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Development of Code Completion System

for Dockerfiles
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Containerization, in which multiple virtual servers (i.e., containers) are built on a single physical server, is

widely employed for cost reduction and effective resource utilization. The object of this study is Docker,

the de facto standard containerization platform. Containers in Docker are built by writing configuration

scripts and creating files called Dockerfile. Managing the infrastructure as code makes it possible to apply

knowledge gained from conventional software development to infrastructure configuration. However, infras-

tructure as code is a relatively new technology, some domains of which have not been fully researched. In

this study, we focus on code completion and aim to construct a system that supports the development of

Dockerfiles. The proposed system applies machine learning with long short-term memory to a pre-collected

dataset to create language models and uses model switching to overcome a Docker-specific code completion

problem. Evaluation experiments show that the implemented code completion system, Humpback, has a

high average recommendation accuracy of 88.9%.

1 Introduction

Server virtualization is broadly used for cost re-

duction and efficient resource utilization. Con-

tainerization, a type of virtualization technology,

has become mainstream [6]. Containerization cre-

ates logical compartments (i.e., containers) on the

host operating system (OS). Each container pro-

vides an independent environment. Docker�1 is the

de facto standard containerization platform [11] [3].

Containers in Docker are configured by writing

imperative instructions in files called Dockerfiles.

The process of managing infrastructure configu-

ration through machine-readable definition files is

called infrastructure as code (IaC) [7]. IaC enables

developers to manage infrastructure configuration

in the same way as application code, which enables

automated scaling, prevents human error, and al-
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lows the incorporation of know-how cultivated in

software development [1]. However, IaC is a rel-

atively new technology field and thus some areas

are still in development [14], such as development

support, static analysis, and best practices.

In this study, we focus on code completion, a

widely used feature in software development [2, 9].

A code completion system for an emerging technol-

ogy such as Docker can considerably improve pro-

ductivity by allowing the reuse of existing knowl-

edge and reducing common errors.

One concern when building a Docker-specific

code completion system is base image differences.

A base image, which includes a Linux distribution,

is an image file on which a container is created. A

Dockerfile can have a nested language; embedded

scripting languages (mainly bash) are described in

a nested state in the top-level syntax [6]. The con-

tents of Dockerfiles differ considerably depending

on the base image. For example, for an Ubuntu

base image, the apt-get command is used in the

RUN instruction, whereas for a CentOS base image,

the dnf command is used. For accurate code com-

pletion, base image differences must thus be taken

into account.

The contributions of this paper are as follows:
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Fig. 1: Screenshot of Humpback

1. A solution to Docker-specific challenges

is presented. We introduce model switching to

overcome the problem caused by base image differ-

ences. With model switching, language models for

prediction are selected based on the base image. In

this study, the code completion system is realized

by treating the contents of a Dockerfile as time-

series data. Long short-term memory (LSTM) [5]

is employed to generate language models (section

3. 2).

2. A Docker-specific code completion sys-

tem, Humpback, is implemented. Figure 1

shows a screenshot of Humpback. Humpback is

available online and can be used in a web browser.�2

Evaluation experiments show that Humpback has

a high average accuracy of 88.9% and is useful for

developing Dockerfiles. It is confirmed that model

switching improves accuracy (section 4. 5).

2 Background

2. 1 Code completion

Code completion is extensively used in software

development [2]. Developers use code completion

as frequently as several times a minute [9]. A pop-

up dialog is used to display a list of candidate words

after the user has typed some characters. Devel-

opers select the desired word from the list, which

reduces typos and other common errors. Another

benefit is the facilitation of the use of descriptive

(i.e., long) names for variables, methods, and other

entities. Manually entering long names is cum-

bersome and error-prone. These problems can be

�2 https://sdl.ist.osaka-u.ac.jp/∼k-hanaym/humpback/

solved by automating the input process with code

completion.

