
Humpback: Code Completion System for Dockerfiles
Based on Language Models
Kaisei Hanayamaa, Shinsuke Matsumotoa and Shinji Kusumotoa

aGraduate School of Information Science and Technology, Osaka University, Suita, Osaka, 565–0871, Japan

Abstract
The object of this study is Docker, the de facto standard containerization platform. Containers in Docker are built by cre-
ating files called Dockerfiles. Managing the infrastructure as code makes it possible to incorporate knowledge gained from
conventional software development. However, infrastructure as code is a relatively new technology, some domains of which
have not been fully researched. In this study, we focus on code completion and aim to construct a system that supports the
development of Dockerfiles. The proposed code completion system, Humpback, applies machine learning to a pre-collected
dataset with long short-term memory to create language models and uses model switching to overcome a Docker-specific
code completion problem. Evaluation experiments show that Humpback has a high average accuracy of 96.9%.

Keywords
Docker, code completion, machine learning, language model, long short-term memory

1. Introduction
Server virtualization is broadly used for cost reduction
and efficient resource utilization. Among various meth-
ods of virtualization, containerization has become main-
stream [1]. Containerization creates logical compart-
ments (i.e., containers) on the host operating system.
Each container provides an independent environment.

Docker1 is the de facto standard containerization plat-
form [2]. Containers in Docker are configured by writ-
ing imperative instructions in files called Dockerfiles.
The process of managing infrastructure configuration
through machine-readable definition files is called infras-
tructure as code (IaC). IaC enables developers to manage
infrastructure configuration in the same way as applica-
tion code, allowing automated scaling and the prevention
of human error [3]. However, IaC is a relatively new tech-
nology and thus some areas are still in progress [4], such
as development support and static analysis.

In this study, we focus on code completion, a widely
used feature in software development [5]. We believe
that providing a code completion system for an emerging
technology such as Docker can considerably improve
productivity, by reusing existing knowledge, and reduce
common errors.

One concern when building a Docker-specific code
completion system is base image differences. A base im-
age, which includes a Linux distribution, is an image file

NLPaSE 2020: Natural Language Processing Advancements for
Software Engineering, December 01, 2020, Singapore
email: k-hanaym@ist.osaka-u.ac.jp (K. Hanayama);
shinsuke@ist.osaka-u.ac.jp (S. Matsumoto);
kusumoto@ist.osaka-u.ac.jp (S. Kusumoto)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.docker.com/

on which a container is created. Dockerfiles can have a
nested language; embedded scripting languages (mainly
bash) are described in a nested state in the top-level syn-
tax [1]. The contents of Dockerfiles differ considerably
depending on the base image. For example, for an base
image includes Ubuntu, the apt-get command is used
in the RUN instruction, whereas for a CentOS base image,
the dnf command is used. For accurate code completion,
base image differences must thus be taken into account.

The contributions of this paper are as follows:
1. Model switching is used to overcome a Docker-

specific problem. We introduce model switching to
overcome the problem caused by base image differences.
With model switching, language models for predictions
are switched depending on the base image. Long short-
term memory (LSTM) [6] is employed to generate lan-
guage models (section 3.2).

2. A Docker-specific code completion system, Hump-
back, is implemented. Figure 1 shows a screenshot of
Humpback. Humpback is available online and can be
used in a web browser.2 Evaluation experiments show
that Humpback has a high accuracy of 96.9% and is useful
for developing Dockerfiles (section 4.4).

2. Background

2.1. Code completion
Code completion is extensively used in software devel-
opment [5]. A pop-up dialog is used to display candidate
words after the user has typed some characters. Develop-
ers select the desired word from the list, reducing typos
and other common errors. Another benefit is the fa-
ciliation of the use of descriptive (i.e., long) names for

2https://sdl.ist.osaka-u.ac.jp/~k-hanaym/humpback/

mailto:k-hanaym@ist.osaka-u.ac.jp
mailto:shinsuke@ist.osaka-u.ac.jp
mailto:kusumoto@ist.osaka-u.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Screenshot of Humpback

variables. Manually entering long variable names is cum-
bersome and error-prone.

