
CLIONE: Clone Modification Support
for Pull Request Based Development

Tasuku Nakagawa, Yoshiki Higo, and Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka, Japan

{t-nakagw, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—A code clone (clone) is known as one of the factors
that makes software maintenance difficult. Thus, in software
maintenance, clone modification is essential. An existing study
proposed a tool that notifies developers of information about
clone changes so that the developers can modify clones efficiently.
However, the existing tool is premised on regular execution and
not designed to be triggered by external factors except for time.
Hence, the existing tool is difficult to be executed triggered by
development workflow, such as modifying source code or merging
branches , and we think this causes some issues. Consequently, in
this study, we propose a new clone modification support technique
aimed to integrate into pull request (PR) based development
for solving those issues. The proposed technique detects code
fragments that need modifications by tracking clones at the time
of creating PRs. Moreover, we made three improvements for more
accurate clone change tracking. Additionally, we implemented
the proposed technique as a software tool, CLIONE. To evaluate
CLIONE, we investigated the proportion of PRs in which clones
have been modified non-simultaneously, and also we compared
the results of clone change tracking with the existing tool.
As a result, 11.9%∼30.4% of PRs included non-simultaneously
modified clones, and we confirmed that CLIONE was able to track
clone changes more accurately than the existing tool. CLIONE is
available at https://github.com/T45K/CLIONE.

Index Terms—Code Clone, Software Maintenance, Pull Re-
quest Based Development

I. INTRODUCTION

A code clone (in short, clone) is a code fragment that is

identical or similar to other code fragments in source code.

Code cloning has been pointed out as one of the major prob-

lems in the maintenance process of software development [1].

Thus, there are many studies on simultaneous modification and

refactoring support for clones [2], [3].

An existing study proposed a clone change notification tool,

Clone Notifier, to improve the efficiency of these tasks [4].

Clone Notifier takes two revisions of a target project as inputs

and notifies developers of information about clone changes.

Clone Notifier is designed for industry use [5] and is premised

on one execution a day. On the other hand, Clone Notifier is

difficult to be executed triggered by development workflow,

such as modifying source code or merging branches because

it is not designed to be triggered by external factors except for

time. For this reason, we think there are the following issues

when considering the use of Clone Notifier in development,

such as OSS development, in which modifying source code or

merging branches are frequently conducted [6].

• The first issue is that even if code fragments need

modifications as a result of clone changes, the code

fragments will not be notified promptly. Because Clone
Notifier is executed once a day, once Clone Notifier
has been executed, there is a day interval until the next

execution. On the other hand, if Clone Notifier users set

its execution interval shorter (e.g., five minutes) to solve

this issue, information of clone changes is notified to the

users frequently even if the source code is not modified.

Hence, the notification probably annoys the users. If clone

change notification is triggered by development workflow,

code fragments to be modified will be notified in line

with the development workflow, and the developers will

be able to respond to the code fragments promptly.

• The second issue is that if a large amount of source code

modifications are conducted, and as a result, many clones

may be changed improperly (i.e., many code fragments

need modifications), the information is notified all at

once. In this case, the users will be forced to check

a large amount of clone change information, and they

may overlook serious clone changes. If clone change

notification is triggered by development workflow, code

fragments to be modified are notified in line with each

source code modification, and the developers will be able

to avoid overlooking serious clone changes.

• The third issue is that code fragments to be modified are

probably merged into the main branch when developing

with version control systems (in short, VCS). In such

development, the main branch should be bug-free and

always ready for release. Therefore, code fragments to be

modified that may contain bugs should be checked before

the topic branch is merged. However, Clone Notifier,
which is premised on regular execution, is difficult to de-

tect such code fragments before merging topic branches.

If clone change notification is triggered by development

workflow, the possibility of bugs merged into the main

branch can be reduced because such code fragments are

detected before merging topic branches.

