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Abstract

Server virtualization is broadly used for cost reduction and efficient resource utilization. Con-

tainerization, a type of virtualization technology, has become mainstream. Containerization creates

multiple virtual servers (i.e., containers) on a single physical server. Each container provides an

independent environment, enabling quicker delivery of applications, improved portability, and effi-

cient resource utilization. The object of this study is Docker, the de facto standard containerization

platform. Containers in Docker are built by writing configuration files called Dockerfiles. The pro-

cess of managing infrastructure configuration through machine-readable definition files is called

infrastructure as code (IaC). IaC makes it possible to prevent human errors, automate scaling, and

apply knowledge gained from conventional software engineering to infrastructure configuration.

However, IaC is a relatively new technology field; some domains of IaC have not been thoroughly

researched, such as development support, static analysis, and establishing best practices.

This study focuses on code completion, a widely used feature in software development, among

unexplored technical areas of IaC. The goal of this study is to construct a code completion system

that supports the development of Dockerfiles. The proposed system applies machine learning with

long short-term memory to a pre-collected dataset and creates language models, which calculate

probability distributions over a sequence of tokens. This system also employs model switching, a

solution for a Docker-specific code completion problem. When creating containers in Docker, it

is based on image files called base image. The Linux distribution differs depending on the base

image, and the contents of the Dockerfile differ accordingly. Thus, model switching is introduced to

reflect base image differences; language models for prediction are selected based on the base image.

However, the Linux distribution cannot be identified by the base image name in some cases. A

base image detector is also created to determine the Linux distribution in such cases.

Humpback, a code completion system for Dockerfile, was implemented to realize the proposal

of this study. 21,190 Dockerfiles were collected as the dataset for training and testing. Evaluation

experiments were conducted to confirm how accurate Humpback is and verify that model switching

improves code completion accuracy. Experiment results show that Humpback has a high average

recommendation accuracy of 89.4%. The contribution of model switching to the improvement of

its accuracy was also confirmed.
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1 Introduction

Server virtualization is broadly used for cost reduction and efficient resource utilization [1].

Containerization, a type of virtualization technology, has become mainstream [2]. Containeriza-

tion creates logical compartments (i.e., containers) on the host operating system (OS). Each con-

tainer provides an independent environment, enabling quicker delivery of applications, improved

portability, and efficient resource utilization. Docker1 is the de facto standard containerization

platform [3]; over 87% of information technology companies use Docker [4]. Docker is also widely

used in the open-source software community [5].

Containers in Docker are configured by writing imperative instructions in files called Dockerfile.

It is called infrastructure as code (IaC) that the process of managing infrastructure configuration

through machine-readable definition files [6, 7]. IaC makes it possible for developers to manage

infrastructure configuration in the same way as application code, which enables automated scaling,

prevents human error, and allows the incorporation of know-how cultivated in conventional software

engineering [8–10]. However, IaC is a relatively new technology field, and thus some areas are still

unexplored [11], such as development support, static analysis, and establishing best practices.

This study focuses on code completion, a widely used feature in software development [12,13].

A code completion system for emerging technology, such as Docker, can considerably improve

productivity by reducing common errors and reusing existing knowledge.

The contributions of this thesis are as follows:

1. Challenges towards code completion are outlined. One concern when building a

Docker-specific code completion system is base image differences. A base image, which

includes a Linux distribution, is an image file on which a container is created. The contents

of Dockerfiles differ considerably depending on the base image. For accurate code completion,

base image differences must thus be taken into account (section 2.5).

2. A solution to Docker-specific challenges is presented. In this study, the code comple-

tion system is realized by treating Dockerfiles’ contents as time-series data. Long short-term

memory (LSTM) [14] is employed to generate language models. Model switching is intro-

duced to overcome the problem caused by base image differences. With model switching,

language models for prediction are selected based on the base image. However, the Linux

distribution cannot be identified by the base image name in some cases. A base image

detector is also created to determine the Linux distribution of input Dockerfiles (section 3.2).

3. A Docker-specific code completion system, Humpback, is implemented. Hump-

back helps developers to reduce errors and be more efficient when writing Dockerfiles. Figure

1 is a screenshot of Humpback. Humpback is available online and can be used in a web

browser.2 Evaluation experiments were conducted to confirm how accurate Humpback is

and verify that model switching improves code completion accuracy. Experiment results

show that Humpback has a high average accuracy of 89.4% and is useful for developing

Dockerfiles. It is also confirmed that model switching improves prediction accuracy (section

4.5).

