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Abstract

A code clone (in short, clone) is a code fragment that is identical or similar to other code frag-

ments in source code. The presence of clones has a negative impact on software maintenance. For

example, if a code fragment contains a bug, it is necessary to consider whether its clones should

be modified or not. Therefore, in software maintenance, clone detection techniques that automat-

ically detect clones from the target software and clone modification support for the developers

are important. We have conducted studies about clone detection and modification support and

proposed three techniques and systems. In this thesis, we report these studies.

First, we report a study about clone detection. Clones with a large number of edits, such

as inserting or deleting statements, are called large-variance clones. Large-variance clones have

a negative impact on software maintenance as well as general clones. Hence, it is necessary to

detect them as well as general clones. On the other hand, due to the recent large-scale software

development, techniques that can detect clones from large inputs in a scalable manner are required.

However, there is no technique or tool that achieves both large-variance clone detection and high

scalability. Consequently, we proposed a scalable large-variance clone detection technique and

introduced its implementation, called NIL. NIL is a token-based clone detector and uses an N-gram

representation of token sequences, an inverted index, and LCS to detect clones. Our experimental

results show that NIL has higher accuracy on large-variance clone detection than existing state-of-

the-art tools, and it is also good at scalability.

Second, we report a study about clone modification support. Clone modification support

for developers is important in software maintenance. An existing study proposed a system that

notifies developers of clone change information to support efficient clone modification. However,

the existing system is premised on one execution a day and is not designed to be triggered by

external factors except for time. Therefore, the system is difficult to be executed triggered by

development workflow. Consequently, we focused on a pull request (PR), a part of the development

workflow, and proposed CLIONE, a clone modification system aimed to integrate into PR-based

development. CLIONE detects code fragments that need modifications by tracking clones when

creating PRs, and CLIONE also notifies the developers of the code fragments as PR comments. We

evaluated CLIONE in five experiments and confirmed that CLIONE was useful for supporting both

PR-based development and developers.

Finally, we report a study about clone modification support, especially refactoring support.

An existing study proposed a technique to estimate the number of reducible lines of code (LoC)

by merging clones to support clone refactoring. However, the existing technique has two issues;

(1) it cannot correctly judge whether or not clones can be refactored, and (2) it cannot estimate

the number of reducible LoC about overlapping clones. Consequently, we proposed a technique to



measure the number of reducible LoC by merging clones more correctly. The proposed technique

automatically repeats (1) detecting clones, (2) merging clones, and (3) compiling and testing the

source code so that the technique can measure reducible LoC on clones that can be actually merged

with considering clone overlapping. Our experimental results showed the proposed technique was

able to measure the number of reducible LoC more correctly than the existing one.
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1 Background

Software development consists of the following five phases [1].

• Requirement phase

• Design phase

• Implementation phase

• Testing phase

• Maintenance phase

It has been said that the maintenance phase is the most expensive [2,3]. Maintenance of software

systems is defined as modifying a software product after its delivery to correct faults, improve the

performance or other attributes, or adapt the software to a modified environment [4,5]. According

to literature [6], approximately 80% of the total cost is spent on software maintenance. To modify

software products, modifying the source code is unavoidable. Therefore, in order to support source

code modification in software maintenance, many studies, such as automated program repair [7,8],

fault localization [9, 10], fault prediction [11, 12], refactoring [13, 14], and program slicing [15, 16],

have been conducted. In addition, the presence of code clones has been pointed out as one of the

factors that make software maintenance difficult [17].

A code clone (in short, clone) is a code fragment identical or similar to other code fragments

in source code. Clones are generated for various reasons, such as copy-and-paste operations.

If a code fragment contains a bug and needs a modification, we have to consider whether its

clones need the same modification or not. Hence, software containing many clones is difficult to

maintain [18]. Therefore, many studies about clones have been conducted to support software

maintenance. Among them, we considered that the following two research areas are particularly

important; clone detection and clone modification support.

Clone detection

It is not realistic to manually compare a large number of code fragments in software to judge

whether they are clones or not. Therefore, many studies to automatically detect clones from

the target software have been conducted [19–22]. Some clones are easy to detect, such as

simple copies, while others require special techniques for detection, such as code fragments

that are semantically similar but not syntactically similar. In addition, due to recent large-

scale software development, scalable clone detection techniques are required [23]. In software

maintenance, it is an important issue to propose techniques that can detect clones difficult

to detect in a scalable manner.

Clone modification support

Developers modify clones as needed, such as simultaneous clone modification [24] or clone

refactoring [25]. Simultaneous clone modification is modifying clones consistently at the same

time. Refactoring is improving the internal structure of software without changing its external

behavior [26]. Especially, clone refactoring is merging clones into a single module, such as a

method or a class. In software maintenance, it is an important issue to automatically detect
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clone changes and provide them for the developers to improve the developers’ efficiency of

these tasks. Besides, refactoring changes source code that is working fine, and there is a

possibility that refactoring itself introduces a new bug into the source code [27]. Therefore,

developers need a reasonable indicator to refactor source code. In software maintenance, it

is also an important issue to provide the indicator for the developers.

For these issues, we have conducted three studies. In this thesis, we report the results.

First, in Part II, we report a study about scalable large-variance clone detection. A large-

variance clone is a clone generated by inserting or deleting a large number of statements in

scattered places in a copy-and-pasted code fragment. Most of the existing tools are aimed at

detection strongly similar clones and suffer in large-variance clone detection. On the other hand,

the scalability of existing techniques that are specialized to detect large-variance clones is lim-

ited. Consequently, we proposed a scalable large-variance clone detection technique. The proposed

technique is token-based. Based on a feature of large-variance clones, the proposed technique de-

tects large-variance clones by measuring the similarity from the LCS between token sequences of

two code fragments. Moreover, based on another feature of large-variance clones, the proposed

technique also achieves scalable clone detection by identifying clone candidates using N-gram rep-

resentation of token sequences and an inverted index. We implemented the proposed technique as a

software tool, NIL. We compared NIL with four state-of-the-art clone detectors, including existing

large-variance clone detectors. The results show NIL has high accuracy on large-variance clone

detection, high scalability, and equivalent accuracy on general Type-1, Type-2, and Type-3 clone

detection.

Next, in Part III, we report a study about a clone modification support system aimed to in-

tegrate into pull request (in short, PR) based development [28]. An existing study proposed a

system, Clone Notifier, which supports developers to conduct simultaneous clone modification and

clone refactoring by regularly notifying them of clone change information of a target project [29].

However, Clone Notifier is premised on one execution a day and is not designed to be triggered by

external factors except for time [30,31]. Therefore, the system is difficult to be executed triggered

by development workflow, such as modifying source code or merging branches. Consequently, we

focused on a PR, a part of the development workflow, and proposed CLIONE, a clone modification

support system aimed to integrate into PR-based development. When developers create a PR,

CLIONE notifies code fragments that need modifications by tracking clones between the PR and

detecting clone changes. We evaluated the usefulness of CLIONE in five experiments. The experi-

mental results show that CLIONE is useful to support PR-based development and developers.

Finally, in Part IV, we report a study about an indicator for refactoring [32]. An existing

study proposed to use the number of reducible lines of code (in short, LoC) by merging clones

as an indicator to refactor clones [33]. In addition, the existing study proposed a technique to

estimate the number of the reducible LoC using JDeodorant [34], which judges whether clones can

be refactored or not, and a greedy algorithm that was proposed in an existing study [35]. However,

since JDeodorant, which is used in the existing technique, does not actually merge clones, it cannot

correctly judge whether clones can be refactored or not. Moreover, the greedy algorithm cannot

measure the reducible LoC from overlapped clones. Therefore, we considered that the existing

technique cannot estimate the number of the reducible LoC correctly. Consequently, we proposed

a technique to measure the number of the reducible LoC more correctly. The proposed technique

3



automatically repeats (1) detecting clones, (2) merging clones, and (3) compiling and testing the

source code. We experimented to apply the proposed technique to several Java projects. We

also compared the number of reducible LoC the proposed techniques measure with the existing

technique’s ones. As a result, we confirmed that the proposed technique was able to measure

reducible LoC more correctly than the existing technique.
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if (x > y) {
int tmp = y;
y = x;
x = tmp;

}

if (x > y) 
{ // swap

int tmp = y;
y = x;
x = tmp;

}

if (a > b) {
int temp = b;
b = a;
a = temp;

}

if (x > y) {
print("swap");
int tmp = y;
y = x;
x = tmp;

}

if (x > y) {
x ^= y;
y ^= x;
x ^= y;

}

Type-1 Type-2 Type-3 Type-4

Figure 1: Examples of clone types

2 Preliminaries

2.1 Definition

A code fragment is a consecutive segment of source code. It can be represented by the tuple

(file name, start line, end line). A code block is a code fragment within braces. This study treats

a function, which is a code block, as a clone detection unit, as done in previous studies [23,36,37].

Clones are code fragments identical or similar to other code fragments in source code. A pair

of similar code fragments is called a clone pair. Clones are classified based on the degree of the

similarity between them as follows.

Type-1 is an exact copy without modifications (except for white space and comments).

Type-2 is a syntactically identical copy; only variable, types, or function identifiers were changed.

Type-3 is a copy with further modifications; statements were changed, added, or removed.

Type-4 is a code fragment with not syntactical similarity but semantic similarity.

Figure 1 shows examples of clone types. Moreover, Type-3 clones are classified based on the degree

of the similarity after pretty-printing and identifier/literal normalization as follows.

Very Strongly Type-3 is a Type3 clone whose similarity is in range [90, 100).

Strongly Type-3 is a Type3 clone whose similarity is in range [70, 90).

Moderately Type-3 is a Type3 clone whose similarity is in range [50, 70).

Weakly Type-3 is a Type3 clone whose similarity is in range [0, 50).

5



String sequence(int start, int stop) {
StringBuilder b = new StringBuilder();
int i = start;
while (i <= stop) {
if (i > start) b.append(',');
b.append(i);
i++;

}
return b.toString();

}

String sequence(int start, int stop) {
StringBuilder b = new StringBuilder();
for (int i = start; i<= stop; i++) {
if (i > start) b.append(',');
b.append(i);

}
return b.toString();

}

String sequence(int start, int stop) {
StringBuilder b = new StringBuilder();
String sep = ',';
for (int i = start; i<= stop; i++) {
if (i > start) b.append(sep);
b.append(i);

}
return b.toString();

}

String sequence(int start, int stop) {
String sep = ',';
String result = Integer.toString(start);
for (int i = start + 1; ; i++) {
if (i > start) b.append(sep);
result = String.join(sep, result,

Integer.toString(i));
}
return result;

}

String sequence(int b, int e, String s) {
String result = Integer.toString(b);
for (int n = b + 1; ; n++) {
if (e < n) break;
result = String.join(sep, result,

Integer.toString(n));
}
return result;

}

Very Strongly Type-3

Strongly Type-3

Moderately Type-3

Weakly Type-3

Figure 2: Examples of Type-3 clones
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Figure 2 shows examples of these Type-3 clones.

The minimum length of clones is the minimum number of lines that a code fragment must be

to be treated as a clone. It is often set to six lines or 50 tokens [19].

2.2 Causes of clone creation

Clones can be created or introduced in the following situations.

Copy-and-paste operations This is the most prevalent situation in which clones are created.

Reusing code by copy-and-paste operations is common in software development because it is

quite easy and enables us to develop software faster.

Stylized processing Processing used frequently (e.g., calculations of income tax, insertions in

queues, and access to data structures) may cause code duplications.

Lack of suitable functions Developers may have to write similar processes with similar algo-

rithms if they use programming languages that do not have abstract data types or local

variables.

Performance improvement Developers can intentionally introduce code duplication to improve

the performance of software systems if in-line expansion is not supported.

Automatically generated code Code generation tools automatically create code based on styl-

ized code. As a result, if we use code generation tools to handle similar processes, the tools

may generate similar code fragments.

Handling multiple platforms Software systems that can handle multiple operating systems or

CPUs tend to include many clones in each platform’s process handling.

Accident Different developers may write similar code accidentally. However, it is rare the amount

of similar code generated accidentally becomes high.

2.3 Clone detection techniques

Clones have a negative impact on software maintenance. Many clone detection techniques and

tools have been proposed and developed. Clone detection techniques can be categorized into the

following categories.

Line-based techniques

Line-based techniques detect clones by comparing every line of code fragments as a string.

They regard multiple consecutive lines that exceed a specified threshold as clones. Line-based

techniques can detect clones quickly compared with other detection techniques because they

do not require any preprocessing of the source code. However, they cannot detect clones that

have different coding styles.

The techniques of Johnson [38] and Ducasse [39] are well-known line-based techniques. Their

techniques compare every line of code after removing white space, tabs, and line breaks.

Thus, they detect clones that have different coding styles and are language-independent.

Simian is one of the most famous and commonly used line-based clone detectors [40]. Simian
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can handle about 20 programming languages (e.g., Java, C, and C++) and quickly detect

clones.

Token-based techniques

First, token-based techniques transform source code into a token sequence. Then, they de-

tect common sub-sequences of the tokens are clones. Compared to line-based techniques,

token-based techniques are robust for code formatting. The detection speed of token-based

techniques is inferior to that of line-based techniques. However, superior to the tree-based

or graph-based techniques discussed below.

Kamiya et al. developed a token-based clone detector, named CCFinder [41], that is well-

known and has been widely used by many developers. It replaces user-defined identifiers

(e.g., method or variable names) with specific tokens. By preprocessing, CCFinder can detect

Type-2 clones.

Li developed a token-based clone detector, named CP-Miner [42]. First, lexical and syntax

analyses are performed on the source code. User-defined identifiers are replaced with specific

tokens, as in CCFinder. The major difference between CP-Miner and CCFinder is the detection

algorithms. In CP-Miner, hash values are calculated from every statement, and then a fre-

quent pattern mining algorithm [43] is applied for detecting clones. In the frequent pattern

mining algorithm, the hash values do not have to be consecutive. Thus, CP-Miner can detect

Type-3 clones.

Tree-based techniques

In tree-based techniques, source code is transformed into a tree representation. Abstract

syntax tree (AST) is one of the well-known tree representations. Tree-based techniques re-

gard common sub-trees as clones, and thus these techniques also robust for code formatting.

However, they have the disadvantages of requiring for detecting clones than do line-based

and token-based techniques.

Baxter developed a tree-based clone detector, named CloneDR [44], which calculates various

metrics based on ASTs and then detects clones by comparing metrics. Thus, CloneDR de-

tects clones quickly in large software systems. CloneDR can also handle a lot of programming

languages.