Traditional code completion systems display all candi-
dates, which can be extremely long list. A large number
of intelligent code completion systems have been pro-
posed to overcome this problem [7]. Systems that use
statistical language models such as N-gram and recurrent
neural network (RNN)-based approaches have achieved
high performance. Given token sequence 𝑤 of length 𝑚,
the language model gives the probability 𝑃 (𝑤1, ..., 𝑤𝑚).
This probability indicates the relative likelihood of words,
which allows the construction of code completion sys-
tems. Intelligent code completion considers the context
and calculates probabilities based on language models
to narrow the list of candidate words. Compared to a
traditional code completion system, an intelligent one
more effectively enhances developer productivity.

2.2. Docker, infrastructure as code, and
challenges

Docker, an open containerization platform, isolates appli-
cations from the development environment with contain-
ers, allowing efficient resource utilization. Docker has
become the de facto standard container technology; over
87% of information technology companies use Docker [2].

Containers in Docker can be built by interactively exe-
cuting commands or by creating configuration files called
Dockerfiles. Dockerfiles set up containers through im-
perative instructions, enabling reproducible builds. A
process for specifing the environment in which software
systems will be tested and/or deployed by configuration
scripts is called IaC. Developers can manage infrastruc-
ture configuration in the same way as application code,
allowing automated scaling and the prevention of human
error [3]. Interest in IaC has thus grown [8].

Research on IaC is still in its infancy [4]. There are rela-
tively few studies on IaC, and most of them propose tools
for implementing the practices of IaC itself. Knowledge
in software engineering, such as that on development

support and static analysis, can be applied to IaC.

3. Humpback: code completion
system for Dockerfiles

3.1. System overview
We propose Humpback, a code completion system for
Dockerfiles. Humpback helps developers to reduce er-
rors and enhance efficiency when writing Dockerfiles.
Various methods have been used to implement code com-
pletion systems. Here, we employ language models. Sta-
tistically processing pre-collected Dockerfiles and per-
forming contextual predictions makes it possible to reuse
existing knowledge. We also introduce model switching
to overcome the problem, caused by base image differ-
ences.

3.2. Methodology
The methodology of Humpback is divided into the learn-
ing phase and the prediction phase.

3.2.1. Learning phase

The learning phase includes file collection, data process-
ing, and language model generation. Figure 2 shows an
overview of the learning phase.

File collection: We search for GitHub repositories
with Dockerfiles using the GitHub API3, pull these repos-
itories in order of their star count (i.e., popularity), and
extract the Dockerfiles.

Data processing: The contents of the collected Dock-
erfiles are divided into token sequences. The inputs
are paired with the expected outputs. For example, if
there is a statement FROM centos RUN dnf, then FROM
expects centos and FROM centos expects RUN. Next,
these data are encoded using integer values for the learner
to interpret efficiently. The number of elements in the
training data varies. Therefore, 0-padding is performed
to obtain fixed-length data.

Language model generation: Humpback uses lan-
guage models for prediction. We assume that the con-
tents of Dockerfiles are time-series data. LSTM [6], an
improved RNN architecture used in the field of deep
learning, is employed to generate language models. The
middle layer of the RNN is replaced with LSTM blocks,
which allow for learning with long-term dependency.

3.2.2. Prediction phase

Humpback uses model switching to overcome the prob-
lem caused by base image differences. Pre-trained lan-

3https://docs.github.com/en/graphql

…

File collection Data processing Language model generation

GitHub API

Dockerfiles Training data Language model

FROM centos

FROM centos RUN

FROM centos RUN dnf

1. Divide the contents
of Dockerfiles
and convert them into

Input Expected Output

2. Encode training data
with integer values

3. Padding by 0 to make
training data of
fixed length

FROM: 1
RUN : 3
…

1 25

1 25 3

1 25 3 52 1 25 3 52

0 0 1 25

0 1 25 3

LSTM

Figure 2: Overview of learning phase

Table 1
Details of dataset and learning

Distribution # of Dockerfiles # of versions # of epochs Duration
Debian 17,011 (80.2%) 6 81 3d15h12m
Ubuntu 1,497 (7.0%) 19 55 2h30m
Alpine 1,105 (5.2%) 9 94 3h00m
Others 1,577 (7.4%) - - -

guage models for each base image are prepared in ad-
vance. Humpback switches models for prediction de-
pending on the input data. For instance, if the base image
of input data is Ubuntu, a model trained with Dockerfiles
whose base images are Ubuntu is used.