1https://www.docker.com/
2https://sdl.ist.osaka-u.ac.jp/∼k-hanaym/humpback/
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Figure 1: Screenshot of Humpback

The remainder of this thesis is organized as follows: Section 2 shows background knowledge

of the pillars of this study. Section 3 presents the proposal code completion system, Humpback.

Section 4 explains the experiment and evaluation of Humpback. Section 5 discusses the experiment

results. Section 6 reviews the threats to validity of the evaluation. Section 7 provides related works

for this study. Finally, Section 8 summarizes this thesis and provide future works.
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2 Background

This section provides background knowledge of this study’s pillars; code completion, language

model, Docker, and IaC. The challenges toward developing a code completion system for Dockerfiles

are also introduced.

2.1 Code Completion

Code completion is an extensively used feature in software development [13]; developers use

code completion as frequently as several times a minute [12]. A pop-up dialog is used to display

a list of candidate words after typing some characters. Developers select the desired word from

the list, which reduces typos and other common errors. Another benefit is the facilitation of

descriptive (i.e., long) names for variables, methods, and other entities. Manually entering long

names is cumbersome and error-prone. These problems can be solved by automating the input

process with code completion.

However, traditional code completion systems display all candidate words in alphabetical order

without considering the preceding and following contexts. Developers must choose the appropriate

one from a too-long list, which means traditional code completion can not contribute much to

improving development efficiency.

Therefore, many intelligent code completion systems have been proposed to overcome the

problem of traditional ones [15–23]. Systems that use statistical language models such as N-

gram [24–26], Transformer [27,28], and recurrent neural network (RNN)-based approaches [29–31]

have achieved high performance. Compared to a traditional code completion system, an intelligent

one more effectively enhances developer productivity.

2.2 Language Model

A language model is a probability distribution over sequences of words. Given token sequence

S = t1, t2, ..., tm, the language model assigns the probability P to the whole sequence:

P (S) = P (t1)p(t2|t1)p(t3|t1t2)...p(tm|t1t2...tm−1) (1)

=

m∏
i=1

p(ti|t1t2...ti−1) (2)

Programming languages are languages that contain predictable statistical properties [24]. This

probability thus indicates the relative likelihood of words, which allows the construction of code

completion systems. Intelligent code completion systems consider the context and calculate prob-

abilities based on language models to narrow the candidate word list.

The probabilities are difficult to calculate when the number of token sequences m is enormous.

Therefore, the N-gram model [24] calculates probabilities from the previous n− 1 tokens:

m∏
i=1

p(ti|t1t2...ti−1) =

m∏
i=1

p(ti|ti−(n−1)ti−(n−2)...ti−1) (3)

This calculation is based on n-th order Markov property; the probability of observing the i-th token

ti in the context history of the preceding i − 1 tokens can be approximated by the probability of

observing it in the shortened context history of the preceding n− 1 tokens.

3



In recent years, RNN has shown remarkable performance in modeling programming languages

with the rise of machine learning [29–31]. RNN can capture longer dependencies than the N-

gram model due to the recursion mechanism, which allows for more effective training. LSTM [14]

is a common variant of RNN. The vanishing gradient problem in RNN is eased by employing

LSTM blocks, powerful gate mechanisms to remember and forget information about the context

selectively.

2.3 Docker and Infrastructure as Code

Docker is an open containerization platform for developing, shipping, and running applications

[3]. Docker isolates applications from the development environment with containers, allowing

quicker delivery of applications, improved portability, and efficient resource utilization. Due to its

rapid rise in popularity, Docker has become the de facto standard container technology; over 87%

of information technology companies use Docker [4]. Docker is also widely used in the open-source

software community [5].

Containers in Docker can be built by interactively executing commands or by creating config-

uration files called Dockerfiles. Figure 3 is a Dockerfile example. The numbers on the left side in

Figure 3 are line numbers. Dockerfile sets up containers through imperative instructions, enabling

reproducible builds [32]. The process of specifying the environment in which software systems will

be tested and/or deployed through machine-readable definition files is called IaC [6, 7]. Develop-

ers can manage infrastructure configuration in the same way as application code, which prevents

human error, automates scaling, and allows the application of know-how cultivated in software

engineering [8–10]. Interest in IaC has thus grown among developers and researchers [33,34]. Fig-

ure 2 shows Google Trend3 data related to the search term “Infrastructure as Code”. The x-axis

presents months, and the y-axis presents the Interest Over Time metric4 determined by Google

Trends. This figure shows that interest in IaC has increased steadily after 2015.