Koschke’s technique [45] and Jiang’s technique [46] are also tree-based approaches. In

Koschke’s technique, ASTs compared with a suffix tree algorithm to reduce the detection

speed. Jiang’s detector, named DECKARD, uses a locality-sensitive hashing algorithm [47]

to detect clones. With the algorithm, DECKARD can detect Type-3 clones.

Graph-based techniques

In graph-based techniques, source code is transformed into a graph representation. Program

dependence graph (PDG), one of the well-known graph representations, has data-dependence

edges and control-dependence edges for each source code element. Graph-based techniques

regard isomorphic sub-graph as clones. Because PDGs require a semantic analysis for their

creation, these approaches require much more cost than other detection techniques. However,

these approaches can detect clones with some differences that have no impact on the pro-

gram behavior. Komondoor proposed the initial graph-based technique [48]. Komondoor’s

technique uses program slicing [15] to find isomorphic sub-graphs.

8



Krinke’s technique [49] and Higo’s technique [50] are also classified as graph-based techniques.

Both of these techniques are designed to reduce detection cost. Krinke’s technique sets the

limit of the search range for finding isomorphic sub-graphs. Higo proposed a technique that

aggregates nodes in PDGs under some conditions. Moreover, he introduced a new dependence

edge named execution dependence edge for PDGs. By introducing the execution dependence

edge, Higo’s technique successfully detected clones that other graph-based techniques could

not detect.

Text-based techniques

Text-based technique firstly normalizes the target source code and detects clones by compar-

ing code fragments, such as methods or code blocks in the normalized source code.

NiCad [51] is a well-known text-based clone detection tool. First, it normalizes source code

using TXL [52] and then detects clones by comparing code fragments based on Longest Com-

mon Subsequence algorithm. Moreover, text-based technique is used for detection clones

generated by inserting or deleting a large number of statements in a copy-and-pasted code

fragment. CCAligner [36] and LVMapper [37] also use TXL and detect such clones based on

their own algorithms.

2.4 Large-gap clone

A large-gap clone is a clone generated by inserting or deleting a large number of statements

in one place in a copy-and-pasted code fragment. Figure 3 shows an example of large-gap clones.

In this example, a 10-line if-statement is inserted into Clone A (lines 4–13 of Clone B). Wang et

al. [36] pointed out that existing clone detectors are incapable of large-gap clone detection because

most target to the detection of near-miss clones. Wang et al. defined large-gap clone as follows.

Consider two code blocks c1 and c2 with LOC values of L1 and L2, respectively, where L1 ≤ L2.

Let λ = Li/Lj (i.e., λ is the ratio of the code lengths of two code blocks). If c1 and c2 are Type-3

clones and the corresponding λ ≤ 0.7, then these clones are large-gap clones. The clone pair shown

in Figure 3 fits the definition of large-gap clones because the ratio of the code lengths of Clone A

and Clone B is 12/22 ≃ 0.55 < 0.7.

Wang et al. proposed CCAligner [36], a large-gap clone detector. CCAligner detects clones using

a code window (a code fragment composed of k consecutive lines in a code block). First, CCAligner

transforms code blocks into code windows. Then, it identifies clone candidates as pairs of code

blocks that share at least one code window with considering e edit distance. Finally, it verifies

clone candidates based on their similarity, which is calculated as follows:

sim(c1, c2) =
|Wc1 ∩Wc2 |

min(|Wc1 |, |Wc2 |)

where c1 and c2 are two code blocks, and Wc1 and Wc2 are the corresponding sets of code windows,

respectively.

2.5 Large-variance clone

A large-variance clone is a clone generated by inserting or deleting a large number of statements

in various places in a copy-and-pasted code fragment. Figure 12 shows an example of large-variance

9



1 protected int run(Commandline cmd) {
2   try {
3     Execute exe = new Execute(new LogStreamHandler(this,

Project.MSG_INFO, Project.MSG_WARN);
4     exe.setAntRun(getProject());
5     exe.setWorkingDirectory(getProject().getBaseDir());
6     exe.setCommandline(cmd.getCommandline);
7     exe.setVMLauncher(false);
8     return exe.execute();
9   } catch (java.io.IOException e) {

10     throw new BuildException(e, getLocation());
11   }
12 }

(a) Clone A

1 protected int run(Commandline cmd) { 
2   try {
3     Execute exe = new Execute(new LogStreamHandler(this,

Project.MSG_INFO, Project.MSG_WARN);
4     if (serverPath != null) {
5       String[] env = exe.getEnvironment();
6       if (env == null) {
7         env = new String[0];
8       }
9       String[] newEnv = new String[env.length + 1];

10       System.arrayCopy(env, 0, newEnv, 0, env.length);
11       newEnv[env.length] = "SSDIR=" + serverPath;
12       exe.setEnvironment(newEnv);
13     }
14     exe.setAntRun(getProject());
15     exe.setWorkingDirectory(getProject().getBaseDir());
16     exe.setCommandline(cmd.getCommandline);
17     exe.setVMLauncher(false);
18     return exe.execute();
19   } catch (java.io.IOException e) {
20     throw new BuildException(e, getLocation());
21   }
22 }

(b) Clone B

Figure 3: Example of large-gap clones
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1 protected String getPrompt(InputRequest request) {
2   String prompt = request.getPrompt();
3   if (request instanceof MultipleChoiceInputRequest) {
4     StringBuffer sb = new StringBuffer(prompt);
5     sb.append("(");
6     Enumeration e = ((MultipleChoiceInputRequest) request)

.getChoices().elements();
7     boolean first = true;
8     while (e.hasMoreElements()) {
9       if (!first) {
10         sb.append(",");
11       }
12       sb.append(e.nextElement());
13       first = false;
14     }
15     sb.append(")");
16     prompt = sb.toString();
17   }
18   return prompt;
19 }

(a) Clone A

1 protected String getPrompt(InputRequest request) {
2   String prompt = request.getPrompt();
3   String def = request.getDefaultValue();
4   if (request instanceOf MultipleInputChoiceRequest) {
5     StringBuilder sb = new StringBuilder(prompt).append("(");
6     boolean first = true;
7     for (String next : ((MultipleInputChoiceRequest) request)

.getChoices()) {
8       if (!first) {
9         sb.append(",");
10       }
11       if (next.equals(def)) {
12         sb.append('|');
13       }
14       sb.append(next);
15       if (next.equals(def)) {
16         ab.append('|');
17       }
18       first = false;
19     }
20     sb.append(")");
21     return sb.toString();
22   }
23   else if (def != null) {
24     return prompt + "[" + def + "]";
25   }
26   else {
27     return prompt;
28   }
29 }

(b) Clone B

Figure 4: Example of large-variance clones
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Large-gap clones
Large-variance clones

Type-3 clones

CCAligner

LVMapper
&

NIL

All clones

Figure 5: Relation among clone types and target clone types for several tools

clones. In this example, statements have been inserted into and deleted from various places in Clone

A to create Clone B. Wu et al. [37] pointed out that CCAligner targets the detection of large-gap

clones, making it incapable of large-variance clone detection. Wu et al. defined large-variance

clones as clones whose code length ratio is less than 0.7. This means that large-gap clones are a

special case of large-variance clones. They proposed LVMapper, a large-variance clone detector.

Figure 5 shows that the relation among clone types and the clone types targeted by CCAligner,

LVMapper, and NIL. CCAligner targets large-gap clones, whereas LVMapper and NIL target large-

variance clones, which include large-gap clones.

LVMapper detects clones using code windows, just like CCAligner. Its clone detection has

three phases, namely the locating, filtering and verifying phases. In the locating phase, LVMapper

identifies pairs of code blocks that share at least one code window as clone candidates. Then, in

the filtering phase, it calculates the proportions of common code windows for each clone candidate

and removes clone candidates whose proportions are lower than filtering threshold θ. Finally, in

the verifying phase, it verifies each clone candidate based on similarity measured using a common

subsequence of lines between each clone candidate’s code block pair.

2.6 Clone Notifier

Tokui et al. developed a tool, Clone Notifier, which supports developers to modify clones [29].

Clone Notifier takes two versions of a project as inputs, and based on the changes of the source

code between the two versions, it classifies all clone sets detected in each version under following

four categories.

Stable Clone set whose all clones have not been changed.

Changed Clone set whose some or all clones have been changed between the versions.

New Clone set whose all clones were added in the new version.

Deleted Clone set whose all clones were deleted in the old version.
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…
10
11
12 void main() {
13  int a = 0; 
14  String c = "";
15 }
…

…
10
11 void main() { 
12  int a = 1; 
13  String c = "";
14  char e = '';
15 }
…

Old version New version

𝑜𝑠 = 12 − 1 = 11

𝑜𝑒 = 15 − 2 = 13

𝑛𝑠 = 11
𝑛𝑒 = 15 − 2 = 13

Figure 6: Example of clone tracking

First, Clone Notifier detects clones from each revision by using existing clone detectors [23,41,53].

Next, it tracks detected clones using location overlaping function, which an existing study [54]

proposed.

Location overlapping function measures how much two code fragments cf1 and cf2 overlap

each other (0 ≤ LO(cf1, cf2) ≤ 1). Clone Notifier uses the difference between the same file in each

version, without the added and deleted lines. It computes the relative proportion of an overlapped

region between cf1 and the calibrated cf2.

LO(cf1, cf2) =
min(ne, oe)−max(ns, os)

ne − ns
(1)

where cf1 in the old version spans from the line os to the line oe, and the calibrated location of

cf2 in the new version spans from the line ns to the line ne. If the location overlapping between

the two clones is 0.3 or more, Clone Notifier tracks from the clone at the old version to the clone

at the new version.

Figure 6 shows an example of clone tracking. In the figure, main method is tracked. In the

old version, there are one and two deleted lines up to the start and end lines of main method,

respectively. In the new version, there are zero and two added lines up to the start and end lines

of main method, respectively. Therefore, based on os = 12 − 1 = 11, oe = 15 − 2 = 13, ns = 11,

and ne = 15 − 2 = 13, the result of location overlapping filtering is 1, and the method tracking

succeeds.

Finally, Clone Notifier classifies clone sets under four categories (i.e., Stable, Changed, Added,

and Deleted) from the results of clone tracking. Clone Notifier is designed to be premised on regular

execution (e.g., once a day) [30].

2.7 Pull request based development

PR-based development is a development process using pull request (PR), which is one of the

features of GitHub. PR is a feature that notifies developers of development information, such
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void printTaxi(amount) {
String name = getTaxiName();

print("name: " + name);
print("amount: " + amount);

}

void printBus(amount){
String name = getBusName();

print("name: " + name);
print("amount: " + amount);

}

void printTaxi(amount) {
String name = getTaxiName();
printFare(name, amount);

}

void printBus(amount){
String name = getBusName();
printFare(name, amount);

}

void printFare(name, amount){
print("name: " + name);
print("amount: " + amount);

}

Figure 7: Example of extract method

as source code changes before a branch is merged into another one. In PR-based development,

the developers make source code edits, such as adding features, refactoring, bug fix on not the

main branch but topic branches. Once the assigned work is done, the developer creates a PR

and notify other developers of the change information, and if the changes have no problems, the

topic branch is merged to the main branch. PR-based development is widely adopted by OSS

development [55–57].

2.8 Clone refactoring

Refactoring is known as a promising technique to improve the internal structure of source code

without changing its external behavior [26]. Duplicated code (clones) is one of the typical bad

smells (code to be refactored). There are a variety of ways to refactor (merge) clones [25, 58, 59].

Extract Method refactoring is a simple yet well-known technique to remove clones. The original

purpose of this refactoring pattern simplifies a long and/or complicated method by extracting a

part of it as a new method. However, by applying Extract Method refactoring to clones, they can

be removed. Figure 7 shows a simple example of Extract Method refactoring to two duplicated

code fragments. Clones can be merged by extracting a clone set as a method. As a result, the

number of potential bugs ans LoC can be reduced.

2.9 Clone overlapping

In this thesis, when two or more clones share one or more tokens, we say that “the clones are

overlapped with each other”. Figure 8(a) shows an example of overlapped clones. In this figure,

clone A includes clone B. In clone refactoring, it may not be possible to refactor both of two

clones overlapped with each other at the same time. Thus, when clones are overlapped like this

figure, we need to do special care to estimate reducible LoC. For example, the existing technique

in literature [35] estimates reducible LoC in the case of removing clone A and in case of removing

clone B separately, and then remove only either A or B, whose reducible LoC is larger than the

other. Literature [35] also proposes a more aggressive approach, which is shown in Figure 8(c).
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File A File B File C

Clone A

Clone B

(a) Overlapped clones

File A File B File C

Clone A

Clone B

(b) Merging either one

File A File B File C

Clone A'

Clone B

Clone C
(c) Dividing clones

Figure 8: Clone overlapping

In this approach, the overlapped parts and the non-overlapped parts are separately considered for

refactoring.

2.10 Calculating reducible LoC

Herein, we introduce the definition of reducible LoC, which is proposed in the existing tech-

nique [35]. Herein, we assume that a clone set includes n code fragments, and each code fragment

consists of Csize LoC. In a refactoring of merging the clone set, each clone is replaced with a method

invocation, which is usually 1-line code. Consequently, reducible LoC Call can be represented with

the following formula.

Call = n ∗ Csize − n (2)

In the case of Java, there is a 1-line code of method signature and open bracket “{” before a

method body, and there is another 1-line code of close bracket “}”. Thus, the LoC of a method

becomes LoC of the method body plus two. An extracted code fragment (a clone) becomes a
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body of the new method. Consequently, LoC of the extracted method can be represented with the

following formula.

M = Csize + 2 (3)

By using the two formula 2 and 3, the LoC difference between the original code and refactored

code can be represented with the following formula.

S = Call −M = (n− 1) ∗ Csize − n− 2 (4)

In the existing technique [33], the above formula is used to estimate reducible LoC by removing

clones.
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Part II

Scalable Large-Variance Clone Detection
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1 Background

A code clone (in short, clone) is a code fragment that is identical or similar to other code

fragments in source code. Clones are generated by copying, pasting, and modifying code fragments

for reuse [20, 60]. Clones are a major problem in software maintenance because they lead to bug

propagation. Therefore, clone detection techniques, which automatically detect clones in the target

codebase, are essential. Many clone detection techniques have been proposed [19, 21, 61], and

applied in applications [62], such as refactoring [25, 58, 63, 64], debugging [42, 65, 66], and mining

software repositories [67–69].

