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Abstract—Bug prediction is expected to reduce the cost of
quality assurance. To build a reliable bug prediction model, we
should use realistic settings that satisfy all three of the following
conditions. (1) We should build a dataset in a way that allows
us to evaluate the prediction performance of the model correctly.
(2) We should adopt the optimal granularity of bug prediction
to minimize the cost of quality assurance. (3) We should use
a dependent variable that correctly represents the presence
or absence of bugs in the software modules to be predicted.
However, no research has been conducted on bug prediction
models built under the above realistic settings. Consequently,
we established the following two objectives in this research.
(1) We experimentally evaluate the prediction performance of
bug prediction models built under realistic settings. (2) We
propose techniques to improve the prediction performance of
bug prediction models built under realistic settings. The first
objective has now been achieved. Our experimental results show
that the F-Measure of the bug prediction models built under
realistic settings is only 0.19. Thus, there are still some issues
to be solved to build a high-performance bug prediction model
under realistic settings.

Index Terms—quality assurance; bug prediction; machine
learning

I. INTRODUCTION

In recent years, the scale of software development has been
steadily increasing. Under this situation, techniques to reduce
development costs are indispensable. Techniques to reduce
the cost of quality assurance such as reviews are especially
important because quality assurance occupies a large amount
of the development cost [1].

Bug prediction is a technique to reduce the cost of quality
assurance. Bug prediction means predicting the presence or
absence of bugs in the software modules (e.g. source files).
Identifying buggy modules and intensively reviewing them can
reduce the cost of quality assurance.

To properly evaluate the performance of a bug prediction
model, the dataset must be properly built. Traditionally, a
dataset has been built by calculating dependent variables
for software modules existing in a project at a certain time
point and then calculating independent variables using the
development history from the beginning of the project to the
time point [2], [3].

However, Pascarella et al. claimed datasets that are built
in such a way as unrealistic because they contain data that
cannot realistically be obtained [4]. Pascarella et al. proposed
the release-by-release technique to build a dataset that avoids
the problem, and they investigated the prediction performance
with a realistic dataset. They concluded that low performance
was measured and that challenges remain in building a high-
performance bug prediction model with a realistic dataset.

We consider that Pascarella et al.’s bug prediction models
built with the release-by-release technique are controversial.
The problem with their model is that the dependent variable
is not the indicator “whether a bug exists in the software
module at that point in time (isBuggy)”, but the indicator
“whether a bug has been fixed at least once in the past period
(hasBeenFixed)”. This is because there can be a situation
where a software module is “false for hasBeenFixed but true
for isBuggy”, which means a model built with a dataset whose
dependent variable is hasBeenFixed (hasBeenFixed model)
may not predict bugs correctly.

As mentioned above, the prior studies built models under
unrealistic settings on dataset building and dependent vari-
ables. To build reliable bug prediction models, we should use
realistic settings. However, no research has been conducted
on bug prediction models built under realistic settings. In
this study, the following two objectives were set up and
investigated.

1) We experimentally evaluate the performance of bug pre-
diction models built under realistic settings.

2) We propose a technique to improve the performance of
bug prediction models built under realistic settings.

The first objective has been achieved at this moment. Our
experimental results showed that the F-Measure of the bug
prediction model built under realistic settings is only 0.19,
and there are still some issues to be solved to build high-
performance bug prediction models under realistic settings. In
the near future, we will propose a way to improve perfor-
mance.

II. BACKGROUND

Various settings exist for building bug prediction models.
Herein, we introduce two settings, (1) granularity of prediction
target and (2) way of building a dataset, as items closely
related to this study.

A. Granularity of prediction target

There are three granularities of target that have been often
used in bug prediction models: source file, method, and
commit. In this study, we focus on method-level bug predic-
tion because Pascarella et al. adopted method for predictive
granularity and one of the goals of this study is to confirm the
truth of Pascarella et al.’s conclusions.

B. Way of building a dataset

To properly evaluate the performance of a bug prediction
model, the dataset must be built in a proper way. Traditionally,



independent variables have been calculated using the develop-
ment history from the beginning of the project to a certain
time point [2], [3]. Pascarella et al. claimed building a dataset
in this way as impractical because the dataset contains data
that cannot realistically be retrieved.

Pascarella et al. proposed the release-by-release technique
as a suitable way to build a dataset that avoids such a prob-
lem. Release-by-release calculates dependent and independent
variables for the software modules present at a given release
of the project. The independent variables are calculated using
the development history from the previous release to the given
release. The procedure for building a dataset based on the
release-by-release is described in detail in section V-B.

III. RESEARCH QUESTIONS

In this paper, we investigate the following four Research
Questions.