2.4 Challenges of Infrastructure as Code

As described in the previous section, interest in IaC is growing steadily, whereas research on

IaC is still in its infancy. Rahman et al. [11] stated that the count of IaC-related publications

is low compared to that of software engineering. The topics studied in IaC-related publications

are divided into four categories: 1) framework or tools for infrastructure as code, 2) adoption

of infrastructure as code, 3) empirical study related to infrastructure as code, and 4) testing in

infrastructure as code. These topics mainly focus on implementing or extending the practices

of IaC itself. Therefore, it can be said that there is room to utilize the knowledge in software

engineering to unexplored technical areas of IaC, such as development support, static analysis,

and establishing best practices.

3https://trends.google.com/trends/explore?q=Infrastructure%20as%20Code
4Numbers represent search interest relative to the highest point on the chart for the given region and time. A

value of 100 is the peak popularity for the term.
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Figure 2: Google Trends data for search term “Infrastructure as Code”

2.5 Challenges Toward Code Completion in Docker

This study focuses on code completion among the under-researched areas described in the

previous section. One concern in building Docker-specific code completion systems is the difference

in the base image. Base image is the image file on which the container is created, specified by the

FROM instruction in Dockerfile, like line 3 in Figure 3.

Dockerfile has nested language; embedded scripting languages (mainly bash) are described in a

nested state in the top-level syntax [2]. The contents of Dockerfiles differ considerably depending

on the base image since the Linux distribution is determined here. For example, for an Ubuntu

base image, the apt-get command is used in the RUN instruction, whereas for a CentOS base

image, the dnf command is used. The majority of the Dockerfiles’ contents is this RUN instruction

(section 5.3). Hence, it is challenging to perform code completion with high accuracy if the base

image difference is not considered.
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# create container 
# from CentOS base image
FROM centos:centos8

# system update
RUN dnf -y update && dnf clean all

# install Apache httpd
RUN dnf install -y httpd

# copy index file
ADD ./index.html /var/www/html/

# expose port 80
EXPOSE 80

# display messages
RUN echo "now running..." 

# Start Apache
CMD ["/usr/sbin/httpd", "-D"]

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Figure 3: Dockerfile example
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Figure 4: Overview of learning phase

3 Humpback: Code Completion System for Dockerfiles

This section introduces Humpback, a code completion system for Dockerfiles. First, an overview

of Humpbackis described. Then, the methodology and implementation of Humpback are explained.

3.1 System Overview

A code completion system for Dockerfiles, Humpback, is implemented in this study. Humpback

helps developers to reduce errors and be more efficient when writing Dockerfiles. Various methods

have been used to implement intelligent code completion systems. Here, language models are

employed. Statistically processing pre-collected Dockerfiles and performing contextual predictions

make it possible to reuse existing knowledge. Model switching is also introduced to overcome the

problem caused by base image differences.

3.2 Methodology

The methodology of Humpback is divided into the learning phase and the prediction phase.

3.2.1 Learning Phase

The learning phase includes file collection, data processing, and language model generation.

Figure 4 is an overview of the learning phase.

File collection: The GitHub GraphQL API5 allows users to find repositories with specific

programming language. Repositories with Dockerfiles are searched using the GitHub GraphQL

API, pull these repositories in order of their star count (i.e., popularity), and extract the Dockerfiles.

Data processing: Figure 5 shows data processing flow. First, the contents of the collected

Dockerfiles are divided into token sequences. The inputs are paired with the expected outputs.

For example, for the statement “FROM centos RUN dnf”, centos is expected after FROM, and RUN

is expected after FROM centos. Next, these training data are encoded using integer values for the

learner to interpret efficiently. The number of elements in the training data varies. Therefore,

0-padding is performed to obtain fixed-length data finally.

Language model generation: Humpback uses language models for prediction. There are

several types of language model, including N-gram [24–26], Transformer [27,28], and RNN [29–31].