It is important for clone detection techniques to detect clones that have been heavily edited. A

clone generated by inserting or deleting a large number of statements in one place in a copy-and-

pasted code fragment is called a large-gap clone. Such clones are common in software development

and should thus be detected along with general clones. Wang et al. pointed out that it is difficult

for existing clone detectors to detect large-gap clones; they proposed a technique for detecting

such clones and presented its implementation, called CCAligner [36]. Wu et al. pointed out that

CCAligner targets only clones in which statement insertion or deletion is made in a single place

and cannot detect clones in which modifications are scattered [37]. They called the latter type of

clone large-variance clones and proposed LVMapper, a clone detector for large-variance clones.

It is also important for clone detection techniques to be scalable. Highly scalable clone detec-

tors are required for analyzing large-scale projects or source files in an inter-project repository.

Many scalable clone detectors have been proposed [23,70,71]. To achieve scalable clone detection,

SourcererCC [23] and CloneWorks [70] use heuristics to reduce the number of code block comparisons

needed to detect clones, and SAGA [71] uses a GPU to parallelize its clone detection process.

However, clone detectors that can detect clones with a large number of edits fail for large

inputs [36] or require a long time to detect clones [37]. Scalable clone detectors target only identical

or strongly similar clones (near-miss clones). They are incapable of detecting large-variance clones,

in which many statements have been inserted or deleted. Therefore, the scalable detection of large-

variance clones is challenging.

In this part, we propose a scalable technique for detecting large-variance clones and describe

its implementation, called NIL1, which uses an N-gram representation, an inverted index, and the

longest common subsequence (LCS). NIL is a token-based clone detector. One of the features of

large-variance clones is that the order of many tokens is preserved (i.e., the common subsequence

between token sequences of large-variance clones is long). Hence, to detect large-variance clones,

NIL measures the similarity between the token sequences of two code fragments based on the

LCS. In addition, large-variance clones share many consecutive tokens. Hence, for scalable clone

detection, NIL uses an N-gram representation of token sequences and an inverted index to reduce

the number of code block comparisons needed to detect clones. First, NIL transforms code blocks

extracted from source files into token sequences and creates an inverted index from the N-gram

representation of the token sequences. Next, it identifies the clone candidates for each code block

using the code block and the inverted index. Finally, it verifies the clone candidates by measuring

the similarity between the code block and the clone candidates.

We evaluate NIL’s (1) large-variance clone detection accuracy, (2) general Type-1, Type-2,

1A clone detector using N-gram, Inverted index, and LCS.
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and Type-3 clone detection accuracy, and (3) scalability. We compared NIL with existing state-

of-the-art tools, namely LVMapper [37], CCAligner [36], SourcererCC [23], and NiCad [51]. The

experimental results show that NIL has a high precision of 87% in large-variance clone detection.

It also has a high recall of 100%, as determined in our evaluation of large-variance clone detection

using a mutation technique. In general clone detection, the accuracy of NIL is equivalent to that

of the existing tools. In addition, we confirmed that NIL has high scalability; it can detect clones

faster than the existing tools for large inputs (codebases with 250 MLOC).

The main contributions of this part are as follows.

1. We proposed a scalable technique for detecting large-variance clones. The proposed technique

identifies clone candidates efficiently by using an N-gram representation of token sequences

and an inverted index, and verifies clone candidates precisely by measuring the similarity

between token sequences based on the LCS.

2. We implemented the proposed technique as a tool, called NIL. The executable file is available

at https://zenodo.org/record/4492665.

3. We evaluated the usefulness of NIL through three experiments. The results show that NIL has

high large-variance clone detection accuracy, high scalability, and equivalent general clone

detection accuracy compared to that of existing state-of-the-art tools. We have published

our experiment data to facilitate replication studies.
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Figure 9: Overview of NIL

2 Approach

Figure 9 shows an overview of the proposed technique. The input is a set of source code files,

and the output is the clone pairs in the source code. In the proposed technique, large-variance

clones are detected based on the similarity between token sequences based on the LCS, taking

advantage of the fact that the order of many tokens in a large-variance clone pair is preserved. In

addition, large-variance clones share many consecutive tokens. Hence, to achieve scalable large-

variance clone detection, the proposed technique reduces the number of code block comparisons by

using an N-gram representation of token sequences and an inverted index. The proposed technique

transforms code blocks in source code into token sequences in the Preprocessing phase and detects

clones by comparing the token sequences in the Clone detection phase. In this part, we implemented

the proposed technique as a tool, called NIL. NIL is written in the Kotlin language and currently

targets only Java source code. The following subsections describe the Preprocessing and Clone

detection phases.

2.1 Preprocessing

In the Preprocessing phase, NIL extracts code blocks from the target source code and trans-

forms them into token sequences. NIL does not perform lexical analysis but simply divide each

code block’s text based on symbols (e.g., “+”, “−”, or braces), white spaces, or newlines, as done

by SourcererCC. For example, when the code block shown in figure 4(a) is transformed into the

token sequence, protected, String, getPrompt, InputRequest, request, .... With this trans-

formation, lexical analyzers for other languages do not need to be implemented to extend NIL. The

token sequence transformation is fast because lexical analysis is not necessary. In addition, NIL

has a relatively low rate of false positives because it does not normalize identifiers, such as variable

and function names. However, it may not detect clones whose identifiers have been changed (i.e.,

Type-2 clones). We discuss the impact of the lack of identifier normalization in Section 3.

Next, NIL generates N-grams from each token sequence. An N-gram is a chunk of consecutive

N tokens [72]. Figure 10 shows an example of generating 3-grams from the code block shown
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protected String getPrompt(InputRequest request) { Source code

protected String getPrompt InputRequest request Token sequence

protected String getPrompt

protected String getPrompt InputRequest

protected getPrompt InputRequest request

3-grams

Split

Generate 3-grams

Figure 10: Example of generating 3-grams

in figure 4(a). In this example, three 3-grams are generated from the five tokens of on the first

line in the code block. Even though large-variance clones include many modifications (statement

insertions and deletions), many tokens other than the statements match consecutively (i.e., many

N-grams match). Therefore, using N-grams is effective for scalable large-variance clone detection.

Then, NIL creates an inverted index from the generated N-grams. An inverted index is an

information retrieval technology that allows the fast retrieval of documents that contains a word

given as a query [73]. It is often used in clone detection techniques [74]. NIL uses a dictionary whose

keys are the hash values of N-grams, and values are the code blocks containing the corresponding

N-gram as an inverted index. All code blocks containing an N-gram can be quickly obtained by

looking up the hash value of the N-gram in the inverted index. Therefore, a pair of code blocks

that share an N-gram (i.e., the pair is possibly a large-variance clone pair) can be obtained quickly

using the inverted index.

However, an inverted index consumes a lot of memory. Hence, creating an inverted index from

all code blocks may lead to large memory consumption. To avoid this, we apply partial inverted

indexes [70]. Code blocks are divided into several groups and an inverted index is created for

each group (i.e., a partial inverted index), instead of creating a single inverted index for all code

blocks. Figure 11 shows the concept of partial inverted indexes. First, code blocks extracted from

source code are divided into n groups (Step 1), where n is set to a value such that the memory

consumption of a partial inverted index is manageable. Next, an inverted index is created from

one group of code blocks (Step 2). Based on the partial inverted index created in Step 2 and all

code blocks, clone pairs between the code blocks in the group and all code blocks are detected in

Step 3 (the clone detection process is described in the following Section 2.2). Steps 2 and 3 are

performed for each group of code blocks.

2.2 Clone detection

After the Preprocessing phase, NIL performs Clone detection using the inverted index created in

the Preprocessing phase and all code blocks. Clone detection is divided into three phases, namely
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Figure 11: Concept of partial inverted indexes

location, filtration, and verification, as done by LVMapper [37]. First, NIL selects a code block from

all code blocks prepared in the Preprocessing phase as the target code block. Then, in the location

and filtration phases, NIL identifies the clone candidates of the target code block using an N-gram

and the inverted index. Next, in the verification phase, NIL verifies that the target code block

and the clone candidates are clone pairs by calculating the LCS. These phases are performed for

each code block to detect all clone pairs in the target source code. Algorithm 1 shows the Clone

detection algorithm. The three phases of Clone detection are described in detail below.

2.2.1 Location phase

In the location phase, NIL collects the clone candidates of the target code block using the

inverted index. Lines 3–11 in Algorithm 1 are the location phase.

First, NIL generates N-grams from the token sequence of the target code block. M−N+1 N-

grams are generated from a token sequence with length M . Next, a hash value is calculated for

each N-gram. This hash value is used as a query when looking up values in the inverted index.

Finally, NIL applies the hash values to the inverted index and collects code blocks that contain

the N-gram whose hash value is the same as the given hash value. The obtained code blocks are

referred to as the clone candidates of the target code block.
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2.2.2 Filtration phase

In the filtration phase, NIL removes code blocks that unlikely to be clones from the clone

candidates collected in the location phase. Lines 13–22 in Algorithm 1 are the filtration phase. It

is necessary to reduce the number of clone candidates for scalable and fast clone detection because

NIL performs the LCS calculation, which is a time-consuming process, in the verification phase.

NIL filters clone candidates based on a feature of large-variance clones.

As described in Section 2.1, the two code blocks of a large-variance clone pair share a certain

number of N-grams. Hence, if two code blocks share few N-grams, the pair is unlikely to be a

large-variance clone pair. Based on this feature, NIL calculates filtration sim, defined below,

between the target code block and each clone candidate.

filtration sim(c1, c2) =
common ngrams(c1, c2)

min(ngrams(c1), ngrams(c2))

common ngrams(c1, c2) = |ngrams(c1) ∩ ngrams(c2)|

where c1 and c2 are two code blocks with lengths |c1| and |c2|, respectively. ngrams(c1) and

ngrams(c2) are the numbers of N-grams generated from code blocks c1 and c2, respectively. Be-

cause of the large number of statement insertions and deletions in large-variance clones, the two

code blocks may have significantly different token sequence lengths. We usemin in the denominator

so that filtration sim can be properly calculated even such cases. NIL removes clone candidates

whose filtration sim is less than filtration threshold θ.

2.2.3 Verification phase

In the verification phase, NIL checks whether the target code block and each clone candidate

are a true large-variance clone pair. Lines 24–32 in Algorithm 1 are the verification phase. As

mentioned in Section 2.2.2, one of the features of large-variance clones is that the common subse-

quence between token sequences of large-variance clones is long even if there are a large number

of insertions and deletions. Therefore, NIL calculates the LCS between the target code block and

each clone candidate and measures the similarity of the pair based on the length of the LCS. The

similarity function verification sim(c1, c2) is expressed as following

verification sim(c1, c2) =
lcs(c1, c2)

min(|c1|, |c2|)

where c1 and c2 are token sequences with lengths |c1| and |c2|, respectively, and lcs(c1, c2) is the

length of the LCS between c1 and c2.

We use min as the denominator of the similarity function to detect large-variance clones, as

done in the studies on CCAligner [36] and LVMapper [37] even if the lengths of the token sequences

differ greatly.

Other clone detectors [37, 51] also use the LCS to measure similarity. However, they calculate

line-based LCS whereas NIL calculates token-based LCS. In general, the token sequence of a code

block is longer than its line sequence. The time complexity of a method for LCS calculation based
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on dynamic programming is O(|A| × |B|), indicating a very long computation time for a large

input size [75]. To reduce time complexity, NIL uses the Hunt-Szymanski algorithm [76]. With

this algorithm, NIL can calculate the LCS in O(r log |A| + |B| log |B|), where A and B are token

sequences (|A| ≤ |B|) and r is the number of pairs of common tokens between A and B.
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Algorithm 1: Clone Detection

Input: C is a list of tokenized code blocks {c1, c2, . . . , cn}, Inverted Index I of C, N for size of

N-gram, θ for filtering threshold, δ for verifying threshold

Output: All clone pairs CP

1: CP ← ϕ;

2: for all each ci in C do

3: // Location phase

4: // CC represents clone candidates

5: CC ← ϕ

6: for j = 1, 2, . . . , (ci.len−N + 1) do

7: // ci[j] is j-th token in ci’s token sequence

8: n gram = concat(ci[j], ci[j + 1], . . . , ci[j +N − 1]);

9: key = hash(n gram);

10: // get is a function that returns values to which a given key is mapped in a given

dictionary

11: CC = CC ∪ get(I, key);

12: end for

13:

14: // Filtration phase

15: for all each ccj in CC do

16: /* common ngrams is a function

that computes the number of common N-grams between two given code blocks */

17: cn = common ngrams(ci, ccj);

18: m = min(ci.len, ccj .len);

19: filtration sim = cn/(m−N + 1);

20: if filtration sim < θ then

21: CC = CC \ {ccj};
22: end if

23: end for

24:

25: // Verification phase

26: for all each ccj in CC do

27: /* lcs is a function that computes the length of the LCS between token sequences of two

given code blocks */

28: lcs len = lcs(ci, ccj);

29: verification sim = lcs len/min(ci.len, ccj .len);

30: if verification sim ≥ δ then

31: CP = CP ∪ (ci, ccj);

32: end if

33: end for

34: end for

35: return CP ;
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3 Evaluation

We evaluated NIL in terms of

• large-variance clone detection accuracy,

• general clone detection accuracy, and

• scalability.

In the following subsections, we first optimize the N-gram size based on a balance between

recall and execution time. Next, we evaluate large-variance clone detection accuracy in terms

of precision and recall. Then, we evaluate general clone detection using two commonly used

benchmarks. Finally, we evaluate scalability by measuring execution time for various input sizes.

Additionally, we compare the above results to those for four state-of-the-art tools [23, 36, 37, 51].

Table 1 shows these clone detectors and their settings. These settings were taken from the prior

studies [23, 36, 37]. Note that the threshold δ for verification of LVMapper is variable and that δ

takes the following values depending on the number of the lines of clone l.

δ =


0.7 if 6 < l ≤ 10,

1− 0.03× l if 10 < l ≤ 20,

0.4 if 20 < l

3.1 Summary

First, we summarize the results of this evaluation. We found that NIL has a high precision

of 87% and a high recall of 100% in large-variance clone detection. These values are the highest

among the tested large-variance clone detectors [36, 37]. In general Type-1, Type-2, and Type-

3 clone detection, NIL’s accuracy is equivalent to that of the existing clone detectors, including

large-variance clone detectors, and its precision is higher than that of large-variance clone detectors.

Moreover, we confirmed that NIL is the fastest at detecting clones in large codebases (1–250 MLOC)

among the tested clone detectors.

Table 1: Settings for various clone detectors

Tool Settings

Min length 6 lines, window size k = 3,

LVMapper filtering threshold θ = 0.1,

verification threshold δ is dynamic.

CCAligner
Min length 6 lines, window size q = 6,

edit distance e = 1, min 60% similarity.

SourcererCC Min length 6 lines, min 70% similarity.