RQ1. Is hasBeenFixed proper as a dependent variable for
building bug prediction models?

Through RQ1, we try to quantitatively judge whether has-
BeenFixed is proper as a dependent variable for building bug
prediction models. If most of the buggy methods are not
captured by hasBeenFixed, then models to predict hasBeen-
Fixed (hasBeenFixed models) cannot correctly predict buggy
methods, which means that hasBeenFixed is inappropriate as
a dependent variable for bug prediction models.

RQ2. Is the prediction performance of isBuggy models
lower than hasBeenFixed models’?

Through RQ2, we compare hasBeenFixed models and is-
Buggy models from the perspective of prediction performance.
If the performance of isBuggy models is lower than hasBeen-
Fixed models’, there are still some issues in this research area.

RQ3. Under the realistic settings, which machine learn-
ing algorithm provides the best prediction performance?

Through RQ3, we identify the optimal machine learning
algorithm under the following realistic settings.
Granularity method
dataset building release-by-release
Dependent variable isBuggy

RQ4. Under the realistic settings, how does prediction
performance change just as the development history
accumulates?

Through RQ4, we try to obtain insights into whether the
machine learning algorithms should be varied with the amount
of development history.

IV. CONFIGURATIONS

In this Section, we describe the experimental configurations
common to the experiments described in the following sec-
tions.
A. Target projects

Target projects in this study are listed in Table I. Those
projects were selected for the following four reasons.

• Their Git repositories are available.
• They are written in Java.
• They adopt semantic versioning.
• There are at least four releases in their projects.

B. How to identify releases

In this study, we build datasets following the release-by-
release technique. It is necessary to identify the timing of
each release to use the release-by-release technique. We follow
the technique proposed by Pascarella et al. [4] to identify the
releases of the projects employing semantic versioning as a
versioning scheme. Semantic versioning expresses versions in
the form of X.Y.Z (e.g., 1.2.1), and X represents the major
version. We identify only releases of major versions, which
are versions where both Y and Z are zero (e.g., 2.0.0).

C. How to calculate hasBeenFixed

For each method, hasBeenFixed is calculated as follows.
step1 We collect the project repository and bug reports whose

status is FIXED.
step2 Bug reports are issued for previously discovered bugs,

and every bug report has an ID. In this experiment, A
commit whose commit message contains bug report ID is
regarded as a bug-fixing commit. We search the repository
for the bug-fixing commits.

step3 Suppose that a line of method A is changed in a bug-
fixing commit. If the commit falls within the interval from
the (n − 1)-th release (Rn−1) to the n-th release (Rn),
then method A is true for hasBeenFixed at Rn.

step4 When the above operations are performed for all bug
reports, methods that are not true for hasBeenFixed are
judged to be false for hasBeenFixed.

TABLE I
TARGET PROJECTS

Project Name development period releases commits bug reports methods Percentage of buggy methods
lucene-solr(LUC) 6,967 days 9 34,319 6,232 72,356 2.3 %
wicket(WIC) 5,860 days 7 20,972 2,871 22,961 2.5 %
cassandra(CAS) 4,239 days 4 25,671 5,402 28,567 5.6 %
linuxtools(LIN) 4,197 days 8 10,733 2,201 28,644 1.2 %
egit(EGI) 4,021 days 5 6,473 2,529 8,082 7.2 %
jgit(JGI) 4,029 days 5 8,014 700 14,098 1.1 %
eclipse.jdt.core(ECL) 7,062 days 4 24,804 9,716 23,910 7.9 %
poi(POI) 6,824 days 4 10,421 2,620 34,218 3.6 %
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D. How to calculate isBuggy

We used the implementation of literature [5] of an SZZ
algorithm [6] to calculate isBuggy as follows.
step1 The same as step 1 of the hasBeenFixed calculation.
step2 The same as step 2 of the hasBeenFixed calculation.
step3 Suppose that a line of method A is changed in a bug-

fixing commit. We identify the commit that inserted the
changed line with the “git blame”, and regard the commit
as a bug-inducing commit.

step4 If a bug-fixing commit for method A was made after
Rn and the bug-inducing commit for the bug was made
between Rn−1 and Rn, then method A is true for isBuggy
at Rn.

step5 When the above operations are performed for all bug
reports, methods that are not true for isBuggy are judged
to be false for isBuggy.

V. EXPERIMENTAL RESULTS

A. RQ1

In RQ1, we investigate whether hasBeenFixed accurately
captures buggy methods. An overview of the experiment is
shown in Figure 1.

Procedure. We conducted the following steps to answer
RQ1: we (1) collected the repositories and the bug reports of
the target projects, (2) calculated isBuggy and hasBeenFixed
for each target method, and (3) evaluated the properness of
hasBeenFixed quantitatively.