Traditional code completion systems display all

candidate words, which means that developers

must choose the appropriate one from an extremely

long list. A large number of intelligent code com-

pletion systems have been proposed to overcome

this problem [8, 12, 15, 17]. Systems that use sta-

tistical language models such as N-gram, Trans-

former [18], and recurrent neural network (RNN)-

based approaches have achieved high performance.

Given token sequence w of length m, the language

model applies the probability P (w1, ..., wm) to the

whole sequence. This probability indicates the rela-

tive likelihood of words, which allows the construc-

tion of code completion systems. Intelligent code

completion systems consider the context and cal-

culate probabilities based on language models to

narrow the list of candidate words. Compared to a

traditional code completion system, an intelligent

one more effectively enhances developer productiv-

ity.

2. 2 Docker, infrastructure as code and

challenges

Docker is an open containerization platform for

developing, shipping, and running applications [4].

Docker isolates applications from the development

environment with containers, allowing quicker de-

livery of applications, improved portability, and ef-

ficient resource utilization. Due to its rapid rise in

popularity, Docker has become the de facto stan-

dard container technology; over 87% of information

technology companies use Docker [11]. Docker is

also widely used in the open-source software com-

munity [3].

Containers in Docker can be built by interactively

executing commands or by creating configuration

files called Dockerfiles. A Dockerfile sets up con-

tainers through imperative instructions, enabling

reproducible builds [19]. Interest in IaC has thus

grown among developers and researchers [10,16].

However, research on IaC is still in its in-

fancy [14]. Most of the limited number of studies on

IaC propose tools or frameworks for implementing

or extending the practices of IaC itself. Knowledge

in software engineering, such as that on develop-

ment support, static analysis, and best practices,

can be applied to IaC.



Vol. 39 No. 0 2022 3

3 Humpback: Code completion sys-

tem for Dockerfiles

3. 1 System overview

We propose Humpback, a code completion sys-

tem for Dockerfiles. Humpback helps developers

to reduce errors and be more efficient when writing

Dockerfiles. Various methods have been used to im-

plement intelligent code completion systems. Here,

we employ language models. Statistically process-

ing pre-collected Dockerfiles and performing con-

textual predictions make it possible to reuse exist-

ing knowledge. We also introduce model switching

to overcome the problem caused by base image dif-

ferences.

3. 2 Methodology

The methodology of Humpback is divided into

the learning phase and the prediction phase.

3. 2. 1 Learning phase

The learning phase includes file collection, data

processing, and language model generation. Figure

2 shows an overview of the learning phase.

File collection: The GitHub GraphQL API�3

allows users to find repositories with specific pro-

gramming language files. We search for repositories

with Dockerfiles using the GitHub GraphQL API,

pull these repositories in order of their star count

(i.e., popularity), and extract the Dockerfiles.

Data processing: The contents of the collected

Dockerfiles are divided into token sequences. The

inputs are paired with the expected outputs. For

example, for the statement FROM centos RUN dnf,

centos is expected after FROM and RUN is expected

after FROM centos. Next, these training data are

encoded using integer values for the learner to in-

terpret efficiently. The number of elements in the

training data varies. Therefore, 0-padding is per-

formed to obtain fixed-length data.

Language model generation: Humpback uses

language models for word prediction. There are

several types of language model, including N-gram,

Transformer, and RNN. We assume that the con-

tents of Dockerfiles are time-series data. LSTM [5],

an RNN architecture used in the field of deep learn-

ing and natural language processing, is employed

to generate language models. Although a standard

�3 https://docs.github.com/en/graphql

RNN can also process time-series data, it is inca-

pable of storing long-term memory. LSTM is an

improved version of RNN; it uses individual units

in addition to standard units and can learn long-

term dependencies.

3. 2. 2 Prediction phase

Humpback uses model switching to overcome the

problem caused by base image differences. Figure

3 shows an overview of the prediction phase. Pre-

trained language models for each base image are

prepared in advance. Humpback switches models

for prediction considering the base image of input

Dockerfiles. For instance, if the base image of input

data is Ubuntu, a model trained with Dockerfiles,

whose base images are Ubuntu, is used to make

predictions.