Consequently, in this study, we propose a new clone modi-

fication support technique aimed to integrate into pull request

based development for solving these issues. The proposed

technique detects code fragments that need modifications by

455

2020 27th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/20/$31.00 ©2020 IEEE
DOI 10.1109/APSEC51365.2020.00037

private IRubyObject all_pBlockless(ThreadContext context) {
for (int i = 0; i < realLength; i++) {
if (!eltOk(i).isTrue()) return context.runtime.getFalse();

}

return context.runtime.getTrue();
}

- private IRubyObject any_pBlockless(ThreadContext context) {
- for (int i = 0; i < realLength; i++) {
- if (eltOk(i).isTrue()) return context.runtime.getTrue();
- }
-
- return context.runtime.getFalse();
- }

+ private IRubyObject any_pBlockless(ThreadContext context, IRubyObject[] args) {
+ IRubyObject pattern = args.length > 0 ? args[0] : null;
+ if (pattern == null) {
+ for (int i = 0; i < realLength; i++) {
+ if (eltOk(i).isTrue()) return context.runtime.getTrue();
+ }
+ } else {
+ for (int i = 0; i < realLength; i++) {
+ if (pattern.callMethod(context, "===", eltOk(i)).isTrue())
+ return context.runtime.getTrue();
+ }
+ }
+
+ return context.runtime.getFalse();
+ }

core/src/main/java/org/jruby/RubyArray.java

Fig. 1: A non-simultaneous modification in JRuby

tracking clone changes at the time of creating pull requests

(in short, PR). Moreover, we made three improvements for

more accurate clone change tracking than Clone Notifier.
Additionally, we implemented the proposed technique as a

software tool, CLIONE1.

To evaluate CLIONE, we conducted two experiments, an

investigation of the proportion of PRs in which clones have

been modified non-simultaneously (i.e., some of clones were

modified but the others were not modified) and a comparison

of the results of CLIONE’s clone change tracking with the

Clone Notifier’s one. As a result, 11.9%∼30.4% of PRs are

in which clones were modified non-simultaneously, and we

confirmed that CLIONE was able to track clone changes more

accurately than Clone Notifier.

II. RESEARCH MOTIVATION

Figure 1 shows two methods in JRuby. In PR#50962,

while any pBlockless method was modified, all pBlockless
method was not modified. This non-simultaneous modification

introduced a bug that caused an error when calling a Ruby

API, which internally calls all pBlockless method in JRuby
into the main branch. As a result, JRuby, which included

this bug, was released at version 9.2.0.0. This bug was fixed

in PR#52983. If the developers used CLIONE, they could

avoid introducing the bug into the main branch. Besides,

Clone Notifier cannot find this non-simultaneous modification

because any pBlockless method was entirely changed, and

the clone detectors used in Clone Notifier cannot detect the

modified method as a clone of all pBlockless method (detail

is explained in Section IV-B).

1available at https://github.com/T45K/CLIONE
2https://github.com/jruby/jruby/pull/5096
3https://github.com/jruby/jruby/pull/5298

III. PRELIMINARIES

A. Code clone

A clone is a code fragment that is identical or similar to

another code fragment. A set of code fragments in which any

pair is a pair of clones is called clone set.
Clones are classified as follows based on the degree of

similarity to their correspondences [7].

• Type-1 is an exact copy without modifications (except

for white spaces and comments).

• Type-2 is a syntactically identical copy; only variables,

types, or function identifiers were changed.

• Type-3 is a copy with further modifications; statements

were changed, added, or removed.

So far, many clone detection techniques and tools have

been proposed and developed [8]. In this paper, we introduce

a couple of popular detection techniques that are especially

related to this research.

Text-based clone detection

This technique firstly normalizes the target source code and

detects clones by comparing code fragments, such as methods

or code blocks in the normalized source code. NiCad [9],

which detects Type-3 clones from normalized source code by

Longest Common Subsequence algorithm, is a well-known

text-based clone detection tool.

Token-based clone detection

This technique firstly tokenizes the target source code and

detects clones by using the token information. CCFinder [10]

and SourcererCC [11] are well-known token-based clone

detection tools. CCFinder detects Type-2 clones by comparing

token sequences. SourcererCC detects Type-3 clones by

using token types and their appearance frequencies.

B. Clone Notifier

Tokui et al. developed a tool, Clone Notifier, which sup-

ports developers to modify clones [4]. Clone Notifier takes

two revisions of a project as inputs, and based on the changes

of the source code between the two revisions, it classifies

clone sets under four categories: Stable, New, Deleted, and

Changed. First, Clone Notifier detects clones from each

revision by using existing clone detectors [11]–[13]. Next,

it tracks changes of the detected clones. Finally, it classifies

clone sets from the results of clone change tracking. Clone
Notifier is designed to be premised on regular execution (e.g.,

once a day).