Min length 6 lines, max length 20,000 lines,

NiCad blind renaming, identifier abstraction,

min 70% similarity.

26



3.2 Parameter setting

NIL requires three parameters, namely N for N-grams, filtration threshold θ, and verification

threshold δ. We set δ to 0.7, which is often used in clone detectors [23, 51]. We set θ to 0.1, as

done for LVMapper. N must be carefully selected because it has a large impact on performance

(e.g., execution time and clone detection accuracy). If N is set to a too small value, the recall

of clone detection will increase because more code blocks will share the same N-grams. However,

because more code blocks are identified as clone candidates in the location phase, the number of

comparison targets in the filtration and verification phases increases, resulting in a longer execution

time. Therefore, to optimize the N , we executed NIL with N =1–9 and measured the execution

time and clone detection recall for each N value. We used BigCloneEval [77] to measure recall.

BigCloneEval automatically measures the recall of clone detectors using BigCloneBench [78].

Table 2 shows the results for each N value. For N < 5, an increase in N significantly reduces

the execution time without lowering recall by more than one point compared to when N = 1. For

N =5 and 6, execution time decreases but recall also decreases. For N > 6, execution time does

not significantly decrease. Therefore, considering the balance between execution time and recall,

N=5 is the optimal value.
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3.3 Large-variance clone detection

We evaluated the large-variance clone detection accuracy of NIL in terms of precision and recall

and compared the results to those for existing large-variance and large-gap clone detectors, namely

CCAligner and LVMapper.

3.3.1 Precision

Precision is the ratio of correct clones detected to all clones detected. A clone detector with

higher precision provides more accurate results. In general, precision is measured via a manual

validation of the clones detected by the target tool. In this part, we used Ant and Maven, which

were used in the prior studies on CCAligner [36] and LVMapper [37] to measure precision. JDK1.2.2

and OpenNLP, also used in the above studies, were not used here because we were not able to

find the source code for JDK1.2.2, which has been end-of-lifed and we considered OpenNLP to

be unsuitable for manual validation because it is a machine learning library whose source code

is difficult to read (e.g., it includes repetitive array manipulation code). We used the following

procedure to measure the precision of each tool:

1. we input the target source code into each tool,

2. we randomly selected 100 large-variance clone pairs with more than 10 lines for each tool

and target system, and

3. we manually confirmed whether the clone pairs were correct.

To remove bias in the manual validation, the detected large-variance clone pairs of a given tool

were validated without knowledge of the tool used for detection. Table 3 shows the number of files

and total LOC for Ant and Maven.

Table 4 shows the number of large-variance clone pairs detected by each tool and the precision

for each tool2. The number of large-variance clones detected by NIL detected was almost same

as that of LVMapper and more than that of CCAligner. The manual validation results indicate

that NIL had a high average precision of 87% whereas LVMapper and CCAligner had low average

precision values of about 60% and 40%, respectively. We considered this difference in precision to

be due to LVMapper and CCAligner normalizing the identifiers in code blocks. After checking the

large-variance clones detected by LVMapper and CCAligner, we found that code blocks with consec-

utive assignment statements, such as constructors, and consecutive if-statements were incorrectly

detected as large-variance clones. In contrast, NIL detected large-variance clones more precisely

because it does not perform identifier normalization.

Table 3: Target systems

Name # Files LoC

Ant 1.10.1 895 109,073

Maven 3.5.0 698 60,471

2Manual validation descriptions are available at https://zenodo.org/record/4490845
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In addition, NIL had a higher precision than that of LVMapper and detected a similar number of

large-variance clone pairs, indicating that it can detect many large-variance clones that LVMapper

cannot. After checking large-variance clones that NIL detected but LVMapper did not, we found that

the large-variance clone pairs share a small number of consecutive lines. LVMapper regards three

consecutive lines in code blocks as code windows (see Section 2.4) and identifies clone candidates

based on these code widows. Therefore, if a pair of code blocks shares a little or no code window,

LVMapper cannot detect the pair as a large-variance clone pair. In contrast, NIL can detect such

large-variance clones because it uses an N-gram representation of token sequences.

3.3.2 Recall

Recall is the ratio of clones detected by a tool to the total number of true clones in the target

codebase. A clone detector with a higher recall can detect true clones more exhaustively. To

evaluate recall, all true clone pairs in the target codebase are required. However, it is not realistic

to manually check all code block pairs in a system to determine the total number of true clone

pairs.

Therefore, we generated large-variance clone pairs automatically using mutation techniques to

evaluate recall. Mutation techniques are frequently used for clone detector recall evaluation [79].

The studies on CCAligner [36] and LVMapper [80] used them to evaluate large-variance clone de-

tection recall. In this part, we reproduced large-variance clones by randomly inserting various

numbers of statements into original code blocks (i.e., the large-variance clones are mutants of the

original code blocks). We targeted JDK6 and Apache Commons3 because they were used in the

study on CCAligner [36]. We randomly selected 100 functions with 15–50 lines in these systems

as the original code blocks. A minimum length 15 lines is often used for recall evaluation using

mutation techniques [23, 79]. We used a maximum length of 50 lines because if the number of

lines of the original code blocks is too large, even if a large number of statements are inserted into

the code blocks, the generated clones will not be large-variance clones. For example, if 20 lines of

statements are inserted into an original code block, if the number of lines of a code block is 100,

the ratio of lines of the clone pair is 100/120 > 0.7, and thus the clone pair does not satisfy the

large-variance clone definition. To reproduce large-variance clone pairs, 1–20 one-line statements

Table 4: Large-variance clone detection results

Tool System # Large-variance clones Precision (%)

NIL
Ant 354 86.0

Maven 398 88.0

LVMapper
Ant 355 64.0

Maven 389 60.0

CCAligner
Ant 184 43.0

Maven 284 40.0

3A project that provides open-source reusable Java components
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Figure 12: Recall results for various numbers of inserted lines

were inserted into each code block at random locations. 20 clone pairs were generated per original

code block, for a total of 2,000 clone pairs, including large-variance clone pairs4.

Figure 12 shows the recall of NIL, LVMapper, and CCAligner for clone pairs generated by inserting

various numbers of statements. NIL detected all generated clone pairs. This is because even though

many statements are inserted into a code block, the order of many tokens between the large-

variance clone pair is preserved, and thus the clone pair shares a certain number of N-grams and

has a long common subsequence. In summary, using N-gram-based clone candidate identification

and token-LCS-based clone validation is effective in large-variance clone detection.

On the other hand, as shown in Figure 12, the recall of LVMapper and CCAligner decreased with

increasing number of inserted lines. LVMapper can also detect clones in which a large number of

statements are inserted because it verifies clones based on line-based LCS. However, our evaluation

results show that the recall of LVMapper decreased with increasing number of inserted lines. This

is because LVMapper failed to identify many large-variance clones in its locating phase. LVMapper

identifies a pair of code blocks that share some code windows (see Section 2.4) as a clone pair.

Therefore, with increasing number of inserted lines, the number of shared code windows decreases,

and thus LVMapper failed to identify a pair of code blocks as a large-variance clone pair. CCAligner

4The generated large-variance clone pairs are available at https://zenodo.org/record/4491016
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uses e-mismatch code windows to identify clone candidates, and this affects its recall. In addition,

CCAligner uses code windows in verification and thus fails to detect large-variance clones.

3.4 General clone detection

We evaluated the general Type-1, Type-2, and Type-3 clone detection accuracy of NIL using

two benchmarks, namely Mutation Framework [79] and BigCloneEval [77]. In addition, we com-

pared the results of NIL to those of existing state-of-the-art tools, namely CCAligner, LVMapper,

SourcererCC, and NiCad.

3.4.1 Mutation Framework

Mutation Framework automatically generates clone pairs based on mutation techniques. We

executed Mutation Framework with all the default settings and input the generated clones5 into

each clone detector. Table 5 shows the results of recall for each tool measured by Mutation

Framework. NIL detected all clone pairs generated by Mutation Framework.

3.4.2 BigCloneEval

BigCloneEval [77] automatically measures the recall of clone detectors using BigCloneBench [78].

We also measured precision, as done in the prior studies [23, 36, 37]. For each tool, we randomly

selected 400 of the detected clone pairs from BigCloneBench and validated them manually. The

clones were shuffled, and the validation was conducted without knowledge of the clone source.

Table 6 shows the results of recall6 and precision for each tool on BigCloneBench7. As shown,

NIL has a high recall of 96% for Type-2 clone detection even though it does not normalize identi-

fiers in the Preprocessing phase. NIL had the second highest recall of Moderately Type-3 clones,

which contain large-variance clones, behind only LVMapper. We considered that this is because

normalizing identifiers is necessary to detect most Moderately Type-3 clones.

The precision (see bottom of Table 6) of both LVMapper and CCAligner, which are large-variance

and large-gap clone detectors, was low. In contrast, that of NIL was very high (94%). Even

though SourcererCC and NiCad also had high precision, they had poor large-variance clone detection

performance. Therefore, compared to the existing tools, NIL has equivalent general clone detection

accuracy and higher precision than that of the existing large-variance clone detectors.

Table 5: Recall results for Mutation Framework

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 100.0 100.0 100.0 100.0 100.0

Type-2 100.0 100.0 100.0 100.0 100.0

Type-3 100.0 99.9 99.9 100.0 100.0

5The generated clone pairs are available at https://zenodo.org/record/4491052
6Note that in our experiments, BigCloneEval reported different recall of the existing clone detectors from the prior

studies. Type-1 recall of some clone detectors was 99.9% because BigCloneBench contains faulty clone pairs [81].
7Manual validation descriptions are available at https://zenodo.org/record/4493069
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3.5 Scalability

We evaluated the scalability of NIL using codebases with various sizes and compared the ex-

ecution time of NIL to those of the existing tools. We used IJaDataset [82], a large inter-project

Java dataset, as done in the prior studies [23,36,37]. We created datasets with 1, 10, 100, and 250

MLOC8. We used CLOC [83] to measure the LOC of the datasets. A computer with a quad-core

CPU and 12 GB of memory was used for the evaluation, as done in the prior studies [23,36].

Table 7 shows the execution times for each tool for various input sizes. As shown, the execution

time of NIL is the shortest for all input sizes. Even though both LVMapper and SourcererCC detected

clones from the 250-MLOC codebases, their execution times are longer than three days, indicating

poor scalability. In addition, CCAligner and NiCad was not able to complete detecting clones from

the 100- and 10-MLOC codebases, respectively, indicating their limited scalability. Therefore, NIL

has the highest scalability.

Moreover, we examined how effective the location and filtration phases are for NIL’s scalability.

Figure 13 shows growth in the number of clone candidates with the increased number of code blocks.

Note that this figure is a logarithmic graph. “Naive” is comparing all pairs of code blocks for clone

detection9. As shown in the figure, both the location and filtration phases were able to drastically

reduce the number of clone candidates. For example, when there were 10,000 code blocks, the

number of clone candidates was able to be reduced from 49,995,000 in Naive to 1,449,634 in the

location phase and 54,000 in the filtration phase. Therefore, the two phases are very effective for

scalable clone detection.

Table 6: Recall and precision results for BigCloneBench

Tool NIL LVMapper CCAligner SourcererCC NiCad

Type-1 Recall 99.9 99.9 99.8 93.8 99.9

Type-2 Recall 96.6 99.2 98.9 96.6 99.2

Very Strongly Type-3 Recall 93.5 98.1 97.4 68.2 98.4

Strongly Type-3 Recall 67.1 81.8 69.0 59.0 69.7

Moderately Type-3 Recall 10.6 19.1 10.0 4.8 0.5

Precision 94.0 58.5 33.7 99.2 80.2

Table 7: Scalability results

Tool NIL LVMapper CCAligner SourcererCC NiCad

1 M 10s 29s 52s 3m 1s 1m 48s

10 M 1m 38s 13m 38s 26m 3s 27m 37s —

100 M 1h 38m 29s 17h 23m 39s — 19h 38m 5s —

250 M 7h 40m 7s 3d 13h 47m 39s — 5d 6h 55m 1s —

8These datasets and an executable file of NIL are available at https://zenodo.org/record/4491208.
9The curve can be represented using y = x(x− 1)/2 quadratic function where x is the number of code blocks in

a project and y is the number of candidate comparisons carried out to detect all clone pairs.
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4 Threats to Validity

To measure precision for each tool, we manually validated clones each tool detected, as done

in the prior studies [23, 36, 37]. Because the clone detector names were not disclosed during the

manual validation, there was no bias in the evaluation. However, because the criteria for whether

a pair of code fragments is a clone pair can vary, manual validation by other researchers may yield

different values. To ensure the validity of this study, the clones used in the manual validation are

made public so that a third party can conduct replication studies.

In this study, we used the widely used benchmarks, BigCloneEval [77] and Mutation Frame-

work [79] to evaluate the recall of clone detectors. Different results may be obtained using other

benchmarks [19,84,85].

In this study, we targeted only the Java language. Different results may be obtained for other

languages.

It is known that the accuracy and execution time of a clone detector is greatly influenced by

its settings [86]. In this study, we optimized the N value for N-grams. However, the filtration

threshold θ and the verification threshold δ were set based on values used by other clone detectors.

The results can be improved by optimizing these values for NIL.
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5 Related Works

Many clone detection techniques have been proposed to achieve various goals.

5.1 Complicated Type-3 clone detection

In addition to large-variance clones, since complicated Type-3 clones are difficult to detect,

some techniques specialized for detecting them have been proposed.

Program dependence graph [87] (in short, PDG) is frequently used for complicated Type-3

clone detection. Krinke was the first to use PDGs for clone detection [49]. His technique detected

isomorphic parts of PDGs as clones. He reported that PDG-based clone detection was good at recall

and precision. Higo et al. pointed out that Kirinke’s techniques suffered in the execution time and

detecting contiguous clones. To enhance PDG-based clone detection, they introduced two PDG

specializations and three heuristics into the PDG-based clone detection technique [50]. Zou et al.

pointed out that the PDG-based clone detection techniques have still been quite time-consuming

and missed many clones due to their exact graph matching using subgraph isomorphism. They

proposed CCGraph [88], using an approximate graph matching algorithm based on the reforming

Weisfeiler-Lehman graph kernel [89].

An intermediate representation (in short, IR) is also used for complicated Type-3 clone detec-

tion. Some syntactical differences (e.g., for-loop and while-loop) in source code are transformed

into the same or similar instructions in IRs of the source code. Selim et al. proposed a clone

detection technique using Java IRs generated by Soot [90, 91]. Their technique transforms Java

source code into their IRs and detects clones on the IRs using existing tools [40, 41], which were

not able to detect Type-3 clones. They reported that they detected Type-3 clones by executing

the tools on IRs of source code. Caldeira et al. also proposed a clone detection technique using

IRs [92]. They devised a C-like IR based on LLVM and ran NiCad [51] on it. Their experimental

results suggested that IRs were beneficial for improving clone detection and IRs had a large impact

on complicated Type-3 clones.