The proposed method assumes that the contents of Dockerfiles are time-series data. LSTM [14],

a variant of RNN used in deep learning and natural language processing, is employed to generate

5https://docs.github.com/en/graphql
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FROM centos

FROM centos RUN

FROM centos RUN dnf

1. Divide the contents
of Dockerfiles
and convert them into

Input Expected Output

2. Encode training data
with integer values

3. Padding by 0 to make
training data of
fixed length

FROM: 1
RUN : 3
…

1 25

1 25  3

1 25  3 52 1 25  3 52

0  0  1 25

0  1 25  3

Figure 5: Data processing flow

language models for Humpback. Although a standard (or vanilla) RNN can also process time-

series data, it is incapable of storing long-term memory. LSTM is an improved version of RNN;

it uses individual units, LSTM blocks, in addition to standard units, and can learn long-term

dependencies.

3.2.2 Prediction Phase

Humpback uses model switching to overcome the problem caused by base image differences.

Figure 6 shows an overview of the prediction phase. Pre-trained language models for each Linux

distribution are prepared in advance. Humpback switches models for prediction considering the

base image of input Dockerfiles. For instance, if the input Dockerfile’s base image is Ubuntu, a

model trained with Dockerfiles, whose base images are Ubuntu, is used to make predictions.

However, the Linux distribution cannot be identified from the base image name in some cases.

For example, we can guess that “openjdk:11-jdk” includes the Java development environment,

but we cannot guess its Linux distribution. A base image detector is created to determine the Linux

distribution for a given Dockerfile. First, the base image detector builds a container from the input

Dockerfile. Then, it identifies the Linux distribution based on the file /etc/os-release, which

contains OS information. The analyzing results by the base image detector empower Humpback to

switch models for prediction even if the base image name does not contain the Linux distribution.

For example, the base image detector identified the Linux distribution of openjdk:11-jdk as

Debian.

3.3 Data Cleansing

Data cleansing was conducted to build a more accurate code completion system. Data cleansing

is a process of improving the quality of the data. Duplicates, errors, and shaky notations in a

dataset are searched and normalized by deleting or correcting them. Three types of data cleansing

are employed in this study: abstraction, embodiment, and denoising. Figure 7 shows examples of

each data cleansing.

Abstraction: An example of abstraction is the elimination of tags and digests in the base

image. In the FROM instruction, tags and digests can be added to specify the version in addition to

the base image name. However, there is no significant variation in the commands (e.g., apt-get)

used by the different versions of the base image. Learning efficiency can thus be improved by

absorbing that differences.

8
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Figure 6: Overview of prediction phase

Embodiment: Replacing && with the previous instruction is an example of the embodiment.

Using && in the RUN instruction allows multiple commands to be written together in a single

instruction. Docker recommends the use of && in the RUN instruction since the increase of image

size can be reduced [35]. However, training language models is made more accurate by specifying

what is indicated by &&.

Denoising: Examples of denoising include eliminating meta-information such as author name,

version, and build stage alias specification. LABEL instruction can be used to set meta-information

in Dockerfile. Intermediate images can be named by AS instruction. This information is erased as

it is considered superfluous for the language model to learn the content of Dockerfile.

3.4 Implementation

Humpback is implemented in Python and Javascript. Three libraries/frameworks are used to

train language models, namely TensorFlow6, a software library for machine learning, Keras7, a

high-level neural network library, and Optuna8, a hyperparameter auto-optimization framework.

As shown in Figure 1, Humpback is available online and ready to use in a web browser. The

trained models are deployed using a library called Tensorflow.js9. Candidate words are presented

immediately, and thus developers can use Humpback without slowing down their development

process.

6https://www.tensorflow.org/
7https://keras.io/
8https://preferred.jp/en/projects/optuna/
9https://www.tensorflow.org/js
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FROM ubuntu:18.04
FROM ubuntu@sha256:cbbf2f...

RUN apt-get install git
&& apt-get update

LABEL maintainer=“kaisei<k-hanaym@...>”
FROM centos AS server

Abstraction

Embodiment

Denoising

FROM ubuntu
FROM ubuntu

RUN apt-get install git
RUN apt-get update

(Deleted)
FROM centos

Figure 7: Data cleansing examples
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Table 1: Evaluation metrics example

Answer Recommendations Rank Reciprocal rank Top-1

RUN RUN, FROM, CMD 1 1 ✓
apt yum, apk, apt 3 1/3

install update, install, delete 2 1/2

4 Evaluation Experiment

This section explains the evaluation experiment to confirm the effectiveness of this study’s

proposal. First, the experiment schemes, namely evaluation metrics, dataset, and experimental

procedure, are described. Then, the experiment results are presented.

