
How Weak Reference is Used in Java Projects?
Yoshiki Higo∗, Shinsuke Matsumoto∗, Taeyoung Kim† and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

{higo, shinsuke, kim-tyng, kusumoto}@ist.osaka-u.ac.jp

Abstract—Many programming languages have a sys-
tem of garbage collection to automate memory man-
agement. Problems such as unexpected memory leak
still may occur due to the automation of memory
management. Weak reference has been proposed as a
solution to such problems. However, the use of weak ref-
erence often requires consideration of memory release
timing, which is difficult for developers. In this study,
we investigate the use of weak reference on open source
projects. More concretely, we investigated the domain
of software projects where the weak reference was used,
the timing of the introduction of the weak reference, the
usage method, the presence or absence of the test code
for weak reference, and the case of failure to introduce
weak reference in the Java language. The survey showed
that weak references were used in 73 repositories, about
one-third of the total 202 repositories, and that weak
references were most common in test code.

Index Terms—Weak reference, Garbage collection,
Java, GitHub

I. Introduction
Garbage collection (in short, GC) is a system for auto-

mated memory management used in many programming
languages [1]. GC liberates developers from managing
memory themselves because GC automatically collects
unnecessary objects. Whether an object is unnecessary
or not is determined by reachability from other objects.
Objects referenced by other objects are reachable and are
not collected because they are judged not to be unnec-
essary. Objects with no references from other objects are
unreachable, and GC collects such objects as unnecessary
objects.
However, there is still a problem in the memory manage-

ment by GC. If objects that will not be used in the future
are reachable from other objects, they are not collected
by GC. As a result, unused objects remain in memory,
causing a memory leak.
In GC, developers cannot specify a specific object to

instruct forced collection. As a way of specifying objects
to be collected by developers, reference called weak refer-
ence (in short,WR) has been proposed [2]. WR is treated
differently from strong reference1 in the GC mechanism.
Objects referenced only by WR are treated as unreachable
and are collected by GC. Consequently, by referring to an
object using WR, it can be specified as a GC target.
However, there are some considerations for using WR

effectively. First, developers need to consider the timing at
1Ordinary reference is also called strong reference in this paper, as

opposed to WR.

1 WeakReference<Socket> ref
= new WeakReference<Socket>(new Socket());

...
90 Socket s = ref.get();
91 if (s == null) {
92 //
93 }
94 else {
95 //
96 }

Fig. 1: An example of class WeakReference

which weakly referenced objects will be collected. Objects
having at least one strong reference from other objects are
not collected, and GC collects objects referenced only by
WR. Thus, it is necessary to predict when an object will
be referenced only from WR or when all strong references
to the object will be lost, and design the software so that
the object can be collected when it is no longer necessary.
Next, we need to consider the timing at which GC collects
the objects referenced only by WRs. Instead of being
collected as soon as the object becomes a GC target, GC
runs at regular intervals. When collecting an object by GC,
a null pointer is inserted in the WR. If developers use a
WR without considering such timing, an unexpected error
will occur.
Various studies performed data mining on GitHub

repositories [3], [4]. Some research tried to solve the prob-
lem of Java memory leak [5], [6]. However, there is no
study of substantial investigation on the use of WR. In
this study, we investigated how WR is used in open source
software written in Java. More concretely, we investigated
the domain of Java projects where WR was used, the WR’s
introduction time, the method of use, the existence of the
test, and the case of the failure.

II. Preliminaries
A. Weak Reference in Java
The following two classes are provided for WR in the

Java standard library.
• java.lang.ref.WeakReference<T>
• java.util.WeakHashMap<K,V>

The former is a class of WR for type T. Figure 1 shows an
example of how to use class WeakReference. The latter
and the normal hash map (java.util.HashMap<K,V>)
share almost the same functions. The difference is when a
weakly referenced key object is collected, the reference to
the value object of the pair is lost, and if there is no strong

445

2020 27th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/20/$31.00 ©2020 IEEE
DOI 10.1109/APSEC51365.2020.00023

reference to the value object, it is collected together with
the key object. Key-value pairs of key objects that are
no longer necessary are automatically removed from the
WeakHashMap. This has the advantage that developers
do not have to worry about deleting unnecessary key-value
pairs.