Machine learning is also useful for complicated Type-3 clone detection. Saini et al. proposed

a clone detector, Oreo, for Weakly Type-3 clones [93]. It combines machine learning, information

retrieval techniques, and software metrics to detect clones.

However, those three techniques based on PDG, IR, or machine learning do not always detect

large-variance clones. For example, a prior study showed that Oreo has a higher precision but lower

recall in large-variance clone detection than those of LVMapper [37]. Moreover, these techniques

require a long execution time and are limited in scalability. PDG-based clone detection requires

a long time to construct PDGs and perform subgraph isomorphism. IR-based clone detection

requires a long time to transform source code into IRs. Machine learning-based clone detection is

necessary to complete training before clone detection.

5.2 Scalable clone detection

Kamiya et al. proposed CCFinder [41] and its successor, CCFinderX [94]. CCFinder transforms

the target source code into a token sequence, normalizes identifiers, such as variable names and

literals, and then uses a suffix tree algorithm to detect matching token sequences as clones. As
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shown in prior studies [23, 71], CCFinderX has high scalability and can detect clones even for a

100-MLOC codebase.

Ishihara et al. proposed a scalable method-level clone detection technique [95]. The technique

hashes each normalized method and detects methods whose hash values are the same as clones.

They reported that they detected clones in a large codebase (3.5 MLOC) in 3.5 hours.

Hummel et al. proposed ConQat [74, 96], an index-based clone detector. ConQat creates clone

indexes by hashing consecutive six lines of source code and detects the clone indexes whose hash

values are the same as clones. ConQat is capable of distributed processing in clone detection, so it

can be applied for ultra-large codebase (2.9 GLOC) using cluster computing.

However, those scalable clone detectors cannot detect gapped clones due to their algorithms.

Though there are several tools for scalable near-miss clone detection [23,70,71,97], they still cannot

detect complicated Type-3 clones, including large-variance clones. In this part, we proposed NIL,

which achieves both large-variance clone detection and scalability.
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6 Conclusion

In this part, we proposed a clone detection technique for the scalable detection of large-variance

clones from a large codebase and described its implementation, called NIL. NIL uses N-grams, an

inverted index, and the LCS to detect large-variance clones. Our experimental results show that

NIL has higher precision and recall in large-variance clone detection than those of existing large-

variance and large-gap clone detectors. In addition, the general Type-1, Type-2, and Type-3 clone

detection accuracy of NIL is equivalent to that of existing state-of-the-art tools. Moreover, NIL can

detect clones from large codebases more quickly than do existing clone detectors.

As future works, we consider doing research on software engineering applications such as code

recommendation and completion, refactoring, and bug propagation for large-variance clones using

NIL.
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Part III

Clone Modification Support for Pull

Request Based Development
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1 Background

There are many studies on simultaneous modification and refactoring support for clones [24,25]

because clones have been pointed out as one of the major problems in the maintenance process of

software development. An existing study proposed a clone change notification tool, Clone Notifier,

to improve the efficiency of these tasks [29]. Clone Notifier takes two versions of a target project

as inputs and notifies developers of information about clones changed between the versions. Clone

Notifier is designed for industry use [30] and is premised on one execution a day. On the other hand,

Clone Notifier is difficult to be executed triggered by development workflow, such as modifying

source code or merging branches, because it is not designed to be triggered by external factors

except for time. For this reason, we think there are the following issues when considering the use

of Clone Notifier in development, such as OSS development, in which modifying source code or

merging branches are frequently conducted [98].

• The first issue is that even if code fragments need modifications due to clone changes, the code

fragments will not be notified promptly. Because Clone Notifier is executed once a day, once

Clone Notifier has been executed, there is a day interval until the next execution. Suppose

Clone Notifier users set its execution interval shorter (e.g., five minutes) to solve this issue.

In that case, the information of clones is notified to the users frequently even if the source

code is not modified. Hence, the notification probably annoys the users. On the other hand,

if code fragments to be modified are notified to the developers in line with the development

workflow, such as source code modifications, the developers will be able to respond to the

code fragments promptly without feeling such annoying.

• The second issue is that a large number of notifications are possibly sent to developers at once.

If a large number of source code modifications are conducted, and as a result, many clones

may be changed improperly (i.e., many code fragments need modifications), the information

is notified all at once. In this case, the users will be forced to check a large amount of clone

change information, and they may overlook serious clone changes. If clone change notification

is triggered by development workflow, code fragments to be modified are notified in line with

each source code modification so that the developers can avoid overlooking serious clone

changes.

• The third issue is that code fragments to be modified are merged into the main branch

when developing with version control systems (in short, VCS). In such development, the

main branch should be bug-free and always ready for release. Therefore, code fragments to

be modified that may contain bugs should be checked before the topic branch is merged.

However, Clone Notifier, which is premised on regular execution, is difficult to detect such

code fragments before merging topic branches. If clone change notification is triggered by

development workflow, the possibility of bugs merged into the main branch can be reduced

because such code fragments are detected before merging topic branches.

Consequently, in this part, we propose a clone modification support system named CLIONE10,

which aims to integrate into pull request based development to solve these issues. CLIONE detects

10https://github.com/T45K/CLIONE
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code fragments that need modifications by tracking clones when creating pull requests (in short,

PR), and CLIONE also notifies the code fragments to developers as PR comments. Moreover, we

made three improvements for more accurate clone change tracking than Clone Notifier.

In order to evaluate CLIONE, we conducted five experiments. We confirmed the followings from

the experimental results.

1. There are 21.5% of PRs in which clones have been modified non-simultaneously (i.e., some of

clones were modified but the others were not), indicating that CLIONE is useful for PR-based

development.

2. The execution time of CLIONE was sufficiently short compared to CI tools widely used

in PR-based development, indicating that the barrier to introduce CLIONE into PR-based

development is low.

3. Due to the clone tracking improvements, CLIONE was able to track clones correctly compared

to Clone Notifier in 34.6% of PRs in which clones have been modified non-simultaneously.

4. We conducted proposals the way of clone modifications using CLIONE and questionnaire

survey to developers. From the results, CLIONE is also useful for developers.
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- private IRubyObject any_pBlockless(ThreadContext context) {
- for (int i = 0; i < realLength; i++) {
- if (eltOk(i).isTrue()) return context.runtime.getTrue();
- }
-
- return context.runtime.getFalse();
- }

+ private IRubyObject any_pBlockless(ThreadContext context, IRubyObject[] args) {
+   IRubyObject pattern = args.length > 0 ? args[0] : null;
+   if (pattern == null) {
+     for (int i = 0; i < realLength; i++) {
+       if (eltOk(i).isTrue()) return context.runtime.getTrue();
+     }
+   } else {
+     for (int i = 0; i < realLength; i++) {
+      if (pattern.callMethod(context, "===", eltOk(i)).isTrue())
+         return context.runtime.getTrue();
+     }
+   }
+
+   return context.runtime.getFalse();
+ }

(a) any pBlockless method

private IRubyObject all_pBlockless(ThreadContext context) {
for (int i = 0; i < realLength; i++) {
if (!eltOk(i).isTrue()) return context.runtime.getFalse();

}

return context.runtime.getTrue();
}

(b) all pBlockless method

Figure 14: Two methods in JRuby

2 Research Motivation

Figure 14 shows two methods in JRuby. In PR#509611, while any pBlockless method was

modified, all pBlockless method was not modified. This non-simultaneous modification introduced

a bug that caused an error when calling a Ruby API, which internally calls all pBlockless method in

JRuby into the main branch. As a result, JRuby, which included this bug, was released at version

9.2.0.0. This bug was fixed in PR#529812.

If the developers used CLIONE, they could avoid introducing the bug caused by non-simultaneous

modification of clones into the main branch. In development using VCS, the main branch should

be bug-free and always ready for release. Therefore, a clone modification system aimed to integrate

into development workflow is needed to keep main branch bug-free.

11https://github.com/jruby/jruby/pull/5096
12https://github.com/jruby/jruby/pull/5298
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Developer
GitHub

Project

4. Detecting clones
from base commit

Clone sets

4. Detecting clones
from head commit

3. git-clone

5. Tracking clones
and classification

Code fragments
to be modified

1. Registration
2. Creating PRs

Clone sets

CLIONE

6. Comment

7. Notifying the results

Figure 15: Overview of CLIONE. Blue lines means processes CLIONE performs.

3 Proposed System: CLIONE

In this part, we propose CLIONE, a clone modification support system aimed to integrate into

development workflow. CLIONE detects code fragments that need modifications by tracking clones

automatically at the time of creating PRs. CLIONE is a server-side application which uses GitHub

Apps [99] and receives HTTP requests which GitHub sends when developers create PRs. Thanks

to GitHub Apps, it is easy to install CLIONE on GitHub projects.

3.1 Overview

Figure 15 shows an overview of CLIONE. First, developers who want to use CLIONE register

their GitHub accounts and their repositories with CLIONE. After this registration, whenever the

developer creates a PR, GitHub sends an HTTP request to CLIONE, and CLIONE is executed.

CLIONE tracks clones between the head commit of the PR and the commit at the point where the

PR branch was created (in short, base commit).

When the developer creates a PR, CLIONE downloads (git-clone) the project onto its local

environment. Next, CLIONE detects clones from the head and the base commits of the PR,

respectively, by using NiCad [51] or SourcererCC [23]. Why we select these clone detectors is each

of them can detect Type-3 clones precisely.

After clone detection on each commit, CLIONE tracks clones to detect clone changes between

the two commits. Clone tracking is used to determine if the clone has been modified between the

two commits. As well as Clone Notifier, in order to track clones between the two commits, CLIONE

calculates the overlapping location of clones, based on the location overlapping function of Kim
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et al. [54]. Moreover, in order to suppress the execution time of CLIONE, CLIONE does not track

clones in source files that have not been modified between the two commits. The reason is that

such clones can be determined to be unchanged without tracking them.

After clone tracking, based on changes of clones, CLIONE detects code fragments that need

modifications. Specifically, CLIONE treats clone sets where some clones were modified but the

others were not modified and clone sets where some or all of clones were newly added as code

fragments to be modified. Moreover, in CLIONE, we made three improvements for more accurate

clone tracking than Clone Notifier. We explain the improvements in Section 3.2.

Finally, CLIONE makes a PR comment for each the code fragments to be modified to notify the

results to the developer. Figure 16 shows an example of PR comment about a non-simultaneously

modified clone set. In the top of the figure (a), the changed piece of the changed code fragment is

shown in the diff format, the whole of changed code fragment is shown in the middle (b), and the

non-changed code fragment is shown in the bottom (c). By getting notifications of the results as

PR comments, developers can receive feedback promptly.

3.2 Improvements of clone tracking

In CLIONE, we made three improvements to the clone change tracking technique used in Clone

Notifier,

1. code fragment tracking,

2. file rename detection, and

3. clone change judgment by comparing token sequences.

3.2.1 Code fragment tracking

First, CLIONE tracks not only clone instances but also code fragments. Clone Notifier treats

only clone instances (code fragments that are detected as clones) as targets of tracking. Thus, if

code fragments that are detected as clones in the old version are not detected in the new version,

the code fragments are classified deleted clone instances by Clone Notifier. On the other hand,

in some cases, a code fragment is not detected as a clone because it has been modified. For

example, figure 17(a) shows two methods detected as clones in the base commit, but not detected

as clones in the head commit because one of them has been modified. In this case, Clone Notifier

classifies the clone set (i.e., the two methods) as Deleted because the methods are not detected

as clones in the head commit. However, this clone set should be classified as non-simultaneous

modification because only main1 method was modified. As a result, developers may overlook this

non-simultaneous modification.

On the other hand, CLIONE tracks not only clone instances but also code fragments, such as

methods or code blocks. Even if clones are not detected in one of the commits, the changes of clones

can be detected by tracking code fragments themselves. Figure 17(b) shows an example of code

fragment tracking. In this example, CLIONE tracks the methods themselves. As a result, CLIONE

can detect a non-simultaneously modified clone set (figure 17(c)) and classify it appropriately.

44



3.2.2 File rename detection

Second, CLIONE detects file name changes. Clone Notifier tracks clones in files with the same

name in the input two versions. On the other hand, in software development and maintenance,

file names are often changed. When a file is renamed between versions, Clone Notifier determines

that the file was deleted in the old version and added in the new version. Therefore, when a file is

renamed, Clone Notifier incorrectly classifies clones in the file as Deleted in the old version and as

Added in the new version, even if the contents of the file have not changed.

On the other hand, CLIONE uses Git’s rename detection function to track files based on the

similarity of their contents, even when the file name has been changed. As a result, the code

fragments in the file can be tracked, reducing the misclassification of clones.

3.2.3 Clone change judgment by comparing token sequences

Third, CLIONE judges whether clones are changed or not by comparing their token sequences.

In Clone Notifier, a clone is considered modified if there are lines in the clone that have been added

or deleted between two versions. On the other hand, even if changes made in clones do not affect

the program behavior, such as formatting or comments, Clone Notifier judges that the clones have

been changed. In particular, when the source code format is changed, a large number of clones

may be judged as having changed because the changes will cover a wide area of the entire source

code. Therefore, judging whether clones have been changed based on the presence or absence of

added or deleted lines may be burdensome for developers to check because a large amount of clone

change information will be notified even if the changes do not affect the behavior of the program.

On the other hand, CLIONE converts the tracked code fragments into token sequences and

compares them to judge if the code fragments have been modified. Therefore, CLIONE can judge

whether clones have been modified while ignoring changes that do not affect its behavior, such as

formatting or comment changes. This allows us to avoid notifying developers of changes in clones

that they do not need to check.
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a

b

c

Figure 16: Example of comment about a non-simultaneously modified clone sets
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1 void main1() {
2  int a = 0;
3  String b = "";
4 }
5 
6 void main2() {
7  int c = 0;
8  String d = "";
9 }

1  void main1() { 
2   int a = 0;
3   int c = 1;
4   String b = "";
5  }
6 
7  void main2() {
8   int c = 0;
9   String d = "";
10 }

base commit head commit

(a) Clone instance tracking

base commit head commit

1 void main1() {
2  int a = 0;
3  String b = "";
4 }
5 
6 void main2() {
7  int c = 0;
8  String d = "";
9 }

1  void main1() { 
2   int a = 0;
3   int c = 1;
4   String b = "";
5  }
6 
7  void main2() {
8   int c = 0;
9   String d = "";
10 }

(b) Code fragment tracking

base commit head commit

1 void main1() {
2  int a = 0;
3  String b = "";
4 }
5 
6 void main2() {
7  int c = 0;
8  String d = "";
9 }

1  void main1() { 
2   int a = 0;
3   int c = 1;
4   String b = "";
5  }
6 
7  void main2() {
8   int c = 0;
9   String d = "";
10 }

(c) Accurate clone change tracking

Figure 17: Improvement of clone tracking
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4 Evaluation

In this part, we conducted five experiments to evaluate CLIONE.