4.1 Evaluation Metrics

Evaluation experiments were conducted to see how accurate Humpback is and verify that model

switching improves code completion accuracy. Top-k accuracy Acc(k) and mean reciprocal rank

MRR [36] were used as metrics for evaluating recommendation accuracy:

Acc(k) =
Ntop−k

|Q|
(4)

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5)

where Ntop−k is the number of relevant recommendations in the top k suggestions, |Q| is the

total number of queries, and ranki is the rank position of the first relevant word for the i-th

query. For both Acc(k) and MRR, a value closer to 1 indicates better model performance. Table

1 shows an example of the evaluation metrics. In this case, Acc(1) is 1/3 ≈ 0.33 and MRR is

(1 + 1/3 + 1/2)/3 = 11/18 ≈ 0.61.

4.2 Dataset

21,190 Dockerfiles were collected using the GitHub GraphQL API. The tokens numbers in each

Dockerfile was measured. Figure 8 is the histogram of the token numbers in Dockerfile. The x-axis

is the token numbers, and the y-axis is the Dockerfile’s frequency. Most Dockerfiles (91.8%) has

less than 400 tokens. The minimum token number is 2, the maximum is 1,313, and the average is

223. From this result, we can see that each Dockerfile is not very long.

The dataset contains 6,035 base images. The Linux distribution of each base image was iden-

tified by applying the base image detector (section 3.2.2). The numbers of Dockerfiles and their

versions for each Linux distribution are shown in Table 2. The major Linux distributions in the

dataset are Alpine, Debian, and Ubuntu. The dataset for Ubuntu has the most variety, with 19

versions in 1,497 files. In the table, “Others” includes Amazon Linux, CentOS, Fedora, Oracle

Linux Server, and VMware Photon OS.

11
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Figure 8: Histogram of token numbers in Dockerfile

Table 2: Number of Dockerfiles and versions

Distribution # of Dockerfiles # of versions

Alpine 1,105 (5.2%) 9

Debian 17,011 (80.2%) 6

Ubuntu 1,497 (7.0%) 19

Others 1,577 (7.4%) -

4.3 Learning

The dataset was divided into training and testing sets (80/20 split on the file level). 4-fold

cross-validation was also performed during learning. The details of learning, such as learning

duration, activation function, optimizer, and the number of epochs, are shown in Table 3.

There is a large difference in training duration, which is generally related to training data.

Debian has the most number of training data, so the most extended training duration. Hyper-

parameters such as the activation function, optimizer, and the number of epochs were optimized

using Optuna. The activation functions were divided into Sigmoid [37] and Softmax [38]. As the

optimizer Adam [39] was chosen for all Linux distributions.

4.4 Experiment Design

The recommendation accuracy was compared for the three major Linux distributions in the

dataset, both with and without model switching. For the case without model switching, a generic

model trained with all Dockerfileswas produced. Humpback uses multiple language models with

model switching, but this generic model used a single language model. All 21,190 Dockerfiles, with-

12



Table 3: Details of learning

Distribution Duration Activation function Optimizer # of epochs

Alpine 4h39m Sigmoid Adam 56

Debian 1d7h33m Softmax Adam 71

Ubuntu 5h12m Softmax Adam 24

out their distribution information, were used as training data for the generic model. Two syntaxes

were defined in this experiment; descriptions in the RUN instruction were defined as Shell syntax,

and other descriptions as Docker syntax. The command part and argument part are distinguished

in each syntax (Docker Command, Docker Argument, Shell Command, Shell Argument). Figure

9 is an example of syntax definition. Docker syntax is colored in blue, and Shell syntax is in red.

The shaded part is the command part, and the bold part is the argument part. Therefore, there

are three axes of comparison in this experiment: presence or absence of data cleansing and model

switching, the Linux distribution, and the syntax.

The experimental procedure are as follows:

1. 100 Dockerfiles are extracted from the dataset.

2. The correct answer is chosen at a random position in each Dockerfile.

3. The contents from the beginning of the file to just before the correct answer (i.e., seeds) are

given to the language models.