B. Target Projects

The experimental targets are Java projects on GitHub.
In this study, to objectively investigate the domains of
projects that use WR, we selected 202 Java projects from
the targets of Borges’ experiment [3]. Of the 202 projects,
73 projects used WRs.
In some of this study, it was necessary to look manually

at the code and change history. We picked up the top
10 projects with the highest stars out of the 73 projects
that used WRs. Table I shows project names under the
investigation and the number of stars at the end of 2018.

III. Research Questions

We set up six research questions. By clarifying the
answers to these RQs, we try to understand the actual
use of WR. We also describe our answers to the research
questions here.

RQ1: in which domain WR is used?
Our aim is to understand which domain projects use

WR and what features the projects have.
Our Answer� �
Of the 202 projects targeted, the 73 repositories used
WR, which was unexpectedly high. Among them, WR
was often used in System software and Software tools
domains. The authors consider that WR is often in-
troduced where there is a strong demand for software
performance.

� �
RQ2: when WR is introduced?
We investigate when WR is introduced in each project

to understand the purpose for which WR is mainly intro-
duced. The introduction timing is classified into two, (1)
implementing a new function and (2) improve/maintain
an existing function.

TABLE I: Top 10 stars projects
Project Stars

ReactiveX/RxJava 36,206
elastic/elasticsearch 35,955
spring-projects/spring-boot 30,868
square/okhttp 29,609
google/guava 27,988
PhilJay/MPAndroidChart 24,799
spring-projects/spring-framework 24,612
bumptech/glide 23,869
square/leakcanary 21,061
zxing/zxing 20,623

Our Answer� �
WR was mainly introduced when creating new source
files, that is, when adding new functions to software.

� �

RQ3: how WR is used?

We try to find out how WR is used. By knowing how to
use WR in real-world situations, we can understand WR’s
primary uses and the typical code patterns that use WR.

Our Answer� �
The use of WR in test code is an unexpected result
for the authors. In particular, the most common use
of WR in test code may mean that test patterns
using WR were already widely known for developers.
Other usage patterns of WR are described in Subsec-
tion IV-C. Such patterns will be useful for developers
who are not familiar with WR.

� �

RQ4: is the code using WR tested?

Making test code is essential in software development.
Thus, we investigate whether the code using WR is tested
sufficiently or not.

Our Answer� �
Code using WR was not tested much. The authors
consider that there is no test for WR because the
pattern of the code for testing WR is not well known,
rather than the difficulty of using WR.

� �

RQ5: do developers stop using WR?

To determine whether using WR is difficult, we investi-
gate whether there are any cases where developers stopped
using WR due to unexpected problems.

Our Answer� �
There were some cases where developers stopped
using WR due to unexpected problems. To avoid
such problems, the introduction of WR should be
determined with great care.

� �

RQ6: is using weak reference effective for perfor-
mance?

To check whether WR is effective for performance, we
conducted a performance test on an open source projects.
We investigate whether there is any performance difference
between the existing code using WR and the code modified
not to use WR.

446

Our Answer� �
We conducted experiments using open source software
and confirmed that WR was effective for software
performance. In applications with all references to
image data, abnormal termination occurred even in
the original library where WR was used. Still, it is
not common processing to load 1.6 GB of image data
at once and do something with such data. In mobile
applications, it is more common to repeat loading
and unloading for a few images. In such a case, the
existing library using WR worked well, and the code
modified without WR terminated abnormally. The
authors considered that WR is an effective way to
automatically collect unnecessary objects and prevent
a memory leak from those results.