Evaluation metric. We use recall defined below to evaluate
the properness of hasBeenFixed as a dependent variable for
building bug prediction models.

Recall =
|XhasBeenFixed ∩XisBuggy|

|XisBuggy|

XhasBeenFixed is a set of methods that are true for has-
BeenFixed, and XisBuggy is a set of methods that are true
for isBuggy. A method called ”initialize” that is shown in
Figure 1 is true for isBuggy but false for hasBeenFixed at
R1. So ”initialize” existing at R1 is an element of XisBuggy ,
but not an element of XhasBeenFixed. Suppose the evaluated
recall is less than 0.5. In that case, we judge hasBeenFixed to
be improper as a dependent variable for bug prediction models
because hasBeenFixed models cannot predict more than half
of the buggy methods.

Results. The results of the experiment are listed in Table II.
Table II lists recall, which is the percentage of the buggy meth-
ods captured by hasBeenFixed, for each project. The recalls
are all significantly below 0.5. We conclude that hasBeenFixed
is improper as a dependent variable for bug prediction models
because hasBeenFixed cannot capture more than half of the
buggy methods.

B. RQ2

In RQ2, we build hasBeenFixed models and isBuggy models
to compare their performance. An overview of the experiment
is shown in Figure 2.

Procedure. We conducted the following steps to investigate
RQ2: we (1) collected the repositories and the bug reports of
the target projects, (2) built datasets based on the collected
data, (3) built bug prediction models based on the datasets, and
(4) evaluated the performance of the bug prediction models.

Dependent variable. We adopted hasBeenFixed and is-
Buggy as dependent variables and built regression models for

TABLE II
RECALL OF HASBEENFIXED FOR ISBUGGY

Project LUC WIC CAS LIN EGI JGI ECL POI ALL
Recall 0.22 0.22 0.36 0.16 0.34 0.16 0.43 0.20 0.28
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each of them. The definitions of the metrics are given in
section IV-C and IV-D, respectively.

Independent variables. We adopt the product and process
metrics defined by Giger et al. [2] as independent variables.
The metrics are listed in Tables III and IV.

Building a dataset. This study follows release-by-release
technique to calculate pairs of a training dataset and a test
dataset. Based on this technique, we can make n− 1 pairs of
training dataset Sk and test dataset Tk from a project that has
been released for n times, as shown in Figure 3. The pairs are
calculated as follows.

1) We calculate pairs of Dependent and independent vari-
ables (instances) using the development history between
Rk−1 and Rk for each release Rk (R0 is the beginning
of the development).

2) We build test dataset Tk of the instances calculated from
the development history between Rk−1 and Rk.

3) We build training dataset Sk of the instances calculated
from the development history before Rk−1.

TABLE III
INDEPENDENT VARIABLES ( PRODUCT METRICS )

Metrics name Description
FanIn Number of methods that reference a given method
FanOut Number of methods referenced by a given method
LocalVar Number of local variables in the body of a method
Parameters Number of parameters in the declaration of a method
CommentRatio Ratio of comments to source code (line based)
CountPath Number of possible paths in the body of a method
Complexity McCabe Cyclomatic complexity of a method
execStmt Number of executable source code statements
maxNesting Maximum nested depth of all control structures

TABLE IV
INDEPENDENT VARIABLES ( PROCESS METRICS )

Metrics Name Description
MethodHistories Number of times a method was changed
Authors Number of distinct authors that changed a method
StmtAdded Sum of all source code statements added
MaxStmtAdded Maximum StmtAdded
AvgStmtAdded Average of StmtAdded
StmtDeleted Sum of all source code statements deleted
MaxStmtDeleted Maximum of StmtDeleted
AvgStmtDeleted Average of StmtDeleted
Churn Sum of stmtAdded - stmtDeleted
MaxChurn Maximum churn for all method histories
AvgChurn Average churn per method history
Decl Number of method declaration changes
Cond Number of condition changes over all revisions
ElseAdded Number of added else-parts over all revisions
ElseDeleted Number of deleted else-parts over all revisions

4) We over-sample instances in Sk which are true for de-
pendent variable to address class imbalance problem [7].

Machine learning algorithm. The Random Forest (RF) [8]
was adopted as a machine learning algorithm because RF has
been commonly used in the previous studies [2]–[4] and the
time cost for building models is small.

Hyperparameter tuning. Hyperparameter tuning is essen-
tial to build high-performance models [9]. We performed 10
hours of hyperparameter tuning for each model.

Evaluation metrics. We adopted the following measures to
evaluate prediction performance.