4. Seeds that are extremely short or whose base image could not be identified are excluded.

5. Acc(k) and MRR are computed by checking the candidate words against the correct answer.

Ten rounds of the above process were performed for each comparison axis. Steps 2. through 4. are

explained using the example in Figure 9. For example, “install” in the second line is chosen as

the correct answer, “FROM” in the first line to “dnf” in the second line are given to the language

models as seeds. If “centos:centos8” is chosen as the correct answer, the seeds are too short; the

correct answer is randomly chosen again.

4.5 Experiment Results

Acc(1) (Top-1 accuracy) and Acc(5) (Top-5 accuracy) for each Linux distribution are shown in

Figure 10, Figure 11, and Figure 12. These figures show the scores for ten rounds of experiments

in the form of box plots. Table 4 and Table 5 show the average scores of Acc(1), Acc(5), and

MRR in each syntax. “Generic” refers to the generic model (i.e., without model switching).

“Humpback” refers to the proposed system Humpback (i.e., with model switching). “∆” is the

degree of improvement by Humpback, i.e., the score by Humpback minus that by generic model.

“All” in the distribution column indicates the average score of all Linux distributions. The numbers

in bold are the better scores in the same category.

Prediction with Humpback is more accurate for almost all evaluation axes. Humpback achieved

a high Top-1 accuracy of 89.4% for the average value of prediction in Docker syntax and Shell syntax

(up to 99.2% for Debian with Shell syntax). As described in section 3.4, the candidate words are

13



FROM centos:centos8
RUN dnf install -y httpd
ADD ./test.sh test.sh
RUN chmod +r test.sh && bash test.sh

1:
2:
3:
4:

Docker-Command / Docker-Argument
Shell-Command / Shell-Argument

Figure 9: Syntax definition example

presented instantly. With its quickness and high accuracy, Humpback can significantly improve

developers’ productivity.
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Figure 10: Experiment results for Alpine
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Figure 11: Experiment results for Debian
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Figure 12: Experiment results for Ubuntu
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5 Discussion

This section discusses experiment results from three viewpoints: model switching, Linux dis-

tribution, and syntax.

5.1 Accuracy Improvement Through Model Switching

The experiment results show that model switching is useful for improving accuracy, except for

Alpine with Docker syntax. Comparison of the generic model with Humpback reveals that the

top-1 accuracy is improved by up to 12.9% (for Ubuntu with Docker syntax). While there are

extreme variances in Docker syntax prediction improvement, Shell syntax prediction is improved

overall. The accuracy for Shell syntax is improved by 3.5% on average, and there is no case where

the introduction of model switching deteriorated the accuracy.

Model switching allows Humpback to reflect the shell command differences between Linux

distributions. Therefore, model switching is practical for all distributions in predicting Shell syntax,

which leads to improved accuracy. These results show that model switching aids in building a code

completion system for Dockerfiles.

5.2 Differences by Linux Distribution

Prediction for Debian is the most accurate for all Linux distributions. One possible reason

for this is that there are many training data for Debian. As shown in Table 2, the number of

Dockerfiles whose Linux distribution is Debian is 17,011, accounting for about 80% of the total.

The more training data makes it possible to train more effectively. Therefore, it can be inferred

that the prediction accuracy for Debian, which has the largest number of training data, gets the

highest.

Prediction for Ubuntu is more accurate than that for Alpine. However, these distributions have

similar numbers of training data (Alpine:1,105, Ubuntu: 1,497). It can be assumed that many

of the descriptions in Dockerfiles whose Linux distribution is Ubuntu are similar to each other,

whereas fewer similarities in the descriptions in Dockerfiles whose Linux distribution is Alpine.

Language models can be trained more efficiently if there are many similar descriptions, even if

the training data is almost the same amount. Likewise, if there are many similar descriptions in

the training data, there is a high probability that the test data also contain similar descriptions,

making prediction easier. For the above reasons, the prediction for Ubuntu can be considered to

be more precise than that for Alpine.