4.1 Experiment 1

In experiment 1, in order to evaluate the usefulness of introducing CLIONE into PR-based

development, we investigated the proportions of PRs in which clones have been modified non-

simultaneously, which CLIONE targets to notify. In this experiment, we manually executed CLIONE

on merged PRs of target projects and investigated whether clones had been modified simultaneously

or not for each PR.

In this experiment, we selected three OSS as our experimental targets. Table 14 shows the

names of the projects, the number of PRs merged by 20/7/2020, and the number of PRs in which

at least a Java file was changed (in short, target PRs). We selected those OSS because they are

often targeted in clone research [100–102] and developed in PR-based development on GitHub.

Table 9 shows the results of experiment 1. In this table, “improper PRs” means PRs in which

clones were modified non-simultaneously. All the projects have PRs in which clones were modi-

fied non-simultaneously, and their proportions are 11.9%–30.4%. Some of these non-simultaneous

modifications can cause bugs, as introduced in Section 2. Hence, developers need to check non-

simultaneously modified clones and determine whether they need modifications before merging

branches. If the developers use CLIONE, they are notified of non-simultaneously modified clones

for each PR created, so that they can easily deal with them. Therefore, CLIONE is useful to support

clone modifications in PR-based development.

Table 8: Target OSS

Name # PRs # Target PRs

JRuby13 2,248 292

JUnit4 848 236

Gson 317 69

Table 9: Results of experiment 1

Name # Target PR # improper PR Proportion

JRuby 292 89 30.4%

JUnit4 236 28 11.9%

Gson 60 10 16.7%

Total 588 127 21.5%

13JRuby is a multi-module project, and we targeted only core module of JRuby.
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4.2 Experiment 2

In experiment 2, in order to evaluate whether CLIONE can be introduced into PR-based devel-

opment, we measured response time from PR creation to CLIONE notification14. Additionally, we

compared the response time of CLIONE with the execution time of CI tools15, which are widely

used in PR-based development [55]. If the response time of CLIONE is shorter than the execution

time of CI tools, the barrier to introducing CLIONE to PR-based development is low.

In this experiment, we manually reproduced the target PRs of JRuby, one of the OSS targeted

in Experiment 1, and measure the response times of CLIONE. We targeted JRuby because JRuby

is the only one that uses CI tools for the automated build. By all rights, we should reproduce all

of the target PRs. However, we considered that manually reproducing them is hard task. Thus,

we targeted only the five latest PRs merged by 6/10/2020 and at least a Java file was changed.

Table 10 shows the results of experiment 3. As shown in the table, in all PRs, each response

time of CLIONE is much shorter, less than half of the corresponding CI tool execution time. The

CI execution time varies so much depending on the PR because JRuby builds in two different CI

tools depending on the PR changes. We also checked the breakdown of the CLIONE response time

and found that the PR#6424 took 50 seconds (67.4%) for git-clone, 25 seconds (29.0%) for clone

detection, and 1 second (1.6%) for others. The same trend was observed for the response time in

other PRs. This indicates that CLIONE specific processes such as clone tracking and classification

account for a very small percentage of CLIONE’s response time. Also, since git-clone accounts

for the majority of CLIONE’s response time, we can improve the implementation of CLIONE. For

example, only the differences are downloaded to the CLIONE environment (git-pull) instead of

downloading the full target project every time a PR is created.

In addition, we conducted an experiment to estimate the upper limit of the response time of

CLIONE. As mentioned in Section 3.1, CLIONE does not track clones in files that have not been

modified. Therefore, the more files are modified in the PR, the more clones are tracked, and the

response time of CLIONE increases. Hence, CLIONE response time is expected to be the largest

when all the Java files in the project have been modified. In order to estimate the upper limit of

CLIONE response time, we created a PR with the change of adding blank lines at the end of all

Java files in JRuby16, and measured the response time of CLIONE. A total of 1,459 Java files were

Table 10: Response times of each PR

PR number CLIONE response time CI tool execution time

6424 1m 26s 4m 35s

6412 1m 28s 14m 35s

6410 1m 23s 12m53s

6407 1m 18s 4m 20s

6401 1m 17s 13m 26s

14Our environment where CLIONE is executed is as follows; CPU: Intel Xeon E5-2620, Memory: 32GB, and OS:

Ubuntu 18.04.
15Continuous Integration tools. They automatically build and test projects at the time of creating PRs or pushing

commits.
16https://github.com/T45K/jruby_clione/pull/6
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modified in this PR. The response time of CLIONE for this PR was 3 minutes and 37 seconds,

which is an increase from the response time in table 10 but shorter than the execution time of CI

tools.

In summary, CLIONE can notify code fragments in a short time, which is faster than the

execution time of CI tools, and CLIONE also can be easily introduced into PR-based development.

4.3 Experiment 3

In experiment 3, in order to evaluate our improvements of clone tracking, we compared the

results of CLIONE’s clone tracking and Clone Notifier’s one. In this experiment, we manually

executed CLIONE and Clone Notifier on the target PRs of three projects shown in table 14, checked

the clone tracking results of each tool, and counted PRs in which the clone tracking results are

different.

As a result, we confirmed that there were 44 PRs (34.6% of improper PRs) in total in which

CLIONE tracked clones more accurately than Clone Notifier. On the other hand, there was no clone

where Clone Notifier succeeded in tracking but CLIONE failed. Table 11 shows a breakdown of

the improvements that contributed to the different clone track results. As shown in table 11, the

number of PRs with different clone tracking results by code fragment tracking is the highest. On

the other hand, the number of PRs with improved tracking results for file rename detection and

clone change judgment by comparing token sequences is small. However, in the PRs with improved

tracking results, CLIONE was able to correctly classify a large number of clone changes while Clone

Notifier misclassified a large number of clone changes due to file name changes and format changes.

In other words, although the number of improved PRs is small, these improvements can significantly

reduce the burden on developers because the developers are not notified of the tracking results of

a large number of clones that are not considered necessary to be checked in that PR.

In summary, thanks to these three improvements, CLIONE can track clones more accurately

than Clone Notifier and provide more useful clone change information.

4.4 Experiment 4

In experiment 4, in order to evaluate the usefulness of CLIONE for developers, we detected non-

simultaneously modified clones from past PRs of OSS using CLIONE, modified them, and proposed

them to the developers of OSS as PRs. When the proposed PR was merged, if the OSS developers

had used CLIONE, they would have dealt with the non-simultaneously modified clones when the

PR was created. Therefore, CLIONE is considered to be useful for the developers.

Table 11: Breakdowns of improvements

Improvement # PRs with different results

Code fragment tracking 35

File rename detection 3

Clone change judgment by comparing token sequences 6

Total 44
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In this experiment, we detected non-simultaneous modifications from OSS satisfying the fol-

lowing conditions to confirm the usefulness of CLIONE for developers of diverse OSS.

• The OSS is developed in PR-based development on GitHub.

• The OSS is written in Java.

• The OSS has more than 5,000 stars on GitHub17.

We selected OSS written in Java because we were familiar with Java so that we can easily modify

detected non-simultaneous modifications. Eventually, we created 15 PRs from 14 OSS.

Table 12 shows the list of 15 created PRs and their status as of 3/11/2020. Ten of them were

merged, one was closed, and four have been still opened. As for ten merged PRs, if the OSS

developers had used CLIONE, they could have dealt with the clones when creating the PRs. On

the other hand, one of them was closed. As for the closed PRs, the developers considered that the

clones were not needed modifications while we considered that they should be modified.

In summary, though the developers need to decide whether or not to modify the code fragments,

CLIONE is useful for the developers because it can notify the developers of the code fragments to

be modified when the PR is created.

17Star is a feature for GitHub users to save their favorite repositories. It can be said that the more stars a

repository has, the more popular the repository is.
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4.5 Experiment 5

In experiment 5, in order to evaluate the usefulness of CLIONE for developers, we conducted a

questionnaire survey about notification contents of CLIONE to developers. Concretely, we executed

CLIONE on past merged PRs of kGenProg [103], which is our OSS, selected ten of them as targets,

and conducted a questionnaire survey on the content of notification to four developers who created

the PRs. Table 13 shows the list of the target PR numbers and the content of each PR. The

contents of the questionnaire are as follows.

1. Were you aware of the clones changed in this PR?

2. If you were aware of the clones, why did you not modify them (i.e., modify them simultane-

ously or merge them)?

3. If you have been notified of the clones from CLIONE when creating the PR, did you modify

them?

Hereafter, we introduce the responses to the questionnaire and discuss them.

In question(1), we got two responses (PR#633 and #663) that the developer was not aware of

the clone changes. Also, both responded to question (3) that they would modify the clones if they

were notified of them at the time of creating the PR. We checked the current implementation of

kGenProg, and both of the clones had been modified. Therefore, it can be said that if CLIONE

had been used, the developers would have been able to modify the code fragments to be modified

when creating the PRs.

On the other hand, we got eight responses that the developer was aware of the clone changes.

Hereafter, we classify these eight responses and discuss them in more detail. First, for the three

cases (PR#154, #442, and #482), the answer to question (2) was “there is no need to merge

the clones.” We checked the clones, and all of them were about six lines. Hence, we considered

that developers do not treat clones with a small number of lines as refactoring targets. Therefore,

Table 13: Questionnaire target PRs

PR number How clones were changed

40 Newly added

76 Newly added

154 Newly added

442 Newly added

449 Newly added

482 Newly added

491 Newly added

496 Newly added

633 Non-simultaneously modified

663 Newly added
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improving CLIONE to filter newly added clones by the number of their lines or tokens would prevent

sending such notifications that will not be useful to developers.

Second, for the two cases (PR#491 and #496), the answer to question (2) was “I thought

merging clones would make readability low.” The newly added clones in these PRs were clones

that performed similar processing but had different parent classes, making it difficult to pull up

the methods. Moreover, forcing to extract them into a single method could worsen the readability.

On the other hand, this may be due to the poor design of inheritance relations in the added code

fragments, which makes it difficult to merge clones. Actually, a refactoring that improves the

design of the code fragments in these PRs has been conducted18. Therefore, it can be considered

that CLIONE can not only detect code fragments to be modified but also point out the poor design

of the project.

Third, for the one case (PR#40), the answer to question (2) was “I did not dare merge the clones

for the sake of implementation speed.” This answer indicates that it depends on the developer to

decide whether to merge clones or not. On the other hand, such ad hoc implementation is called

technical debt [104], which should be modified as soon as possible [105]. Creating Issue is one of

the ways of dealing with technical debt. Issue is a feature of GitHub, and we can manage tasks or

projects and ask the other developers for help using Issue. By managing tasks to modify technical

debts as Issues, we can easily modify them later. Therefore, we consider that implementing Issue

creation function in CLIONE can support the management of such code fragments to be modified.

Fourth, for the one case (PR#76), the answer to question (2) was “It is difficult to merge the

clones because the types of the variables between the clones are different.” The cause is that general

clone detectors normalize not only identifier names but also type names. Therefore, if CLIONE

uses clone detectors that do not normalize type names, CLIONE can avoid detecting changes of

such clones that are not suitable for refactoring targets.

Finally, for the one case (PR#449), the answer to question (2) was “I wanted to merge the

clones, but didn’t know how.” The clones had a common parent class, and only part of the

process of them was different. We checked them, and they have been merged in Template Method

Pattern [106]. In this regard, by implementing Issue creation function in CLIONE as described

earlier, developers can ask for help from other developers by creating Issue even if they find it

difficult to merge clones at the time of PR creation. In addition, he answered question (3) as

“CLIONE should suggest me how to merge the clones.”

These results show that CLIONE can provide useful notifications to developers. Even if the

developers judge the information to be unhelpful at this point, with some improvements to CLIONE,

CLIONE can avoid providing unhelpful notifications or assist developers in other ways. Therefore,

CLIONE is useful for developers’ clone modification support.

18https://github.com/kusumotolab/kGenProg/pull/501
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5 Threats to Validity

In this study, the experiments were conducted for a specific OSS. Therefore, different results

may be obtained if different projects are targeted. In addition, in Experiment 3, the clone tracking

results of CLIONE and Clone Notifier were checked and compared manually. Therefore, the results

of Experiment 3 may depend on our subjectivity.

CLIONE uses NiCad and SourcererCC to detect clones. If CLIONE uses other clone detectors,

the experimental results may differ from this study.

Clone tracking and change classification by CLIONE is independent of the programming lan-

guage. Therefore, CLIONE can be applied to any project written in a programming language from

which the clone detector used by CLIONE can detect clones. However, in this study, only OSS

written in Java is used as the experimental target. Therefore, different results may be obtained

when applying CLIONE to other languages.
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6 Related Works

6.1 PR-based development support system

Some studies that integrate existing source code analysis techniques into PR-based development

to improve software development efficiency are conducted.

Alizadeh et al. proposed RefBot, a system that integrates automated refactoring into PR-based

development [107]. RefBot automatically refactors the target project every time a PR is created.

It also presents the results of the refactoring to the developer. The developer can interactively

select the following options for the refactoring done by RefBot. (1) Refactor the source code as-is.

(2) Reflect only the position, and the the developer does the refactoring itself. (3) Do not reflect

the refactoring.

Carvalho et al. proposed C-3PR, a system that integrates static analysis into PR-based de-

velopment [108]. C-3PR executes existing static analysis tools on the target project for each PR

creation and automatically corrects the output warnings.

Alizadeh and Carvalho have experimented with their system in real-world development and

concluded that integrating automated refactoring and static analysis into PR-based development

is useful for developers, respectively. CLIONE is a system that integrates clone modification support

into PR-type development, and we also concluded that CLIONE is useful for developers.

6.2 Clone modification support

Since clones are considered one of the factors that affect software maintenance, many studies

have been conducted to support clone modifications.

Nguyen et al. proposed JSync, a tool to support simultaneous modification of clones [109]. JSync

is implemented as an Eclipse plug-in that targets Subversion repositories and automatically detects

non-simultaneous modifications of clones at commit time. It also calculates the differences in the

abstract syntax tree between the modified and unmodified clones and suggests to the developer

how to modify the clones.