� �
IV. Experiment

A. RQ1: in which domain WR is used?
Procedure: the targets are the 202 Java projects that

were used in the experiment by Borges et al. [3]. They
classified the 202 projects into the following six domains.

• Application software (in short, Application)
• System software (System)
• Web libraries and frameworks (Web)
• Non-web libraries and frameworks (Non-web)
• Software tools (Tools)
• Documentation (Doc.)
We used GitHub’s code search API2 to determine

whether WR was used in each project. A code search
was performed using two keywords ‘WeakReference’ and
‘WeakHashMap’ for each project, and if the number of
Java source files in the search results was one or more, it
was treated as using WR.
Results: Figure 2 shows the results. ALL is the dis-

tribution of all the 202 Java projects, and WEAK is the
distribution of the 73 projects using WR. WR is used in
44 projects in the non-web domain, which is the highest
number; Regarding the ratio of WEAK/ALL, WR is used
in more than half of the projects in the System and Tools
domains.

B. RQ2: when WR is introduced?
Procedure: we analyzed the change history of source

files in the repositories where WR was used to find out
when WR had been firstly introduced in the source files.
The introduction time was classified into two cases, (1)
when the source file was created and (2) when it was
updated. We assume that WR is introduced for the fol-
lowing purposes. For the first case, WR was introduced
when a new function was implemented. For the second
case, WR was introduced when an existing function was
improved/maintained.

2https://developer.github.com/v3/search/

Fig. 2: Project domains

We defined introduction timing as when keywords
of ‘WeakReference’ or ‘WeakHashMap’ appeared in the
change history of the source files. If a keyword is included
in the change history when the source file was created, we
regarded that WR was introduced when the file was gen-
erated. Otherwise, if a keyword is included in any change
histories after the source file was created, we regarded that
WR was introduced when the file was updated.
Results: Table II shows the investigation results

on introduction timing. For both WeakReference and
WeakHashMap, the number of introducing WR in creating
files is about three times as many as the number of
updating files. Considering the assumptions, WR is often
introduced to add new functions to software rather than
improve/maintain existing functions.

C. RQ3: how WR is used?
Procedure: the targets for RQ3 are the ten projects

in Table I. A total of 95 source files used WR in those
projects. We carefully read the code where WR to inves-
tigate how WR was used. We classified the usages of WR
into the following six categories:

• Testing,
• Memory leak prevention,
• Caching,
• API implementation,
• Comment, and
• Unnecessary processing avoidance.
Testing means that WR is used in test code. Memory

leak prevention means that unnecessary objects are col-
lected by using WR. Cache represents a case where the
results of calculations are temporarily stored using WR.
API implementation means a case in which the function
of WR is provided as an API as it is. For example, a class
that inherits WeakReference is a typical case. Comment
is not a code, but a WR keyword (‘WeakReference’ and

TABLE II: Introduction timing of WR
File creation File update

WeakReference 247 81
WeakHashMap 75 29
Total 322 110

447

1 @Test public void successDetaches() {
2 Disposable d = Disposables.empty();
3 WeakReference<Disposable> wr

= new WeakReference<Disposable>(d);
4
5 TestObserver to = new TestObserver(d);
6 to.test();
7
8 d = null;
9 System.gc();

10 assertNull(wr.get());
11 }

(a) Testing

1 class LineChartRenderer {
2 WeakReference<Bitmap> mDrawBitmap;
3 void drawData() {
4 Bitmap bitmap = mDrawBitmap == null ?

null : mDrawBitmap.get();
5 if (bitmap == null) {
6 bitmap = Bitmap.createBitmap();
7 mDrawBitmap = new WeakReference<>(bitmap);
8 }
9 drawBitmap(bitmap);