Precision =
|TP |

|FP + TP |

Recall =
|TP |

|FN + TP |

F −Measure =
2×Recall × precision

Recall + precision

TP (True Positive) is a set of methods that have been classified
as buggy by a model and actually buggy. FN (False Negative)
is a set of methods that have been classified as not buggy by
a model and actually buggy. FP (False Positive) is a set of
methods that have been classified as buggy by a model and
actually not buggy.

Results. The results of the experiment are listed in Table V.
The table shows the average prediction performance for both
the hasBeenFixed models and the isBuggy models.

The F-Measure of the models adopting isBuggy as a realistic
dependent variable is about half that of hasBeenFixed. We
conclude that isBuggy models’ performance is quite lower than
hasBeenFixed models’and there are still issues in this research
area.

C. RQ3

In RQ3, we investigate which machine learning algorithm
provides the best performance under realistic settings. The
configurations to build and evaluate models are the same as
RQ2’s except for dependent variable and machine learning
algorithm.

Dependent variable. We set isBuggy as the dependent
variable. The definition is given in section IV-D.

Machine learning algorithm. We test Random Forest (RF)
and Deep Neural Network (DNN) [10] as machine learning
algorithms. DNN is selected because DNN can compute
expressive models even though they are not always better than
RF models in terms of prediction performance.

Results. The results of the experiments are listed in Ta-
ble VI. The table shows the average prediction performance
for both RF and DNN. We conclude that RF models are better
than DNN models from the perspective of F-Measure.

TABLE V
PREDICTION PERFORMANCE FOR DEPENDENT VARIABLES

Precision Recall F-Measure
HasBeenFixed 0.33 0.75 0.40
IsBuggy 0.15 0.61 0.19

TABLE VI
PREDICTION PERFORMANCE FOR MACHINE LEARNING ALGORITHMS

Precision Recall F-Measure
RF 0.15 0.61 0.19
DNN 0.13 0.64 0.18



0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7

F
-m

e
a
s
u

re

Number of releases

RF

DNN

Fig. 4. performance transition as the development history accumulates

D. RQ4

We follow the release-by-release technique to build datasets.
Under this technique, the size of the training dataset is pro-
portional to the length of development history (the number of
releases). In RQ4, we investigate how prediction performance
of models built under the realistic settings changes as the
development history accumulates. The configurations to build
models are the same as RQ3’s.

Results.
Figure 4 shows the average performance of models to

predict buggy methods at the release. In the results of the
experiment, there are two points worthy of special mention.

Firstly, the prediction performance decays as the develop-
ment history accumulates. This may be because the buggy
methods’ features change just as the development history
accumulates. However, this is a hypothesis, and we will test
it in the near future.

Secondly, DNN models are more powerful at an early
stage of development, and RF models are more powerful at a
later stage of development. This may be because the buggy
methods’ features change just as the development history
accumulates, and DNN models strongly learned the buggy
methods’ features at the early stage of development.

We conclude that DNN is better for building bug prediction
models under realistic settings at the second release, and RF
at subsequent releases.

VI. THREATS TO VALIDITY.

Herein, we describe possible threats to our study.
Dependent variable. In this study, we use bug reports

whose status is FIXED to calculate hasBeenFixed and isBuggy.
On the other hand, the target projects may include latent bugs,
which are not exposed yet and any bug reports for them have
not been made yet. The presence of latent bugs may harm the
performance of bug prediction models built in this study.

Hyperparameter tuning. Hyperparameter tuning is essen-
tial to build high-performance models using machine learning
algorithms. In this study, we performed 10 hours of hyper-
parameter tuning for each model. If models are tuned for a
longer time, higher performance models may be built.

SZZ algorithm. We used the implementation of liter-
ature [5] of an SZZ algorithm [6] to calculate isBuggy.
However, the accuracy of the SZZ algorithm still has room
for improvement [11], [12]. This problem may harm the
performance of bug prediction models built in this study.

VII. CONCLUSION

This paper is the first step to build reliable bug predic-
tion models under realistic settings. We first investigated the
properness of the metric hasBeenFixed as a dependent variable
for bug prediction models. Then, we built bug prediction mod-
els under realistic settings and evaluated their performance.

As a result, hasBeenFixed was able to capture only 28%
of buggy methods. Thus, hasBeenFixed is improper as a
dependent variable for bug prediction models. The F-Measure
of the bug prediction models built under realistic settings
was only 0.19, and it turned out to be challenging to build
practical bug prediction models under realistic settings. From
those results, we can say that there are still some issues to be
solved to build high-performance bug prediction models under
realistic settings.

We are currently trying to construct a new technique to
improve bug prediction models’ performance under realistic
settings. Specifically, we are considering investigating how
prediction performance changes if new independent variables
are introduced.
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