C. Pull request based development

PR-based development is a development process using PR,

which is one of the features of GitHub. PR is a feature that

notifies developers of development information, such as source

code changes before a branch is merged into another one. In

PR-based development, the developers work on not the main

branch but topic branches. Once the assigned work is done,

the developer creates a PR and notify other developers of the

456

Fig. 2: An overview of CLIONE

change information, and if the changes have no problems, the

topic branch is merged to the main branch.

PR-based development is widely adopted by OSS develop-

ment [14]. Moreover, some studies have proposed techniques

that integrate existing source code analysis techniques into

PR based development for more efficient software develop-

ment [15], [16].

IV. PROPOSED TOOL: CLIONE

In this study, we propose a new clone modification support

technique aimed to integrate into development workflow. The

proposed technique detects code fragments that need modi-

fications by tracking clone changes at the time of creating

PRs. We implemented the proposed technique as a tool,

CLIONE. CLIONE is a server-side application and receives

HTTP requests which GitHub sends when developers create

PRs. Additionally, CLIONE is implemented based on GitHub

Apps4, so that it is easy to install CLIONE on GitHub projects.

A. Overview

Figure 2 shows an overview of CLIONE. First, developers

who want to use CLIONE register their GitHub accounts and

their repositories with CLIONE. After this registration, the

developers can use CLIONE by creating PRs. CLIONE tracks

clone changes between the head commit of the PR and the

commit at the point where the PR branch was created (in

short, base commit).

When the developer creates a PR, CLIONE downloads (git-
clone) the project onto its local environment. Next, CLIONE
detects clones from the head and the base commits of the PR,

respectively, by using NiCad [9] or SourcererCC [11]. Why

we select these clone detectors is each of them can detect

Type-3 clones precisely.

Next, CLIONE tracks clones to detect clone changes be-

tween the two commits. As well as Clone Notifier, to track

clones between the two commits, CLIONE calculates the over-

lapping location of clones, based on the location overlapping

function of Kim et al. [17]. Location overlapping measures

how much two code fragments cf1 and cf2 overlap each

4https://developer.github.com/apps/

other (0 ≤ LO(cf1, cf2) ≤ 1). CLIONE uses the difference

between the same file in each commit, without the added

and deleted lines. It computes the relative proportion of an

overlapped region between cf1 and the calibrated cf2.

LO(cf1, cf2) =
min(ne, oe)−max(ns, os)

ne − ns
(1)

where cf1 in the base commit spans from the line os to the line

oe, and the calibrated location of cf2 in the head commit spans

from the line ns to the line ne. If the location overlapping

between the two clones is 30% or more, CLIONE tracks from

the clone at the base commit to the clone at the head commit.

After clone tracking, based on changes of clones, CLIONE
detects non-simultaneously modified clone sets and clone sets

to be refactored as code fragments that need modifications.

Specifically, CLIONE treats clone sets where some clones

were modified but the others were not modified as non-

simultaneously modified and clone sets where some or all of

clones were newly added as targets of refactoring. Moreover,

in CLIONE, we made three improvements for more accurate

clone change tracking. We explain the improvements in Sec-

tion IV-B.

Finally, CLIONE makes a PR comment for each the code

fragments to be modified to notify the results to the developer.

In this comment, the code fragments are shown. In the case of

non-simultaneously modified clones, changed code fragments

and non-changed code fragments are shown. In the case of

clones to be refactored, all of the target code fragments are

shown. Figure 3 shows an example of PR comment about a

non-simultaneously modified clone set. In the top of the figure,

the changed piece of the changed code fragment is shown in

the diff format, the whole of changed code fragment is shown

in the middle, and the non-changed code fragment is shown

in the bottom.

By getting notifications of the results as PR comments,

developers can receive feedback promptly.

B. Improvements of clone change tracking

In CLIONE, we made three improvements to the clone

change tracking technique used in Clone Notifier,
1) code fragment tracking,

2) file rename detection, and

3) clone change judgment by comparing token sequences.

In this paper, we explain only 1) code fragment tracking

because of space limitations.