However, it is impossible to identify the Linux distri-
bution from the base image name in some cases. For
example, we can guess that “openjdk:11-jdk” will in-
clude the Java development environment, but cannot
guess its Linux distribution. We created a base image
detector to determine the Linux distribution for a the
given Dockerfile. First, the base image detector builds
a container from the Dockerfile. Then, it identifies the
distribution based on the /etc/os-release file. We
analyzed the base images of the entire dataset (section
4.2). With these results, Humpback can switch models for
prediction even if the Linux distribution is not explicitly
specified. For example, the base image detecor identified
the distribution of openjdk:11-jdk as Debian.

3.3. Implementation
Three libraries/frameworks are used to implement Hump-
back, namely TensorFlow4, a software library for ma-
chine learning, Keras5, a high-level neural network li-
brary, and Optuna6, a hyperparameter auto-optimization

4https://www.tensorflow.org/
5https://keras.io/
6https://preferred.jp/en/projects/optuna/

framework. Candidate words are presented immediately,
and thus developers can use Humpback without slowing
down their development process.

4. Evaluation Experiment

4.1. Evaluation metrics
We conducted evaluation experiments to verify that model
switching improves the accuracy of code completion.
Top-k accuracy (𝐴𝑐𝑐(𝑘)) and the mean reciprocal rank
(𝑀𝑅𝑅) [9] are used as metrics for evaluating accuracy:

𝐴𝑐𝑐(𝑘) =
𝑁𝑡𝑜𝑝−𝑘

|𝑄| ,𝑀𝑅𝑅 = 1
|𝑄|

∑︀|𝑄|
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

where
𝑁𝑡𝑜𝑝−𝑘 refers to the number of relevant recommenda-
tions in top 𝑘 suggestions, |𝑄| represents the total num-
ber of queries, and 𝑟𝑎𝑛𝑘𝑖 denotes the rank position of the
first relevant word for the 𝑖-th query. For both 𝐴𝑐𝑐(𝑘)
and 𝑀𝑅𝑅, a value closer to 1 indicates better model
performance.

4.2. Dataset
We collected 21,190 Dockerfiles using the GitHub API.
The numbers of Dockerfiles and their versions for various
Linux distributions are shown on the left side of Table 1.
The major distributions in the dataset are Alpine Linux,
Debian GNU/Linux, and Ubuntu. The dataset for Ubuntu
has the most variety, with 19 versions in 1,497 files. In the
table, “Others” includes Amazon Linux, CentOS, Fedora,
Oracle Linux Server, and VMware Photon OS/Linux.

The number of epochs and the learning duration are
shown on the right side of Table 1. Hyperparameters such
as the activation/optimization function, and number of
units in each layer were optimized using Optuna.

Table 2
Average scores in experiment (Gen.: generic model, Hump.: Humpback)

Distribution
Docker syntax Shell syntax

Top-1 accuracy Top-5 accuracy MRR Top-1 accuracy Top-5 accuracy MRR
Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump. Gen. Hump.

Alpine 94.2% 96.2% 98.3% 98.0% 0.9611 0.9706 92.4% 94.4% 96.8% 96.9% 0.9433 0.9565
Debian 97.2% 98.8% 98.0% 99.5% 0.9762 0.9913 95.5% 97.5% 98.3% 99.5% 0.9689 0.9843
Ubuntu 91.9% 96.9% 98.9% 99.4% 0.9542 0.9810 96.6% 97.7% 98.9% 99.5% 0.9766 0.9855

4.3. Experiment design
We compared the recommendation accuracy for the three
major distributions in the dataset, both with and without
model switching. For the case without model switching,
we created a generic model that was trained with all
Dockerfiles. Two syntaxes were defined; descriptions
in the RUN instruction were defined as Shell syntax and
other descriptions were defined as Docker syntax. There
were three axes of comparison: the presence or absence of
model switching, the Linux distribution, and the syntax.