Wit et al. proposed CLONEBOARD, a tool for managing clones by recording copy-and-paste

operations of code fragments [110]. CLONEBOARD is also implemented as an Eclipse plug-in.

When a copied-and-pasted code fragment is modified, the original code fragment is suggested to

the developer as the target of modification.

The major difference between these tools and CLIONE is that CLIONE supports PR-based

development. Since PR-based development is widely adopted in today’s OSS development, we

consider supporting PR-based development highly important.

We also consider that these methods and CLIONE are not necessarily exclusive. For example,

we consider that more useful developer support can be provided by integrating JSync’s suggestion

of clone modification methods into CLIONE.
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7 Conclusion

In this part, we proposed a clone modification support system, CLIONE, for integration into

PR-based development. CLIONE detects code fragments that need to be modified due to clone

changes between the base commit and the head commit of a PR when the PR is created. We also

made three improvements to the clone tracking method used by Clone Notifier in order to track

clones more accurately. Five experiments were conducted to evaluate CLIONE from three different

perspectives. The experimental results showed that CLIONE is useful for PR-based development

and developer, and CLIONE can also track clones more accurately than Clone Notifier.

As a future work, we plan to improve the implementation of CLIONE. Specifically, as described

in Section 4.5, we plan to implement a function to filter out clones that are not suitable for

refactoring, create Issue, and recommend how to modify code fragments detected by CLIONE.
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Part IV

Measurement Reducible Lines of Code

Based on Automated Merging Clones
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1 Background

Changes are occasionally (or even continuously) added to the source code after software systems

have been released. A bunch of changes to the source code deteriorates its quality (e.g., collapsing

its design, decreasing the readability), so that the maintenance cost gets more expensive [111–113].

The maintenance cost of the source code is often estimated from its size or complexity [113]. In

the case of large-scale software systems, an enormous amount of money is required. If users of a

software system can estimate its number, they should be able to decide whether they continue to

use it or replace it with a new one [114].

A factor of deteriorating the quality of source code is the presence of clones. Clones get involved

in both software development and maintenance [115,116]. The presence of clones makes the source

code redundant so that inconsistencies in source code tend to happen unintentionally [54]. Thus,

from the perspective of maintainability of the source code, merging clones is important.

Merging clones is a well-known refactoring. Refactoring is defined as a set of operations to

improve the internal structure of the source code without altering its external behavior [26]. Extract

Method refactoring, which is one of the most often performed refactorings, is a set of operations

to extract a code fragment in an existing method as a new method. If duplicated code fragments

are extracted as a new method, the duplication is removed from the source code. Removing clones

by refactoring makes it easier to keep consistencies in the source code because we do not have to

put the same changes on duplicated code in multiple places. However, there is a possibility that

refactoring itself introduces a new bug in the source code [27]. Consequently, removing all clones

without any special reason is not realistic: a reasonable indicator is required whether or not given

clones should be refactored. The number of lines of code (LoC) reduced by refactoring clones are

used for the indicator.

An existing study proposed a technique to estimate how many LoC can be reduced by refac-

toring clones [33] The existing technique judges whether clones can be refactored or not using

JDedorant [34], which Tsantalis et al. developed, and calculates reducible LoC based on the lines

of refactorable clones. The technique utilizes the position information of clones (the path of the file

including a given clone, start line and end line of the given clone). If multiple clones are overlapped

with each other, the technique selects only one of them using the greedy algorithm.

However, we think there are two issues in the existing technique.

• The first issue is that the existing technique does not correctly judge whether or not a clone

can be refactored. In JDeodorant, several conditions are set and only the clones that match

all the conditions are judged to be refactorable. However, even if a clone matches all the

conditions set by JDeodorant, there is a possibility that it cannot be refactored. It is also

considered that refactoring is possible even for clones that do not meet the criteria [33]. On

the other hand, it is not realistic to manually check the refactorability of all the large number

of clones detected, as this would require a lot of effort.

• The second issue is that in the case that clones are overlapping, the existing technique only

considers merging one of the overlapped clones. However, even if two clones are overlapping,

both of them may be able to be merged. Thus, an estimated reducible LoC may become a

completely different number from the actual reducible LoC.
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Therefore, in this part, we propose a new technique to calculate reducible LoC. The proposed

technique performs a loop of (1) detecting clones, (2) removing a set of clones, and (3) compiling

and testing the edited source code as long as the LoC of the source code gets decreased by the

refactorings. Due to its nature, the proposed technique is completely free from the above two

issues. We implemented a software tool based on the proposed technique and applied it to several

open source software systems. The purpose of the application is comparing the proposed technique

to the existing one. As a result, we confirmed that the proposed technique was able to measure

reducible LoC more correctly than the existing technique.
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Figure 18: Overview of proposed technique

2 Proposed Technique

We propose a new technique to calculate LoC that can be reduced by merging clones. The

technique repeats (1) detecting clones, (2) editing source files, (3) compiling, and (4) testing. This

technique enables users to obtain actual LoC that can be reduced by merging clones, not just

estimating it. Moreover, this technique has an important feature: even if multiple clones are

overlapped, the technique tries to merge each of them while the existing study [33] only considers

one of the overlapped clones. The reasone why the proposed technique can deal with overlapped

clones is the technique performs clone detection and editing source files repeatedly. For example,

in the case of figure 8(a), in which clone A contains clone B, the technique first merges clone A

and then detect clones again. Therefore, the technique can try to merge clone B, which have been

contained in clone A. Figure 18 shows an overview of the proposed technique. The input of the

technique is a set of source files. The output is a set of source files in which clones have been

merged as much as possible and their reducible LoC. Please note that this technique does not

merge clones if merging them does not reduce LoC of the source files.

The technique is composed of two processes shown below. Both the processes are performed

fully automatically.

• Preprocessing source file changes

61



• Clone merging

2.1 Preprocessing source file changes

First, a new class is generated. The new class is used as a utility class for placing merged clones.

More concretely, each merged clone is declared as a static method in the class. Besides, target

source files are edited to avoid compile error due to uninitialized local variables. Additionally, the

source files are reformatted to avoid inconsistencies of reducible LoC due to coding style. In total,

four changes are made in Preprocessing source file changes.

2.2 Clone merging

Clone merging is composed of four steps shown below. All of the steps are performed fully

automatically.

Step1: detecting clone sets

Step2: editing source files

Step3: compiling and testing edited source files

Step4: selecting edited source files

In Step1, clone sets in the target source files are detected. In Step2, source files are edited to

merge one of the clone sets that were detected in Step1. A method extracted to merge clones is

placed in the Java class described in Subsection 2.1. In Step3, the source files edited in Step2 are

compiled and tested to verify the external behavior. Hereafter, we call edited source files which

succeed in compiling and testing and whose LoC gets reduced selectable source files. Step2 and

Step3 are performed on each of the clone sets detected in Step1. In Step4, the selectable source

files whose reduced LoC is the largest is selected. Then, Step1–Step4 are repeatedly performed

on the selected source files. When either of the following termination conditions is satisfied, clone

merging terminates and outputs the reducible LoC.

• No clone sets are detected.

• No source files edited in Step2 are selectable.
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3 Implementation

We implement our technique as a tool. The tool is written in Java and targets Java source files.

3.1 Preprocessing source file changes

3.1.1 Generating a new Java class

A class in which extracted methods are placed is newly generated. When the extracted method

in the new class is called from the original place, it is invoked with its fully qualified name.

3.1.2 Initializing local variables

On the Java language specification, it is prohibited to reference uninitialized local variables.

Thus, when an uninitialized local variable is passed to the extracted method as an argument, a

compile error occurs. Developers may initialize local variables and pass them to the method when

developers merge clones. In this part, all local variables which do not have final modifier and

are uninitialized at the time of their declaration are initialized. In the case that the local variable

is primitive type except for boolean type, it is initialized as 0. In the case of boolean type, it is

initialized as false. In the case of reference type, it is initialized with null.

3.1.3 Reformatting

In general, coding conventions are specified in each project. For example, some conventions

specify using many line breaks and other conventions specify a small number of line breaks. If

code fragments of convention violation exist, it is difficult to calculate a reducible LoC properly.

Figure 19 shows examples in which different reducible LoC are calculated due to the coding style.

Figure 19(a), Extract Method refactoring reduces 5 LoC, but Figure 19(b), Extract Method

refactoring reduces 4 LoC. Thus, it is necessary to unify coding style by using formatter. In an

ideal world, we should prepare the formatters which reproduce coding conventions of each of the

target projects, but of course, it is impossible. Thus, we use the default Eclipse formatter [117].

3.2 Clone merging

3.2.1 Step 1: Detecting clone sets

Figure 20 shows an example of detecting clones. Clones are detected in block level. We regard

the following statements as blocks. Each following statement is defined as a derived class of class

Statement in Eclipse JDT [118].

• Block

• DoStatement

• EnhancedForStatement

• ForStatement

• IfStatement

63



1 if (a > b)
2 { 
3 int temp = a;
4 a = b;
5 b = temp;
6 }

1 - if (a > b)
2 - { 
3 - int temp = a;
4 - a = b;
5 - b = temp;
6 - }
1 + method(a, b);

(a) 5 LoC reduce

1 if (a > b) { 
2 int temp = a;
3 a = b;
4 b = temp;
5 }

1 - if (a > b) { 
2 - int temp = a;
3 - a = b;
4 - b = temp;
5 - }
1 + method(a, b);

(b) 4 LoC reduce

Figure 19: Different reducible LoC

• SwitchStatement

• SynchronizedStatement

• TryStatement

• WhileStatement

Block-level clones are more coarse-grained than clones that are detected by token-based tech-

niques. The number of block-level clones is less than the number of token-based clones [119].

However, block-level clones have a remarkable feature, which is that they are better candidates

of Extract Method refactoring because the code fragments are syntactic chunks [5]. The proposed

technique uses Eclipse JDT to parse source files and identify blocks. If a block includes a return

statement, it is not detected as a clone because it is difficult to extract it as a new method [120].

The proposed technique normalizes identified blocks according to the rules shown below because

the larger number of clones can be detected by applying the rules.

• Identifiers are normalized as “$” + “number”.

• The same identifier is normalized as the same normalized name.

• All literals are normalized as “$”.
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if (x > y) {
int tmp = x;
x = y;
y = tmp;

}

if ($0 > $1) {
int $2 = $0;
$0 = $1;
$1 = $2;

}

1234

1234

Normalizing Hashing

if (a > b) {
int temp = a;
a = b;
b = temp;

}

if ($0 > $1) {
int $2 = $0;
$0 = $1;
$1 = $2;

}

Comparing

if (i < j) {
int tmp = j;
j = i;
i = tmp;

}

if ($0 < $1) {
int $2 = $1;
$1 = $0;
$0 = $2;

}

5678

Blocks

...

...

...

1234

1234

5678

...

Clones

Figure 20: Clone detection

• Qualified names are normalized as identifiers.

• Class name is not normalized.

• Method name is not normalized.

The same identifier is normalized as the same normalized name to avoid false detection as much

as possible. The reason why class and method names are not normalized is to avoid detecting clones

whose differences are class or method names because it is difficult to merge clones with different

type names or calling methods.

After the normalization, a hash value is calculated from each block. The proposed technique

uses SHA256 hashing algorithm [121]. Since SHA256 outputs 256-bit hash value, hash collisions

hardly occur.

Finally, the proposed technique compares the hash values of blocks to detect blocks of the same

hash values as clones.

3.2.2 Step 2: Editing source files

Using Extract Method refactoring on one of the clone sets detected in Step1, source files are

automatically edited. Figure 21 shows an example of automatically editing source files.

It is possible to reduce LoC because each of the clones is replaced to a method invocation by

extracting clones as a method. This extracted method is declared as a static method in the class

made in Preprocessing source files changes (see Section 3.1). The method is invoked with its fully

qualified name.
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if (x > y) {
int temp = x;
x = y;
y = temp;

}

if (a > b) {
int temp = a;
a = b;
b = temp;

}

int[] a0 = {a}, a1 = {b};
extracted(a0, a1);
a = a0[0]; b = a1[0];

int[] a2 = {x}, a3 = {y};
extracted(a2, a3);
x = a2[0]; y = a3[0];

void extracted(int[] p0,int[] p1){
if (p0[0] > p1[0]) {

int temp = p0[0];
p0[0] = p1[0];
p1[0] = temp;

}
} 

Clone sets Edited source code

Extracted and declared

Replacing method call
pass by reference

Figure 21: Editing source files

In practice, we need to take care of changes of variables on Extract Method refactoring. For

example, when only one of the variables is changed in the code fragment, Extract Method refactoring

can be performed by returning the variable and assigning it in the caller place. However, in the

Java language specification, it is impossible to return two or more parameters simultaneously.

Extract Method refactoring on such clones is not realistic. Unfortunately, examining whether or

not each variable is changed in the target code fragment requires deep source code analysis. Thus,

In this part, we implemented our tool to pass arguments by reference to the extracted method to

keep the external behavior. Our tool uses an array type to pass arguments by reference. Before

invoking the extracted method, arrays whose types are the same of variables in the target code

fragment are newly defined and initialized with each of the values. These arrays are passed to the

method. In the method, the array element at index zero is referenced. After invoking the method,

each array element at index zero is assigned back to each variable. These processes are devices of

implementation for automated refactoring, not for manual refactoring.

3.2.3 Step 3: Compiling and testing edited source files

In Step3, source files edited in Step2 are compiled and tested. At first, compilation is performed.

After compilation gets success, test runs. If both compilation and test get success, edited source
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files are recorded as selectable source files. If either compilation or test fails, edited source files are

not recorded.

3.2.4 Step 4: Selecting edited source files

After Step2 and Step3 are performed on each of the clone sets detected in Step1, Step4 is

performed. In Step4, the selectable source files whose reduced LoC is the largest is selected. Then,

Step1–Step4 are repeatedly performed on the selected source files.
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4 Experiment

4.1 Overview

In order to evaluate the proposed technique, we applied the proposed technique to open source

projects and compared the results obtained with the results of the existing technique. We also

investigated the differences between the clone sets merged by the proposed technique and the

existing technique. In this part, we selected the same five projects as the existing study [33],

except for Columba and Xerces, which could not be compiled on our environment19. Table 14

shows the names, versions, and total number of LoC of the target projects. In this experiment, we

omitted the test code and tutorial code of the projects. The number of LoC was measured after

applying the formatter described in Section 3.1.3.