Clone Notifier treats only clone instances (code fragments

that are detected as clones) as targets of tracking. Thus, if code

fragments that are detected as clones in one of the commits

are not detected in the other commit, the code fragments are

classified added or deleted clone instances by Clone Notifier.
On the other hand, in some cases, a code fragment is not

detected as a clone because it has been modified. For example,

figure 4(a) shows two methods that are detected as clones in

the base commit, but not detected as clones in the head commit

because one of them has been modified. In this case, Clone
Notifier classifies the clone set (the two methods) as Deleted

457

Fig. 3: An example of comment about

a non-simultaneously modified clone set

because the methods are not detected as clones in the head

commit. However, this clone set should be classified as non-

simultaneous modification because only main1 method was

modified.

On the other hand, CLIONE tracks not only clone in-

stances but also code fragments, such as methods or code

blocks. Even if clones are not detected in one of the com-

mits, clone changes are trackable by tracking code fragments

themselves. In this example, CLIONE tracks the methods

themselves (figure 4(b)). As a result, CLIONE can detect

a non-simultaneously modified clone set (figure 4(c)) and

classify it appropriately.

1 void main1() {
2 int a = 0;
3 String b = "";
4 }
5
6 void main2() {
7 int c = 0;
8 String d = "";
9 }

1 void main1() {
2 int a = 0;
3 int c = 1;
4 String b = "";
5 }
6
7 void main2() {
8 int c = 0;
9 String d = "";
10 }

base commit head commit
(a) Clone instance tracking

base commit head commit

1 void main1() {
2 int a = 0;
3 String b = "";
4 }
5
6 void main2() {
7 int c = 0;
8 String d = "";
9 }

1 void main1() {
2 int a = 0;
3 int c = 1;
4 String b = "";
5 }
6
7 void main2() {
8 int c = 0;
9 String d = "";
10 }

(b) Code fragment tracking

base commit head commit

1 void main1() {
2 int a = 0;
3 String b = "";
4 }
5
6 void main2() {
7 int c = 0;
8 String d = "";
9 }

1 void main1() {
2 int a = 0;
3 int c = 1;
4 String b = "";
5 }
6
7 void main2() {
8 int c = 0;
9 String d = "";
10 }

(c) Accurate clone change tracking

Fig. 4: Improvement of clone tracking

V. EVALUATION

To evaluate CLIONE, we conducted two experiments shown

below.

Experiment 1

Experiment 1 is an investigation of the proportion of PRs in

which clones have been modified non-simultaneously. In this

experiment, we manually executed CLIONE on PRs of target

projects and investigated whether clones had been modified

simultaneously or not for each of the PRs.

Experiment 2

Experiment 2 is a comparison of the results of CLIONE’s

clone change tracking with Clone Notifier’s one. In this

experiment, we executed CLIONE and Clone Notifier on PRs

of target projects and manually counted the number of PRs in

which the results of clone change tracking of CLIONE and

Clone Notifier are different due to code fragment tracking

(explained in Section IV-B).

458

A. Experimental Targets

We selected three OSS as our experimental targets. Table I

shows the names of the projects, the number of PRs merged

by 20/7/2020, and the number of PRs in which at least a Java

file was changed (in short, target PRs). The reason why we

selected those OSS is that they are often targeted in clone

research [18]–[20] and developed in PR-based development

on GitHub.

B. Results

Results of experiment 1: Table II shows the results of ex-

periment 1. In this table, “improper PRs” means PRs in which

clones were modified non-simultaneously. All the projects

have PRs in which clones were modified non-simultaneously,

and their proportions are the range from 11.9% to 30.4%.

We consider that if the developers of the projects had used

CLIONE, they could have responded to non-simultaneously

modified clones in PRs because the clones were notified at

the time of creating PRs.

Results of experiment 2: As a result of Experiment 2,

we confirmed that in total, there were 35 PRs (27.5% of

improper PRs) in which CLIONE tracked clone changes more

accurately than Clone Notifier. On the other hand, there was

no clone change where Clone Notifier succeeded in tracking

but CLIONE failed. Therefore, CLIONE is better at clone

change tracking than Clone Notifier.