We first extracted 100 Dockerfiles from the dataset
and set the correct answer to a random position in each
Dockerfile. Next, the contents from the beginning of the
file to just before the correct answer were given to the
language models and predictions were generated. Then
𝐴𝑐𝑐(𝑘) and 𝑀𝑅𝑅 were computed by comparing the
predictions against the correct answer. Ten rounds of the
above process were performed for each comparison axis.

4.4. Experiment results
Table 2 shows the average scores of 𝐴𝑐𝑐(1), 𝐴𝑐𝑐(5), and
𝑀𝑅𝑅. “Gen.” refers to the generic model (i.e., without
model switching). “Hump.” refers to Humpback (i.e., with
model switching). The numbers in bold indicate the best
scores in a given category.

Prediction with Humpback is more accurate for almost
all evaluation axis. Model switching is thus beneficial
for building Docker-specific code completion systems.
Humpback achieved an outstanding average Top-1 ac-
curacy of 96.9% (up to 98.8% for Debian, Docker syntax).
Moreover, the accuracy improved by up to 5.0% (Ubuntu,
Docker syntax) compared to that for the generic model.
As described in section 3.3, the candidate words are pre-
sented instantly. With its quickness and high accuracy,
Humpback can significantly improve productivity.

5. Conclusion
In this study, we proposed Humpback, a code completion
system for Dockerfiles. Humpback is available online
and can be used in a web browser. We introduced model
switching to overcome a Docker-specific problem. Eval-
uation experiments showed that Humpback has a high
average accuracy of 96.9%, and that model switching
improves the accuracy of Humpback. In future work,

we will further improve the accuracy of Humpback and
compare Humpback with other code completion systems.

Acknowledgments
This work was supported in part by MEXT/JSPS KAK-
ENHI Grant No. 18H03222.

References
[1] J. Henkel, C. Bird, S. K. Lahiri, T. Reps, A dataset of

dockerfiles, in: International Working Conference
on Mining Software Repositories, 2020, pp. 1–5.

[2] Portworx, Container adoption survey, 2019. URL:
https://portworx.com/wp-content/uploads/2019/
05/2019-container-adoption-survey.pdf.

[3] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero,
D. A. Tamburri, Devops: Introducing infrastructure-
as-code, in: International Conference on Software
Engineering Companion, 2017, pp. 497–498.

[4] A. Rahman, R. Mahdavi-Hezaveh, L. Williams, A
systematic mapping study of infrastructure as code
research, Information and Software Technology 108
(2019) 65–77.

[5] M. Bruch, M. Monperrus, M. Mezini, Learning
from examples to improve code completion systems,
in: European Software Engineering Conference and
Symposium on the Foundations of Software Engi-
neering, 2009, pp. 213–222.

[6] F. A. Gers, J. Schmidhuber, F. Cummins, Learning
to forget: continual prediction with lstm, in: Inter-
national Conference on Artificial Neural Networks,
volume 2, 1999, pp. 850–855.

[7] A. Svyatkovskiy, S. Fu, Y. Zhao, N. Sundaresan,
Pythia: Ai-assisted code completion system, in: In-
ternational Conference on Knowledge Discovery and
Data Mining, 2019, pp. 2727–2735.

[8] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghat-
tas, A. Glover, J. Holman, J. Micco, B. Murphy, T. Sa-
vor, M. Stumm, S. Whitaker, L. Williams, The top 10
adages in continuous deployment, IEEE Software 34
(2017) 86–95.

[9] D. R. Radev, H. Qi, H. Wu, W. Fan, Evaluating web-
based question answering systems, in: International
Conference on Language Resources and Evaluation,
2002, pp. 1153–1156.

https://portworx.com/wp-content/uploads/2019/05/2019-container-adoption-survey.pdf
https://portworx.com/wp-content/uploads/2019/05/2019-container-adoption-survey.pdf

	1 Introduction
	2 Background
	2.1 Code completion
	2.2 Docker, infrastructure as code, and challenges

	3 Humpback: code completion system for Dockerfiles
	3.1 System overview
	3.2 Methodology
	3.2.1 Learning phase
	3.2.2 Prediction phase

	3.3 Implementation

	4 Evaluation Experiment
	4.1 Evaluation metrics
	4.2 Dataset
	4.3 Experiment design
	4.4 Experiment results

	5 Conclusion