However, in some cases, the Linux distribution

cannot be identified from the base image name.

For example, we can guess that “openjdk:11-jdk”

includes the Java development environment, but

cannot guess its Linux distribution. We created

a base image detector to determine the Linux dis-

tribution for a given Dockerfile. First, the base im-

age detector builds a container from the Dockerfile.

Then, it identifies the distribution based on the file

/etc/os-release, which contains OS information.

Humpback can thus switch models for prediction

even if the Linux distribution is not explicitly spec-

ified. For example, the base image detector identi-

fied the distribution of openjdk:11-jdk as Debian.

3. 3 Implementation

Three libraries/frameworks are used to imple-

ment Humpback, namely TensorFlow�4, a software

library for machine learning, Keras�5, a high-level

neural network library, and Optuna�6, a hyperpa-

rameter auto-optimization framework. Candidate

words are presented immediately, and thus develop-

ers can use Humpback without slowing down their

development process.

4 Evaluation Experiment

4. 1 Evaluation metrics

We conducted evaluation experiments to verify

that model switching improves the accuracy of code

�4 https://www.tensorflow.org/

�5 https://keras.io/

�6 https://preferred.jp/en/projects/optuna/
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completion. Acc(k) (top-k accuracy) and the mean

reciprocal rank (MRR) [13] were used as metrics

for evaluating recommendation accuracy:

Acc(k) =
Ntop−k

|Q| (1)

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(2)

where Ntop−k is the number of relevant recommen-

dations in the top k suggestions, |Q| is the total

number of queries, and ranki is the rank position

of the first relevant word for the i-th query. For

both Acc(k) and MRR, a value closer to 1 indicates

better model performance. Table 1 shows an exam-

ple of the evaluation metrics. In this case, Acc(1)

is 1/3 ≈ 0.33 and MRR is (1 + 1/3 + 1/2)/3 =

11/18 ≈ 0.61.

Table 1: Example of evaluation metrics

Answer Recommendations Rank Reciprocal rank Top-1

RUN RUN, FROM, CMD 1 1 ✓
apt dnf, apk, apt 3 1/3

install update, install, delete 2 1/2

4. 2 Dataset

We collected 21,190 Dockerfiles using the GitHub

GraphQL API and applied the base image detector

(section 3. 2. 2) to the whole dataset. The dataset

contained 6,035 different base images. The Linux

distribution of each base image was identified. The

numbers of Dockerfiles and their versions for vari-

ous Linux distributions are shown on the left side of

Table 2. The major distributions in the dataset are

Debian, Ubuntu, and Alpine Linux. The dataset

for Ubuntu has the most variety, with 19 versions

in 1,497 files. In the table, “Others” includes Ama-

zon Linux, CentOS, Fedora, Oracle Linux Server,

and VMware Photon OS.

4. 3 Learning

We divided the dataset into training and testing

sets (80/20 split on the file level). We also per-

formed 4-fold cross-validation during training. The

number of epochs and the learning duration are

shown on the right side of Table 2. Hyperparam-

eters such as the activation function, optimization

function, and number of units in each layer were

optimized using Optuna.
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Table 2: Details of dataset and learning parameters

Distribution # of Dockerfiles # of versions # of epochs Duration

Alpine 1,105 (5.2%) 9 56 4h39m

Debian 17,011 (80.2%) 6 71 1d7h33m

Ubuntu 1,497 (7.0%) 19 24 5h12m

Others 1,577 (7.4%) - - -

4. 4 Experiment design

We compared the recommendation accuracy for

the three major distributions in the dataset, both

with and without model switching. For the case

without model switching, we created a generic

model that was trained with all Dockerfiles. Hump-

back uses multiple language models with model

switching, but this generic model used a single lan-

guage model. All 21,190 Dockerfiles, without their

distribution information, were used as training data

for the generic model. Two syntaxes were defined;

descriptions in the RUN instruction were defined as

Shell syntax and other descriptions were defined

as Docker syntax. There were three axes of com-

parison: presence or absence of data cleansing and

model switching, the Linux distribution, and the

syntax.