10 }
11 }

(b) Memory leak prevention

1 class SizeDeterminerLayoutListener {
2 WeakReference<SizeDeterminer> sizeDeterminerRef;
3
4 SizeDeterminerLayoutListener(SizeDeterminer sd){
5 sizeDeterminerRef = new WeakReference<>(sd);
6 }
7 boolean onPreDraw() {
8 SizeDeterminer sd = sizeDeterminerRef.get();
9 if (sd != null) sd.check();

10 return true;
11 }
12 }

(c) Unnecesarry processing avoidance

Fig. 3: Code samples using WR

‘WeakHashMap’) appearing in comments. Unnecessary
processing avoidance means a case where once a weakly-
referenced object is collected, the processing related to
that object is not performed.
Results: When WR is used multiple times in a file,

each usage is counted individually. Table III shows that
WR is most often used in test code. We show some typical
code examples. Figure 3(a) shows an example of using WR
for Testing. The code checks whether the object referred
by to does not cause memory leak after a given input
d is processed. The WR contains a null pointer after
the reference object is collected. Thus, GC invoked by
System.gc() makes the value of the WR (wr.get() on
line 10) a null pointer if memory leak does not exist.

TABLE III: Purposes of using WR
Purpose # of using WR

Testing 37
Memory leak prevention 25
Caching 17
API implementation 13
Comment 13
Unnecessary processing avoidance 6

Developers can check the existence of memory leak with
this test code.
Figure 3(b) shows the code that a weakly references

object bitmap as an intermediate product to prevent a
memory leak. If the intermediate object is collected and
the WR is a null pointer, the code recreates a new object
before starting the process and recreate a WR to the
new object. Using WR, the intermediate product’s object
can be collected, and the memory leak can be prevented.
Moreover, if the same processing is performed before the
intermediate product’s object is collected, the calculation
can be saved because the object does not need to be
created.
In the case of Caching, the pattern of the code is the

same as Memory leak prevention. The difference is that the
object of the intermediate product is weakly referenced
in the case of Memory leak prevention, while the object
of the calculation results is weakly referenced in the case
of Caching. By weakly referencing the calculation results’
object, if there are cached results, the calculation can be
saved. Besides, it is possible to prevent memory leak from
occurring for objects with the same calculation results.
Figure 3(c) shows example code that avoids unnecessary

processing. Weakly referring to object sd given as input,
and if the object has been collected, GC does not judge
that the processing on the object (the 9th line in this
figure) is unnecessary.

D. RQ4: is the code using WR tested?
Procedure: the targets for RQ4 are the ten projects

in Table I. Out of the total of 95 source files that used
WRs, 58 were not test code. We checked whether test code
existed for each of the 58 source files. If test code existed,
we also checked whether the test code tests the use of WR
or not.
Results: Test code existed for 38 files out of the 58

source files. We checked all the test code for the 38 source
files and found that WR tests existed for only ten source
files, which is only about one-sixth of the 58 source files,
including WR’s usage.

E. RQ5: do developers stop using WR?
Procedure: the targets for RQ5 are the ten projects

in Table I. We manually examined the change history
including the keywords of WR (‘WeakReference’ and
‘WeakHashMap’) for each project to see if there were any
cases in which the use of WR was stopped. In this study,
we used the fact that the WR classes were no longer used
as a criterion for stopping WR’s use.

TABLE IV: Failure cases of WR introducetion
Project name # of failures

ReactiveX/RxJava 1
spring-projects/spring-framework 2
bumptech/glide 2
Total 5

448

Results: Table IV shows the project names where the
introduction of WR failed and the number of such cases in
each project. Three of the ten projects failed to introduce
WR. Besides, there were five cases where the introduction
of WR failed in the three projects.

RxJava and Glide failed to introduce class
WeakReference. The failure was that the weakly
referenced object was collected earlier than expected,
which caused the processing related to the object not
executed correctly. In other words, the problem occurred
because developers used WR without considering the
collection timing of the WR object.
In Spring-framework, introduction of WeakHashMap

failed. The purpose of using WeakHashMap was caching
the calculation results to increase the execution speed.
However, this class cannot be used in multiple threads, and
the execution speed is rather slow in a multi-core processor
system. In this case, the problem occurred because de-
velopers did not understand the features of WeakHashMap
deeply, not because of the difficulty in using WR.