VI. CONCLUSION

In this study, we proposed a new clone modification sup-

port technique aimed to integrate into PR-based develop-

ment. The proposed technique detects code fragments that

need modifications at the time of creating PRs. Moreover,

we implemented the proposed technique as a software tool,

CLIONE. As evaluation, we investigated the proportion of PRs

in which clones have been modified non-simultaneously, and

also we compared the results of clone change tracking with the

Clone Notifier. As a result, 11.9%∼30.4% of PRs included

non-simultaneously modified clones, and we confirmed that

CLIONE was able to track clone changes more accurately

than Clone Notifier. Currently, CLIONE is available at https:

//github.com/T45K/CLIONE.

As future works, we consider evaluating usefulness of

CLIONE for developers and measuring the response time of

CLIONE’s notification after a PR was created.

TABLE I: Target OSS

Name # PRs # Target PRs
jruby/jruby 2,248 292

junit-team/junit4 848 236
google/gson 317 69

TABLE II: Results of experiment 1

Name # Target PRs # Improper PRs Proportion
jruby/jruby 292 89 30.4%

junit-team/junit4 236 28 11.9%
google/gson 60 10 16.7%

total 588 127 21.5%

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI

20H04166.

REFERENCES

[1] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug propagation through
code cloning: An empirical study,” in 2017 IEEE International Confer-
ence on Software Maintenance and Evolution, 2017, pp. 227–237.

[2] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue, “Simultaneous Modi-
fication Support based on Code Clone Analysis,” in 14th Asia-Pacific
Software Engineering Conference, 2007, pp. 262–269.

[3] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Refactoring Support
Based on Code Clone Analysis,” in Product Focused Software Process
Improvement, 2004, pp. 220–233.

[4] S. Tokui, N. Yoshida, E. Choi, and K. Inoue, “Clone Notifier: Developing
and Improving the System to Notify Changes of Code Clones,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering, 2020, pp. 642–646.

[5] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
clone change notification system into an industrial development process,”
in 2013 21st International Conference on Program Comprehension,
2013, pp. 199–206.

[6] J. Feller and B. Fitzgerald, Understanding Open Source Software Devel-
opment. USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[8] A. Sheneamer and J. K. Kalita, “A Survey of Software Clone Detection
Techniques,” International Journal of Computer Applications, 2016.

[9] J. R. Cordy and C. K. Roy, “The NiCad Clone Detector,” in 2011 IEEE
19th International Conference on Program Comprehension, 2011, pp.
219–220.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[11] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling Code Clone Detection to Big-Code,” in 2016
IEEE/ACM 38th International Conference on Software Engineering,
2016, pp. 1157–1168.

[12] “CCFinderX,” http://www.ccfinder.net/.
[13] K. Yokoi, E. Choi, N. Yoshida, and K. Inoue, “Investigating Vector-

Based Detection of Code Clones Using BigCloneBench,” in 2018 25th
Asia-Pacific Software Engineering Conference, 2018, pp. 699–700.

[14] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for It:
Determinants of Pull Request Evaluation Latency on GitHub,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
2015, pp. 367–371.

[15] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “RefBot: Intel-
ligent Software Refactoring Bot,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering, 2019, pp. 823–834.

[16] A. Carvalho, W. Luz, D. Marcı́lio, R. Bonifácio, G. Pinto, and E. Dias
Canedo, “C-3PR: A Bot for Fixing Static Analysis Violations via Pull
Requests,” in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering, 2020, pp. 161–171.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An Empirical Study
of Code Clone Genealogies,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2005,
p. 187–196.

[18] T. Nakagawa, Y. Higo, J. Matsumoto, and S. Kusumoto, “How Compact
Will My System Be? A Fully-Automated Way to Calculate LoC Reduced
by Clone Refactoring,” in 2019 26th Asia-Pacific Software Engineering
Conference, 2019, pp. 284–291.

[19] C. Ragkhitwetsagul and J. Krinke, “Using compilation/decompilation to
enhance clone detection,” in 2017 IEEE 11th International Workshop on
Software Clones, 2017, pp. 1–7.

[20] K. Uemura, A. Mori, E. Choi, and H. Iida, “Tracking method-level
clones and a case study,” in 2019 IEEE 13th International Workshop
on Software Clones, 2019, pp. 27–33.

459

