verification phases increases, re-

sulting in a longer execution time. Therefore, to optimize

the N , we executed NIL with N = 1–9 and measured the

execution time and clone detection recall for each N value.

We used BigCloneEval [7] to measure recall. BigCloneEval

automatically measures the recall of clone detectors using

BigCloneBench [8].

Table 2 shows the results for each N value. For N < 5,

an increase in N significantly reduces the execution time

without lowering recall by more than one point compared to

when N = 1. For N=5 and 6, execution time decreases but

recall also decreases. For N > 6, execution time does not

significantly decrease. Therefore, considering the balance

between execution time and recall, N = 5 is the optimal

value.

4.3 Large-variance clone detection

We evaluated the large-variance clone detection accuracy

of NIL in terms of precision and recall and compared the

results to those for existing large-variance clone detectors,

namely CCAligner and LVMapper.

4.3.1 Precision

Precision is the ratio of correct clones detected to all

clones detected. A clone detector with higher precision pro-

vides more accurate results. In general, precision is mea-

sured via a manual validation of the clones detected by the

target tool. In this study, we used Ant and Maven, which

were used in the prior studies on CCAligner [5] and LVMap-

per [2] to measure precision. JDK1.2.2 and OpenNLP, also

used in the above studies, were not used here because we

could not find the source code for JDK1.2.2, which has been

end-of-lifed and we considered OpenNLP to be unsuitable

for manual validation because it is a machine learning li-

brary whose source code is difficult to read (e.g., it includes

repetitive array manipulation code). We used the following

procedure to measure the precision of each tool:

( 1 ) we input the target source code into each tool,

( 2 ) we randomly selected 100 large-variance clone pairs

with more than 10 lines for each tool and target sys-

tem, and

( 3 ) we manually confirmed whether the clone pairs were

correct.

To remove bias in the manual validation, the detected

large-variance clone pairs of a given tool were validated with-

out knowledge of the tool used for detection. Table 3 shows

the number of files and total LOC for Ant and Maven.

Table 4 shows the number of large-variance clone pairs
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detected by each tool and the precision for each tool*2. The

number of large-variance clones detected by NIL detected

was almost same as that of LVMapper and more than that

of CCAligner. The manual validation results indicate that

NIL had a high average precision of 87% whereas LVMapper

and CCAligner had low average precision values of about 60%

and 40%, respectively. We considered this difference in pre-

cision to be due to LVMapper and CCAligner normalizing the

identifiers in code blocks. After checking the large-variance

clones detected by LVMapper and CCAligner, we found that

code blocks with consecutive assignment statements, such

as constructors, and consecutive if-statements were incor-

rectly detected as large-variance clones. In contrast, NIL de-

tected large-variance clones more precisely because it does

not perform identifier normalization.

In addition, NIL had a higher precision than that of

LVMapper and detected a similar number of large-variance

clone pairs, indicating that it can detect many large-variance

clones that LVMapper cannot. After checking large-variance

clones that NIL detected but LVMapper did not, we found

that the large-variance clone pairs share a small number of

consecutive lines. LVMapper regards three consecutive lines

in code blocks as code windows (see Section 2) and identifies

clone candidates based on these code widows. Therefore, if a

pair of code blocks shares a little or no code window, LVMap-

per cannot detect the pair as a large-variance clone pair. In

contrast, NIL can detect such large-variance clones because

it uses an N-gram representation of token sequences.

Table 3: Target systems

System # Files LOC

Ant 1.10.1 895 109,073

Maven 3.5.0 698 60,471

Table 4: Large-variance clone detection results

Tool System # Large-variance clones Precision (%)

NIL
Ant 354 86.0

Maven 398 88.0

LVMapper
Ant 355 64.0

Maven 389 60.0

CCAligner
Ant 184 43.0

Maven 284 40.0

*2 Manual validation descriptions are available at https://

zenodo.org/record/4490845

4.3.2 Recall

Recall is the ratio of clones detected by a tool to the to-

tal number of true clones in the target codebase. A clone

detector with a higher recall can detect true clones more

exhaustively. To evaluate recall, all true clone pairs in the

target codebase are required. However, it is not realistic to

manually check all code block pairs in a system to determine

the total number of true clone pairs.