5.3 Differences by Syntax

Both the generic model’s prediction and one by Humpback show higher prediction accuracy

for Shell syntax than that for Docker syntax. The majority of the Dockerfile’s content is the Shell

syntax that describes the commands to be executed in the container. Figure 13 is a pie chart

showing the token numbers in each syntax and their percentages in the dataset. This figure reveals

that the Shell syntax accounts for 96.5% of the total Dockerfile’s content. The higher the language

model’s accuracy can be accomplished when the more the training data have similar descriptions,

as mentioned in the previous section. Therefore, the efficient training process makes the prediction

accuracy for Shell syntax higher than that for Docker syntax.
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Shell_Command Shell_Argument Docker_Command Docker_Argument

3,790,620 (83.1%) 

609,457 (13.4%) 

63,378 (1.4%) 
96,892 (2.1%) 

Figure 13: Token numbers in each syntax and their percentages

No trend can be identified for Docker syntax between the command part and the argument

part. For Alpine, Docker Command prediction is more accurate, but for Debian and Ubuntu,

Docker Argument prediction overtakes accuracy. There is also no significant difference between

Docker Command and Shell Command predictions among all Linux distributions.

However, the Top-5 accuracy of Shell Command exceeded that of Shell Argument in all Linux

distributions. As shown in Figure 13, the number of Shell Argument tokens is tremendous, which

is about 3.8 million. It can be considered that tokens in Shell Command have a certain degree

of regularity while there is too much variety in Shell Argument. As a result, the prediction for

Shell Command has become more manageable.
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6 Threats to Validity

There are threats to validity in the experiments. They are divided into threats to internal

validity and threats to external validity in this section.

6.1 Threats to Internal Validity

Threats to internal validity include the randomness of data generation. Dockerfiles for test

data were randomly extracted from the dataset. The correct answer was also randomly generated.

Ten rounds of experiments were conducted to minimize bias, but different test data can affect the

experiment results. The way of syntax definition is also internal validity. Shell syntax and Docker

syntax were defined in this study to analyze the experiment results in detail. This study concludes

that there is an improvement in code completion accuracy for both syntaxes. However, changing

the syntax definition can yield different results.

6.2 Threats to External Validity

Threats to external validity include the smallness of the dataset. The data set used in this

study contains only 21,090 Dockerfiles. Dockerfile should be further collected to get more generic

experiment results. The other threat to external validity is the lack of comparison with other code

completion systems. A more objective evaluation can ensure the external validity of the experiment

results.

21



7 Related Works

This section clarifies this study’s position by describing the related works of code completion

and IaC.

7.1 Code Completion

Code completion is an important research topic in software engineering, and various studies

have been conducted over the years. Early code completion relies on program history [40], code

examples [13], and static type information [41]. Since Hindle et al. [24] discussed the statistical

properties in source code, language models began to be used to develop code completion systems

[25, 26, 31, 42]. N-gram-based models are one of the most commonly used language models. Tu et

al. [25] introduced a caching mechanism in the N-gram model to capture source code’s localness

and better performance than the conventional one. Hellendoorn and Devanbu [26] proposed Nested

Cache N-gram. Nested Cache N-gram is an improved N-gram model with unlimited vocabulary,

nested scope, dynamism, and locality in source code. Experiment results of code completion showed

that their models exceeded existing language models.

With the rise of machine learning, deep learning-based language models have been widely

employed to model source code [31, 43]. Liu et al. [30] proposed code completion with plain

LSTM. Bhoopchand et al. [29] modified RNN with a sparse pointer mechanism. Li et al. [31]

used a pointer mixture network to tackle the out-of-vocabulary (OoV) problem10. RNNs and their

variants, especially LSTM-based language models, have shown high code completion performance,

as presented in the above studies. This study followed suit and proposed Humpback, a code

completion system for Dockerfiles using LSTM. A thorough search of the relevant literature yielded

no related article; thus, Humpback is the first code completion system for Dockerfiles.

In recent years, different models from RNN have been proposed to allow for long-term depen-

dencies in the sequential data [44]. Transformer [27] is an architecture based on an attention mech-

anism [45], which replaces recurrent layers with a self-attention mechanism to reduce sequential

computation and capture longer-range dependency. Liu et al. [28] employed Transformer-XL [46],

an improved version of Transformer, to construct a code completion mechanism. However, these

architectures are not used in this study because Dockerfiles do not have vast long-term dependen-

cies. As mentioned in section 4.2, the token numbers in Dockerfiles is not large, averaging 223. It

is sufficient to use LSTM in this study since LSTM-based language models use 200 context words

on average [44]. This study confirmed that sufficient accuracy is achieved from the evaluation

experiment results.

