
Program Repairing History as Git Repository
Ryoko Izuta, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto

Osaka University, Japan
{r-izuta,shinsuke,higo,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
This paper proposes a concept of introducing Git repository to
record a history of program evolution via automated program re-
pair techniques. In contrast to the general usage of Git by actual
developers, a Git repository is generated by an APR system. This
paper presents that it is feasible to store the history of program
repair efficiently and comprehensively by using Git. Moreover, the
proposed concept allows to share the details of an APR execution
and to compare various APR executions.
ACM Reference Format:
Ryoko Izuta, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto.
2020. Program Repairing History as Git Repository. In IEEE/ACM 42nd
International Conference on Software Engineering Workshops (ICSEW’20),
May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3387940.3392178

1 INTRODUCTION
Automated program repair (APR) is one of the promising and ef-
fective approaches to facilitate software debugging. APR is broadly
classified into generate-and-validate (G&V) and semantics-driven [2].
In the search-based G&V approach, the original code is going to be
evolved by repeatedly applying small code changes, and its evalua-
tions based on a fitness function. Various studies have been con-
ducted to improve the efficiency of G&V APR. This paper focuses
on search-based G&V APR, and simply call it APR.

One of the keys to improve the APR technique is to record not
only the final repairing results but also the history of program evo-
lution. The APR history helps to analyze various APR behaviors in
detail. Let us imagine a situation where a researcher conceives and
develops a novel technique of program modification for APR. The
developed technique should be applied to a small example to con-
firm whether its behavior is the same as the expected and whether
the technique is effective. Such analysis requires detailed informa-
tion, including source code, fitness, and parent-child relationship,
for all generated variants. Besides, APR is a time-consuming process
that takes several hours or even days. We believe that sharing APR
histories between researchers allow reducing the time required for
replicated APR experiments.

However, most APR tools do not have a feature to record the
evolutionary history. The APR execution results are often limited
to discovered final patches and a summary of the APR execution,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392178

which includes total execution time, the number of generated vari-
ants, the number of reached generations, and so on. For instance,
our developing APR system, named kGenProg[1], cannot record the
historical information. Although Astor [3], a G&V APR framework
for Java, supports an option to dump all generated variants, the gen-
erated data is only a set of generated source code. At this moment,
no APR tool provides fine-grained information to answer the fol-
lowing questions: How were the variants generated? To what extent
were variants fitted? How is a genealogy tree of variants created?

The goal of this research is developing a framework to record
and share a history of program evolution created through an APR
execution. To achieve the goal, we propose a concept which em-
ploys Git to record the APR history. Generally, a version control
system, such as Git, is used by actual developers to store a develop-
ment history. In contrast to that, a Git repository is automatically
generated by an APR system in our concept. Our concept enables
the automatic recording of the program repairing history as a de-
velopment history in an intuitive manner. Moreover, this concept
allows to share the details of an APR execution and to compare var-
ious APR executions. There is also a possibility that some existing
Git tools can be applied to analyze and visualize the APR history.

2 PROPOSED CONCEPT
There are several benefits of employing Git to record APR history.
First of all, it is possible to store the entire APR process because
the history of program repair is mainly made up of changes and
evaluation of the source code. In addition to such historical infor-
mation, initial settings (e.g., used APR tool name, tool version, and
execution parameters) and final results (e.g., found patches, total
execution time, and the number of generated variants) are stored
in the Git repository. The initial settings allow to identify how the
APR execution is conducted. APR researchers can easily conduct
replication studies by sharing APR-generated information. More-
over, APR improvements can be facilitated by comparing some Git
repositories which have been generated with different execution
parameters.

Furthermore, introducing Git will be efficient in terms of data
size compared with storing plain text files. This is possible since Git
only stores modified files, and APR usually applies small changes to
source code files. Consequently, even though APR generates tons
of variants, the difference between variants is always small.