F. RQ6: performance test
Procedure: project ‘bumptech/glide‘ was selected as

the object of this experiment. Glide3 is an image loading
library for Android. This library internally has a cache
for image data using WR. Original Glide code using WR
and a modified version not using WR are executed in the
same situation. By comparing the performance of the two,
we check whether the WR is useful. In the performance
test, the following two types of Android applications using
Glide were executed:
1) an application with reference to image data, and
2) an application with no reference to image data.
The application 1) has strong references to all image

data when loading the entire image. The application 2)
deletes the reference to the image as soon as the image
is loaded. That is, the application has no reference to the
image data.
The images to be loaded were 400 JPEG images with

an average of 4 MB, and the total size was about 1.6 GB.
The images were loaded via HTTP, and a server was set
up to distribute image data using software called HFS4.
The emulator’s environment to execute the application is
Android 8.1 (Oreo) OS and 1.5GB RAM.
Results: The experimental results are shown in Ta-

ble V. Table V shows that all three “aborted” results
were the same. After loading 200 images, the application

3https://github.com/bumptech/glide
4http://www.rejetto.com/hfs/

TABLE V: Results of performance test
Application Original Glide Modified Glide

with reference aborted aborted
without reference completed aborted

was forcibly terminated immediately after the memory ex-
ceeded 1 GB. The cause of such termination is considered
to be that the object of the image data referred to by the
application was not collected at a proper time, and the
memory overflowed.
“completed” in the results in Table V is a combination of

an original Glide that uses WR and an application that has
no reference to image data. Here, “completed” means that
all images have been successfully loaded. The “complete”
was possible because the image data objects were properly
collected, and the memory leak did not occur because the
references to the image data were only WR in Glide.

V. Threats to Validity
In this study, the code and change history were manually

inspected. Although we have not made much quantitative
interpretation of the experimental results, the answers to
the research questions are qualitative, such as the type
of WR usage and the case of failing to introduce WR.
Therefore, it is considered sufficient to check the code and
change history in this study manually.

VI. Conclustion
In this study, we investigated the use of weak reference

in Java projects. We set up six RQs, domains where weak
reference was used, timing of introducing weak reference,
purposes of using weak reference, testing for weak ref-
erence, cases of weak reference introduction failure, and
impacts on performance were examined.
As future work, we plan to define code patterns of

weak reference usage by further investigating the code
that uses weak reference. We will also try to automate the
introduction of weak reference by developing a mechanism
of suggesting the use of weak reference to developers by
using defined code patterns.

References
[1] P. R. Wilson, “Uniprocessor garbage collection techniques,” in

Memory Management. Springer, 1992, pp. 1–42.
[2] “Reference Objects and Garbage Collection,” http://pawlan.

com/monica/articles/refobjs,
accessed: 2020-01-05.

[3] H. Borges, A. Hora, and M. T. Valente, “Understanding the
factors that impact the popularity of github repositories,” in
the 32nd International Conference on Software Maintenance and
Evolution, 2016, pp. 334–344.

[4] C. Vendome, M. Linares-Vasquez, G. Bavota, M. D. Penta,
D. German, and D. Poshyvanyk, “License usage and changes:
A large-scale study of java projects on github,” in the 23rd
International Conference on Program Comprehension, 2015, pp.
218–228.

[5] W. De Pauw and G. Sevitsky, “Visualizing reference patterns for
solving memory leaks in java,” in European Conference on Object-
Oriented Programming. Springer, 1999, pp. 116–134.

[6] R. Shaham, E. K. Kolodner, and S. Sagiv, “Automatic removal of
array memory leaks in java,” in the 9th International Conference
on Compiler Construction, 2000, p. 50–66.

449