10The OoV problem, as known as the unknown word problem, limits the performance of language models, especially

when there are many unique words in the dataset. In deep learning-based language models, the dimension of the

output layer uniquely corresponds to pre-acquired vocabularies. With an extensive vocabulary, the output layer

becomes high-dimensional and computationally expensive. The amount of computation is thus usually reduced

by restricting the vocabulary to high-frequency words only during training. Other low-frequency words become

unknown words, collectively replaced by special symbols such as UNK. However, if the candidate word of the code

completion is UNK, recommending it is no help for developers. Therefore, it is essential to reduce the number of OoV

in the implementation of code completion.
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7.2 Infrastructure as Code

Chad Fowler introduced the concept of IaC11. The phrase “as code” in IaC means applying

the know-how in software engineering, such as code review and version control for infrastructure

configuration [6, 34]. Developers who want to configure infrastructure write IaC scripts similar to

software code with domain-specific language [47]. Organizations widely use commercial IaC tools

or platform, such as Docker, Chef12, Puppet13, and Ansible14 [6, 7, 48].

The most frequently studied topic on IaC is framework or tools; Dolstra et al. [49] proposed

Charon, a tool for implementing the practice of IaC, such as automated provisioning and deploy-

ment of networks of machines from declarative specifications. Weiss et al. [50] offered a tool called

Tortoise, which automatically corrects errors in Puppet scripts. Baset et al. [51] introduced a tool

called ConfigValidator. This tool validates IaC artifacts, such as Docker images, by writing rules

with declarative language to detect misconfigurations. There are also IaC-related studies that fo-

cus on empirical studies and testing. Jiang and Adams [7] researched the co-evolution relationship

between the IaC files and the other categories of files in a project, such as source codes, test codes,

and build scripts. Sharma et al. [33] investigated smells (i.e., recurring coding practices that may

have negative impacts) in Puppet scripts and proposed 13 implementation- and 11 design-smells.

Hummer et al. [52] proposed a framework to enable automated testing of Chef scripts. Hanappi

et al. [53] examined Puppet scripts’ convergence and introduced an automated testing framework

for asserting reliable convergence. Ikeshita et al. [54] introduced a method to reduce test suites for

IaC by checking idempotence.

There are several kinds of studies related to IaC, as we have seen in the preceding paragraph.

However, the count of publications is low compared to that of software engineering, even though

interest in IaC is growing steadily [11]. Most of the limited number of studies on IaC spotlight

on implementing or extending the practices of IaC itself. Our study focuses on the integration of

IaC and software engineering, which remains an under-explored area. This study aimed at code

completion, a frequently studied feature in software engineering, and developed Humpback, a code

completion system for Dockerfiles.

11https://www.oreilly.com/radar/an-introduction-to-immutable-infrastructure/
12https://www.chef.io/products/chef-infra
13https://puppet.com/
14https://www.ansible.com/
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8 Conclusion

This study proposed a code completion system for Dockerfiles based on a language model. A

code completion system, Humpback, was implemented to realize this study’s proposal. Humpback

is available online and can be used in a web browser. The candidate words are presented instantly,

allowing developers to use Humpback comfortably without slowing down their development. Model

switching was introduced to overcome a Docker-specific problem and improve the prediction accu-

racy. Evaluation experiments showed that Humpback has a high average top-1 accuracy of 89.4%.

It is also confirmed that model switching improved the accuracy of Humpback.

There are mainly three future works:

Further development of improvement methods: Currently, model switching is introduced

in the implementation of Humpback, and its contribution to improving accuracy was discussed in

section 5.1. However, considering the issues inherent in Dockerfile and investigating the improve-

ment methods can enhance the Humpback’s accuracy.

Improvement of the dataset: The dataset used in this study contains 21,190 Dockerfiles.

As considered in section 5.2, the prediction for Debian has the highest recommendation accuracy

with the largest number of Dockerfiles. Therefore, additional Dockerfiles should be collected to see

if training language models with richer data can improve the recommendation accuracy.

Comparison with other code completion systems: Humpback was implemented as a code

completion system for Dockerfiles. However, as described in section 4.4, the evaluation experiments

were conducted on generic model, which means no comparison with other code completion systems

was executed. It is crucial to compare Humpback with other code completion systems from existing

research to evaluate performance objectively.
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