4.2 Experimental results

4.2.1 Comparison with the existing technique

Table 15 shows the number of merged clone sets, the number of reduced LoC, the execution

time as the results of executing the proposed technique, and the table also shows the number

of refactorable clone sets and the number of estimated reducible LoC as the results of executing

the existing technique. As shown from the table, in all projects, the number of clone sets actually

merged by the proposed technique is smaller than the number of clone sets estimated as refactorable

by the existing technique. In addition, for all projects except jEdit, the number of reduced LoC

measured by the proposed technique is smaller than the number of reducible LoC estimated by

the existing technique. We considered that this is because JDeodorant judged many of the clone

sets that did not pass compilation or testing when merged to be refactorable, and as a result, the

existing technique estimated the number of LoC that can be reducible for those clone sets. Table 16

shows the number of clone sets that pass compilation and testing when merged (CS 1 in the table),

for which the proposed technique measures the number of LoC to be reduced, and the table also

shows the number of clone sets that JDeodorant judges as refactorable (CS 2 in the table), for

which the existing technique estimates the number of lines to be reduced, and their CS 2 in the

table), the number of clone sets that JDeodorant judged to be refactorable (CS 2 in the table). As

shown from the table, for each project, the number of clone sets that pass compilation and testing

when merged is less than the number of clone sets judged to be refactorable by JDeodorant. Hence,

Table 14: Experimental targets

Name Version # Total LoC

Ant 1.10.7 231,634

jEdit 5.5.0 161,329

JFreeChart 1.5.0 210,823

JMeter.Core 5.2 82,360

JRuby.Core 9.2.9.0 360,724

19Ubuntu 18.04, OpenJDK 1.8.0 222, Ant 1.10.5, CPU: 8 cores 3.6GHz, Memory: 64GB
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the number of reduced lines measured by the proposed technique may be lower than the number of

reducible lines estimated by the existing technique. However, since the proposed technique merges

only the clone sets that pass the compilation and testing when merged, the proposed technique

can measure the number of reduced LoC more accurately than the existing technique.
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Not targeted by either technique
300

Only targeted by
the proposed technique

Only targeted by
the existing technique

30 6328

Targeted by
both techniques

Figure 22: Venn diagram representing clone sets that are targeted to merge by the proposed

technique and/or the existing one

4.2.2 Investigation of differences in clone sets targeted to merge by each technique

The reason for the difference in the number of LoC reduced in the Section 4.2.1 is that the clone

sets targeted to merge are different when calculating the number of reduced LoC. Therefore, we

investigated the difference in the clone sets targeted to merge by each technique. We selected the

clone sets detected from jEdit as the target. Figure 22 shows the difference in the number of clone

sets merged by the proposed technique and the number of clone sets estimated as refactorable by

the existing technique. As shown from the figure, the clone sets merged by the proposed technique

and the clone sets estimated as refactorable by the existing technique have some clone sets in

common but also have some different clone sets. As an example, we introduce total of four clone

sets that were targeted to merge by the proposed technique but not by the existing technique and

that were targeted to merge by the existing technique but not by the proposed technique, vice

versa.

Figure 23 is a code fragment in org/gjt/sp/jedit/Buffer.java that is a clone of a code

fragment in org/gjt/sp/jedit/View.java. The variables waitSocket used in this source code

are both of type Socket. In the proposed technique, this set of clones was successfully compiled

and tested after merging (i.e., it is actually refactorable). On the other hand, the existing technique

judged that this clone set was not refactorable. JDeodorant, which is used in the existing technique,

has several conditions to determine which clones can be refactored. One of the conditions is that

“field variables cannot be parameterized.” The variable websocket used in Figure 23 is a field

variable, that condition was violated, and the existing technique was considered the clone set to
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1600 if (waitSocket != null) {
1601 try {
1602 waitSocket.getOutputStream().write('¥0');
1603 waitSocket.getOutputStream().flush();
1604 waitSocket.getInputStream().close();
1605 waitSocket.getOutputStream().close();
1606 waitSocket.close();
1607 } catch {IOException e) {
1608 // Log.log(Log.ERROR,this,io);
1609 }
1610 }

Figure 23: Example of a clone that was actually refactorable, but the existing technique did ot

target to merge because the variables in the clones were field variables

be not refactorable. Thus, there were clone sets that the existing technique judged to be not

refactorable because it violated JDeodorant’s condition. However, they were actually refactorable,

and the proposed technique was able to merge them to measure reduced LoC.

Figure 24 shows a code fragment in org/gjt/sp/gui/ExtendedGridLayout.java, which is a

clone (hereafter, clone A) of a code fragment in the same class. This clone set consisted of two

code fragments. On the other hand, the code fragments in lines 775–779, 781–785, and 787–792 of

Figure 24 are also clones (hereafter, clone B). This clone set consisted of six code fragments. In this

example, clone A contains clone B. Using the formula (4) described in section 2.10, we can expect

a reduction of 16 lines when merging clone A and 17 lines when merging clone B. Therefore, the

existing technique that uses the greedy algorithm only targeted clone B and was not able to target

clone A. On the other hand, the proposed technique was able to both clone A and B, because it

first merged clone B and then detects clone A after replacing the code fragment of clone B with a

method call. Thus, there were clone sets that were not targeted to merge by the existing technique

due to the greedy method but were merged by the proposed technique.

Figure 25 is a code fragment in org/gjt/sp/jedit/GUIUtilities.java, which is a clone of the

code fragment in org.gjt.sp.jeit.gui.ActionBar.java. Both classes had dispose methods,

but there was no inheritance relationship between the two classes. Therefore, the clone set was

Table 16: The number of CS 1 and CS 2

Name # CS 1 # CS 2 # Intersection

Ant 225 292 105

jEdit 163 211 118

JFreeChart 377 539 275

JMeter.Core 48 68 40

JRuby.Core 60 396 40
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773 for (int col = fromCol; col < toCol; col++) {
774 int minimumColWidth = minimumColWidths[col];
775 if ((Integer.MAX_VALUE - minimumColWidth) < ...) {
776 currentMinimumColWidth = Integer.MAX_VALUE;
777 } else {
778 currentMinimumColWidth += minimumColWidth;
779 }
780 int preferredColWidth = preferredColWidths[col];
781 if ((Integer.MAX_VALUE - preferredColWidth) < ...) {
782 currentPreferredColWidth = Integer.MAX_VALUE;
783 } else {
784 currentPreferredColWidth += preferredColWidth;
785 }
786 int maximumColWidth = maximumColWidths[col];
787 if ((Integer.MAX_VALUE - maximumColWidth) <  ...) {
788 currentMaximumColWidth = Integer.MAX_VALUE;
789 } else {
790 currentMaximumColWidth += maximumColWidth;
791 }
792 }

Figure 24: Example of a clone that the existing technique did not target to merge because of

overlapping

not refactorable. However, the existing techniques judged that the clone sets were refactorable and

targeted them to merge. On the other hand, since the proposed technique failed to compile source

code after merging, the clone set was excluded from the targets to merge.

Figure 26 is a code fragment in org/gjt/sp/jedit/TextUtilities.java, which is a clone

of a code fragment in the same class. This clone set was judged to be not refactorable by the

proposed technique because it failed to compile source code after merging. However, the clone set

was judged to be refactorable by the existing technique. The variable buf is used in lines 965, 966,

969, and 972 of this code fragment. In one of the two code fragments in the clone set, the type

of buf variable is StringBuilder, while in the other, the type of buf variable is StringBuffer.

Both of these two types inherit from the AbstractStringBuilder class. Therefore, the clone set

can be refactored by declaring the parameter of an extracted method as AbstractStringBuffer

type. On the other hand, since the proposed technique is implemented to generate a method from

one of the code fragments in the clone set as described in 3.2.2, it is difficult to declare the types

of the parameters in an abstract way. This is one of the future works in the implementation.

In summary, though the proposed technique needs some implementation improvements, com-

pared to the existing technique, the proposed technique calculates the number of reduced LoC by

using only the clone sets that can be merged. In other words, the proposed technique can calculate

the number of reduced LoC more accurately than the existing technique.
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1324 if (splash != null) {
1325 splash.dispose();
1326 splash = null;
1327 }

Figure 25: Example of a clone that was actually not refactorable because of the type of the variable

between the clones has no inheritance relationship, but hte existing technique targeted to merge

961 String word = st.nextToken();
962 if (lineLength == leadingWhitespaceWidth) {
963 // do nothing
964 } else if (lineLength + word.length() + 1 > ...) {
965 buf.append('¥n');
966 buf.append(leadingWhitespace);
967 lineLength = leadingWhitespaceWidth;
968 } else {
969 buf.append(' ');
970 lineLength++;
971 }
972 buf.append(word);
973 lineLength += word.length();

Figure 26: Example of a clone that was actually refactorable, but the proposed technique did not

target to merge because our implementation are insufficient
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5 Limitations

5.1 Limitations in executing the proposed technique

In this part, we showed that the proposed technique was able to calculate the number of reduced

LoC more accurately than the existing technique. However, when the conditions for calculating

the number of reducible LoC are limited, it is necessary to use the existing technique instead of

the proposed technique. For such situations, we discuss the execution environment and execution

time of both techniques.

5.1.1 Limitations in the execution environment

In order to execute the proposed technique, the target software must be compiled and tested.

Therefore, it is difficult to execute the proposed technique if the environment for compiling and

testing the target software is limited and the number of computers that can provide the environment

is limited. In such a case, the existing technique should be used.

On the other hand, in order to execute the existing technique, the external tools CCFinderX [41]

and JDeodorant [34] are required to run the existing technique. Therefore, if the uses do not have

the equipment to use these external tools, they should use the proposed technique.

5.1.2 Limitations in the execution time

In this part, we showed that the proposed technique was able to measure the number of reduced

LoC more accurately than the existing technique for software with hundreds of thousands of LoC

in a practical time. Therefore, we consider that the proposed technique should be used instead of

the existing technique for software with hundreds of thousands of LoC.

On the other hand, the proposed technique should not be used to measure the number of

reducible LoC for large software that requires a long time to compile and test. This is because

the proposed technique repeatedly compiles and tests the software and thus may not be able to

measure the number of reduced LoC in a practical time. The proposed technique can be used when

the target software uses incremental builds, which makes the second and subsequent compile and

test faster. However, in other cases, the use of the existing technique should be considered.

5.2 Limitations in the implementation

In this part, various limitations are given to the implementation of the proposed technique.

The limitations given are as follows.

5.2.1 All extracted methods are declared in one class

In our implementation, all methods extracted by refactoring are declared in a single class. This

reason this limitation was given that when merging clones that span multiple classes, we thought

it would be difficult to automatically determine the class to declare the extracted methods. When

the developer performs refactoring, the extracted method will be declared in the appropriate class

based on the developer’s judgment.
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5.2.2 Clones are detected block by block

In our implementation, the clones are detected in block-level. The reason this limitation was

given is that we considered that clones detected in block-level are easier to extract as a method.

When developers conduct the refactoring, not only blocks but also continuous statement lines are

targeted to refactor.

5.2.3 Code fragments that contain return statements are not detected as clones

In our implementation, code fragments that contain return statements are not detected as clones.

The reason this limitation was given is that we thought it would be difficult to automatically

perform extract method on code fragments that contain return statements. This limitation does

not mean that developers will not refactor the clones that contain return statement.

5.2.4 Arguments are passed by reference to the extracted method

In the implementation of this part, arguments are passed by reference to the extracted methods.

This is because we thought it would be difficult to automatically determine whether the variables

given as arguments are changed in the method. When developers conduct refactoring, they should

check whether the variables given as arguments are changed in the method and return the variable

that is changed in the method.
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6 Conclusion

In this part, we proposed a technique to measure the number of reduced LoC more accurately

based on the results of clone refactoring. The proposed technique repeatedly and automatically

performs clone detection, merging them, source code compilation, and testing on the target source

code. The experimental results show that the proposed technique can merge only clones that

can be actually refactored and to calculate the number of reduced LoC more accurately than the

existing technique.

The following subsections are our future works.

Utilizing other refactoring patterns

At this moment, the proposed technique utilizes Extract Method pattern to remove clones.

However, there are various ways to remove clones: for example, Pull Up Method or Form Template

Method. Considering other refactoring patterns to remove clones, calculated reducible LoC will get

closer to the real value when developers appropriately remove clones.

Improving the implementation

As described in Section 4.2.2, we encountered compilation errors in the experiment. However,

most of such compilation errors are avoidable if we devise an implementation. If we do so, we will

be able to get better reducible LoC.

Measuring the execution time on large software

In this part, we showed that the proposed technique was able to measure the number of reduced

LoC in a practical time for software with hundreds of thousands of LoC. On the other hand, we did

not measure the execution time for large-scale software that requires a long time for compilation

and testing. It is important to confirm whether or not the proposed technique can be applied to

such software in the future.
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A Available files

An executable file of NIL https://zenodo.org/record/4492665

Source code of NIL https://github.com/kusumotolab/NIL

Manual validation descriptions of large-variance clones https://zenodo.org/record/4490845.

Large-variance clones used in Section 3.3.2 https://zenodo.org/record/4491016.

Clones used in Section 3.4.1 https://zenodo.org/record/4491052.

Manual validation descriptions of general clones https://zenodo.org/record/4493069.

Codebases with various sizes https://zenodo.org/record/4491208.

Source code of CLIONE https://github.com/T45K/CLIONE
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B Hunt-Szymanski Algorithm

Algorithm 2: Hunt-Szymanski Algorithm

Input: element array A[1 : n], B[1 : n];

Output: Printing the LCS between A and B

1: // Identifiers

2: integer array THREASH[0 : n];

3: list array MATCHLIST [1 : n];

4: pointer array LINK[1 : n];

5: pointer PTR;

6: // Step 1: build linked list

7: for i := 1 step 1 until n do

8: set list array MATCHLIST [i] := ⟨j1, j2, . . . , jp⟩ such that

j1 > j2 > . . . > jp and A[i] = B[jq] for 1 ≤ q ≤ p;

9: end for

10: // Step 2: initialize THREASH array

11: THREASH[0] := 0;

12: for i := 1 step 1 until n do

13: THREASH[i] := n+ 1;

14: end for

15: LINK[0] := null;

16: // Step 3: compute successive THREASH values

17: for i := 1 step 1 until n do

18: for all j on MATCHLIST [i] do

19: find k such that THREASH[k − 1] < j ≤ THREASH[k];

20: if j < THREASH[k] then

21: THREAS[k] := j;

22: LINK[k] := newnode(i, k, LINK[k − 1]);

23: end if

24: end for

25: end for

26: // Step 4: recover the LCS in reverse order

27: k := largestksuchthatTHREASH[k] ̸= n+ 1;

28: PTR := LINK[k];

29: while PTR ̸= null do

30: print (i, j) pair pointed to by PTR;

31: advance PTR;

32: end while
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