Therefore, we generated large-variance clone pairs auto-

matically using mutation techniques to evaluate recall. Mu-

tation techniques are frequently used for clone detector re-

call evaluation [9]. The studies on CCAligner [5] and LVMap-

per [10] used them to evaluate large-variance clone detection

recall. In this study, we reproduced large-variance clones

by randomly inserting various numbers of statements into

original code blocks (i.e., the large-variance clones are mu-

tants of the original code blocks). We targeted JDK6 and

Apache Commons*3 because they were used in the study on

CCAligner [5]. We randomly selected 100 functions with

15–50 lines in these systems as the original code blocks. A

minimum length 15 lines is often used for recall evaluation

using mutation techniques [3,9]. We used a maximum length

of 50 lines because if the number of lines of the original code

blocks is too large, even if a large number of statements are

inserted into the code blocks, the generated clones will not

be large-variance clones. For example, if 20 lines of state-

ments are inserted into an original code block, if the num-

ber of lines of a code block is 100, the ratio of lines of the

clone pair is 100/120 > 0.7, and thus the clone pair does

not satisfy the large-variance clone definition. To reproduce

large-variance clone pairs, 1–20 one-line statements were in-

serted into each code block at random locations. 20 clone

pairs were generated per original code block, for a total of

2,000 clone pairs, including large-variance clone pairs*4.

Figure 4 shows the recall of NIL, LVMapper, and

CCAligner for clone pairs generated by inserting various

numbers of statements. NIL detected all generated clone

pairs. This is because even though many statements are

inserted into a code block, the order of many tokens between

the large-variance clone pair is preserved, and thus the clone

pair shares a certain number of N-grams and has a long com-

mon subsequence. In summary, using N-gram-based clone

candidate identification and token-LCS-based clone valida-

tion is effective in large-variance clone detection.

*3 A project that provides open-source reusable Java components
*4 The generated large-variance clone pairs are available at https:

//zenodo.org/record/4491016

Table 2: Recall and execution time results for each N value

N 1 2 3 4 5 6 7 8 9

Type-2 97.5 97.5 97.5 97.5 96.6 96.3 96.1 95.8 93.3

Very Strongly Type-3 93.5 93.5 93.5 93.5 93.5 93.1 92.9 92.7 92.5

Strongly Type-3 68.4 68.4 68.4 68.3 67.1 65.3 64.6 63.7 62.0

Moderately Type-3 11.2 11.2 11.2 11.1 10.6 9.9 9.3 8.7 7.8

Execution time > 24h 2h 13m 52s 21m 42s 5m 56s 2m 58s 1m 13s 1m 4s 1m 2s 57s
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Fig. 4: Recall results for various numbers of inserted lines

On the other hand, as shown in Figure 4, the recall of

LVMapper and CCAligner decreased with increasing number

of inserted lines. LVMapper can also detect clones in which

a large number of statements are inserted because it verifies

clones based on line-based LCS. However, our evaluation

results show that the recall of LVMapper decreased with in-

creasing number of inserted lines. This is because LVMapper

failed to identify many large-variance clones in its locating

phase. LVMapper identifies a pair of code blocks that share

some code windows (see Section 2) as a clone pair. There-

fore, with increasing number of inserted lines, the number of

shared code windows decreases, and thus LVMapper failed

to identify a pair of code blocks as a large-variance clone

pair. CCAligner uses e-mismatch code windows to identify

clone candidates, and this affects its recall. In addition,

CCAligner uses code windows in verification and thus fails

to detect large-variance clones.

4.4 General clone detection

We evaluated the general Type-1, Type-2, and Type-

3 clone detection accuracy of NIL using two benchmarks,

namely Mutation Framework [9] and BigCloneEval [7]. In

addition, we compared the results of NIL to those of ex-

isting state-of-the-art tools, namely CCAligner, LVMapper,

SourcererCC, and NiCad.

4.4.1 Mutation Framework

Mutation Framework automatically generates clone pairs

based on mutation techniques. We executed Mutation

Framework with all the default settings and input the gen-

erated clones*5 into each clone detector. Table 5 shows the

Table 5: Recall results for Mutation Framework

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 100.0 100.0 100.0 100.0 100.0

Type-2 100.0 100.0 100.0 100.0 100.0

Type-3 100.0 99.9 99.9 100.0 100.0

*5 The generated clone pairs are available at https://zenodo.

org/record/4491052

results of recall for each tool measured by Mutation Frame-

work. NIL detected all clone pairs generated by Mutation

Framework.

4.4.2 BigCloneEval

BigCloneEval [7] automatically measures the recall of

clone detectors using BigCloneBench [8]. We also measured

precision, as done in the prior studies [2,3,5]. For each tool,

we randomly selected 400 of the detected clone pairs from

BigCloneBench and validated them manually. The clones

were shuffled, and the validation was conducted without

knowledge of the clone source.