We first extracted 100 Dockerfiles from the

dataset and set the correct answer to a random po-

sition in each Dockerfile. Next, the contents from

the beginning of the file to just before the correct

answer (i.e., seeds) were given to the language mod-

els. Seeds that were extremely short or whose base

image could not be identified were excluded. Fi-

nally, Acc(k) and MRR were computed by check-

ing the candidate words against the correct answer.

Ten rounds of the above process were performed for

each comparison axis.

4. 5 Experiment results

4. 5. 1 Overview

Table 3 shows the average scores of Acc(1),

Acc(5), and MRR. “Gen.” refers to the generic

model (i.e., without model switching). “Hump.”

refers to Humpback (i.e., with model switching).

The numbers in bold indicate the best scores in a

given category.

Prediction with Humpback is more accurate for

almost all evaluation axes. Humpback achieved a

high average top-1 accuracy of 88.9%, (up to 97.8%

for Debian with Docker syntax). As described in

section 3. 3, the candidate words are presented in-

stantly. With its quickness and high accuracy,

Humpback can significantly improve productivity.

4. 5. 2 Accuracy improvement through

model switching

A comparison of the generic model with Hump-

back reveals that the top-1 accuracy is improved

by up to 26.0% (for Ubuntu with Docker syn-

tax). Prediction for Shell syntax was generally

more accurate, with an average improvement of

6.8%. Model switching allows Humpback to con-

sider the command differences between Linux dis-

tributions. Therefore, model switching is practi-

cal for all distributions in predicting Shell syntax,

which leads to improved accuracy. These results

show that model switching is useful for a code com-

pletion system for Dockerfiles.

4. 5. 3 Differences by distribution

Prediction for Debian is the most accurate for

both types of syntax. As shown in Table 2, the

number of Dockerfiles in Debian is 17,011, account-

ing for about 80% of the total. A large number of

training data improve learning. The highest accu-

racy was achieved for Debian because a large num-

ber of training data were for Debian.

Prediction for Ubuntu was more accurate than

that for Alpine Linux even though these distribu-

tions had very similar numbers of training data. It

is assumed that many of the descriptions in Dock-

erfiles for Ubuntu were similar to each other and

fewer similarities in the descriptions in Dockerfiles

for Alpine. As a result of more efficient training,

prediction for Ubuntu was more accurate than that

for Alpine Linux.

5 Conclusion

In this study, we proposed Humpback, a code

completion system for Dockerfiles. Humpback is

available online and can be used in a web browser.

We introduced model switching to overcome a

Docker-specific problem and improve the prediction

accuracy of Humpback. Evaluation experiments

showed that Humpback has a high average top-1

accuracy of 88.9% and that model switching im-

proves the accuracy of Humpback.

In future work, we will develop additional meth-

ods to further improve the accuracy of Humpback.

We will also compare Humpback with other code

completion systems.
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Table 3: Average scores in experiment (Gen.: generic model, Hump.: Humpback)

Distribution

Docker syntax Shell syntax

Top-1 accuracy Top-5 accuracy MRR Top-1 accuracy Top-5 accuracy MRR

Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump.

Alpine 79.9% 82.1% 86.1% 86.6% 0.827 0.843 75.8% 83.7% 84.9% 87.9% 0.798 0.856

Debian 97.4% 97.8% 98.4% 98.7% 0.979 0.982 95.7% 95.8% 98.8% 98.9% 0.971 0.972

Ubuntu 70.7% 86.7% 78.1% 89.6% 0.742 0.878 75.1% 87.1% 84.2% 92.0% 0.791 0.893
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