A further benefit is that Git can be considered as lingua franca
for APR researchers. APR system itself uses Git to manage source
code [1, 3]. APR dataset, such as Defects4J, is also supplied as Git
repositories. Thus, the generated repository can be manipulated
intuitively for APR researchers. Another benefit of using Git is that
existing Git tools such as Gitinspector can be leveraged to analyze
how programs are repaired by APR techniques.

https://doi.org/10.1145/3387940.3392178
https://doi.org/10.1145/3387940.3392178

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Ryoko Izuta, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto

・・・

master

Initial commit

Final commit

Summary of APR execution

Original code

Genealogy tree

X

solution

(a) Branch topology

X

$ git show X
Author: replace

build=OK
fitness=0.86
failed-test=com.example...

diff --git a/x.java b/x.java
@@ -19,7 +19,6 @@

- for(i=0; i<length; i++) {
+ for(i=0; i<length-1; i++) {

Evaluation results

Generation
results

Author
name

Change operator

Commit
message

diff
patch

Variant X

(b) Details of a commit

Figure 1: Overview of introducing Git to APR

3 APPROACH
This section describes how the APR-generated information cor-
responds to elements in Git repository. Figure 1 shows a sum-
mary.Figure 1(a) represents a branch topology of the generated
repository, and Figure 1(b) gives an example of a single commit.

The left-most branch in Figure 1(a) represents a summary of
the APR execution. This branch contains two types of informa-
tion: initial settings and final results. The former helps to identify
and reproduce the APR execution, and the latter allows to grasp
the summary of the execution. Both information is stored to a
README file. This branch is labeled as a master branch to follow a
common practice of Git that the master branch is used as the main
development branch. Researchers can easily grasp the stored APR
information by checking the README file on the master branch.

The right-side branches in Figure 1(a) represents a history of the
APR execution. Each commit (each circle in the figure) corresponds
to a single generated variant, and the parent of a commit corre-
sponds to the parent of the variant. Therefore, the branch topology
will be the same as a genealogical tree of the program evolution. In
each variant, source code files and directory structure are stored as
blob and tree objects, respectively. Thus, all changed source code is
treated as code changes in general software development. Moreover,
Git tags are assigned to identify variants. For example, solution
tag is assigned to a solution variant that passes all given tests (i.e.,
repaired code).

Figure 1(b) shows the detail of a specific variant using git-show
command. The change operator of each variant will be written in an
author field because the operator stands for who made the variant.

1 $ cd generated -repo; git checkout master
2 $ cat README.md
3 This is an automatically generated content ...

4 # Final results

5 Status: solutions found

6 Generated variants: 133

7 Total execution time: 3m19s

8 ...

9 # Initial settings

10 randomSeed = 0

11 timeLimit = 60m

12 maxGenerations = 100

13 ...

Figure 2: Checking a summary of APR execution

1 $ git diff initial solution
2 diff --git a/GCD.java b/GCD.java

3 @@ -14,2 +14,3 @@ public class GCD {

4 public int gcd(int a, int b) {

5 - return 0;

6 + if (a == 0)

7 + return b;

Figure 3: Checking the difference of solution

Evaluation results, such as fitness value, failed test names, and build
status, are also important information. Usually, such automatically
generated information is not stored in a Git repository. However, we
decided to store this because they contribute to understanding APR
execution. By storing the evaluation results to commit messages,
users can search any variant by grep option. Furthermore, the
source code difference can be shown as a diff patch.

4 USAGE
This section introduces two usages of the generated APR repository.
First, the summary of the APR execution can be shown in Figure 2.
We can confirm how the execution is conducted andwhat results are
achieved by showing the README file using cat command. Second,
Figure 3 describes a way to confirm the detailed solution of program
repair. The initial and solution variants are tagged as initial and
solution. Hence, we can check the difference between them by
using git-diff command for both tags.

5 FUTUREWORKS
The implementation of this concept is left for future work. Empirical
evaluation of the execution time and repository size is needed as
well. Since program repair is an optimization problem, it is essential
to keep one execution as short as possible.

ACKNOWLEDGMENTS
This work was supported by MEXT/JSPS KAKENHI 18H03222.

REFERENCES
[1] Y. Higo et al. 2018. kGenProg: A High-Performance, High-Extensibility and High-

Portability APR System. In Proc. Asia-Pacific Software Engineering Conference.
697–698.

[2] L. Gazzola, D. Micucci, and L. Mariani. 2019. Automatic Software Repair: A Survey.
IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.

[3] M. Martinez and M. Monperrus. 2016. ASTOR: A Program Repair Library for Java.
In Proc. International Symposium on Software Testing and Analysis. 441–444.