Table 6 shows the results of recall*6 and precision for each

tool on BigCloneBench*7. As shown, NIL has a high re-

call of 96% for Type-2 clone detection even though it does

not normalize identifiers in the Preprocessing phase. NIL

had the second highest recall of Moderately Type-3 clones,

which contain large-variance clones, behind only LVMapper.

We considered that this is because normalizing identifiers is

necessary to detect most Moderately Type-3 clones.

The precision (see bottom of Table 6) of both LVMap-

per and CCAligner, which are large-variance clone detectors,

was low. In contrast, that of NIL was very high (94%). Even

though SourcererCC and NiCad also had high precision, they

had poor large-variance clone detection performance. There-

fore, compared to the existing tools, NIL has equivalent gen-

eral clone detection accuracy and higher precision than that

of the existing large-variance clone detectors.

4.5 Scalability

We evaluated the scalability of NIL using codebases with

various sizes and compared the execution time of NIL to

those of the existing tools. We used IJaDataset [12], a

large inter-project Java dataset, as done in the prior stud-

ies [2, 3, 5]. We created datasets with 1, 10, 100, and 250

MLOC*8. We used CLOC [13] to measure the LOC of the

datasets. A computer with a quad-core CPU and 12 GB of

memory was used for the evaluation, as done in the prior

studies [3, 5].

Table 7 shows the execution times for each tool for vari-

ous input sizes. As shown, the execution time of NIL is the

shortest for all input sizes. Even though both LVMapper

and SourcererCC detected clones from the 250-MLOC code-

bases, their execution times are longer than three days, in-

dicating poor scalability. In addition, CCAligner and NiCad

was not able to complete detecting clones from the 100- and

10-MLOC codebases, respectively, indicating their limited

scalability. Therefore, NIL has the highest scalability.

*6 Note that in our experiments, BigCloneEval reported different
recall of the existing clone detectors from the prior studies.
Type-1 recall of some clone detectors was 99.9% because Big-
CloneBench contains faulty clone pairs [11].

*7 Manual validation descriptions are available at https://

zenodo.org/record/4493069
*8 These datasets and an executable file of NIL are available at

https://zenodo.org/record/4491208.
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5. Threats to validity

To measure precision for each tool, we manually validated

clones each tool detected, as done in the prior studies [2,3,5].

Because the clone detector names were not disclosed during

the manual validation, there was no bias in the evaluation.

However, because the criteria for whether a pair of code frag-

ments is a clone pair can vary, manual validation by other

researchers may yield different values. To ensure the validity

of this study, the clones used in the manual validation are

made public so that a third party can conduct replication

studies.

In this study, we used the widely used benchmarks, Big-

CloneEval [7] and Mutation Framework [9] to evaluate the

recall of clone detectors. Different results may be obtained

using other benchmarks.

In this study, we targeted only the Java language. Differ-

ent results may be obtained for other languages.

It is known that the accuracy and execution time of a

clone detector is greatly influenced by its settings [14]. In

this study, we optimized the N value for N-grams. However,

the filtration threshold θ and the verification threshold δ

were set based on values used by other clone detectors. The

results can be improved by optimizing these values for NIL.

6. Conclusion

In this study, we proposed a clone detection technique for

the scalable detection of large-variance clones from a large

codebase and described its implementation, called NIL. NIL

uses N-grams, an inverted index, and the LCS to detect

large-variance clones. Our experimental results show that

NIL has higher precision and recall in large-variance clone

detection than those of existing large-variance clone detec-

tors. In addition, the general Type-1, Type-2, and Type-3

clone detection accuracy of NIL is equivalent to that of exist-

ing state-of-the-art tools. Moreover, NIL can detect clones

from large codebases more quickly than do existing clone

detectors.

As future works, we consider doing research on soft-

ware engineering applications such as code recommendation

and completion, refactoring, and bug propagation for large-

variance clones using NIL.
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Table 6: Recall and precision results for BigCloneBench

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 Recall 99.9 99.9 99.8 93.8 99.9

Type-2 Recall 96.6 99.2 98.9 96.6 99.2

Very Strongly Type-3 Recall 93.5 98.1 97.4 68.2 98.4

Strongly Type-3 Recall 67.1 81.8 69.0 59.0 69.7

Moderately Type-3 Recall 10.6 19.1 10.0 4.8 0.5
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Table 7: Scalability results

Tool NIL LVMapper CCAligner SourcererCC NiCad

1 M 10s 29s 52s 3m 1s 1m 48s

10 M 1m 38s 13m 38s 26m 3s 27m 37s —

100 M 1h 38m 29s 17h 23m 39s — 19h 38m 5s —

250 M 7h 40m 7s 3d 13h 47m 39s — 5d 6h 55m 1s —
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