Staged Tree Matching for Detecting Code Move across Files

Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto
Osaka University
Suita, Osaka, Japan
{a-fujimt,higo,j-matumt,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT

In software development, developers often need to understand
source code differences in their activities. GumTree is a tool that
detects tree-based source code differences. GumTree constructs ab-
stract syntax trees from the source code before and after a given
change, and then, it identifies inserted/deleted/moved subtrees and
updated nodes. Source code differences are detected based on the
four kinds of information in GumTree. However, GumTree calcu-
lates the difference for each file individually, so that it cannot de-
tect moves of code fragments across files. In this research, we pro-
pose (1) to construct a single abstract syntax tree from all source
files included in a project and (2) to perform a staged tree match-
ing to detect across-file code moves efficiently and accurately. We
have already conducted a pilot experiment on open source projects
with our technique. As a result, we were able to detect code moves
across files in all the projects, and the number of such code moves
was 76,600 in total.

CCS CONCEPTS

« Software and its engineering — Software maintenance
tools; Maintaining software; Software version control; Sofi-
ware creation and management.

KEYWORDS
Code differences, Abstract Syntax Tree, GumTree

ACM Reference Format:

Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji
Kusumoto. 2020. Staged Tree Matching for Detecting Code Move across
Files. In 28th International Conference on Program Comprehension (ICPC
’20), October 5-6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3387904.3389289

1 INTRODUCTION

GumTree is one of the state-of-the-art techniques that detect
source code differences in the level of abstract syntax tree (in short,
AST) [2]. GumTree generates an AST for each of the given two
source files of different versions as input, and it outputs the differ-
ences of AST subtrees/nodes by comparing them. AST-based dif-
ferencing techniques have two advantages against text-based dif-
ferencing ones such as Unix diff command.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389289

Before
Main.java

After

Main java

public class Main {
void main() {
intll a = {1, 2, 3};
println(ave(a));

int ave(int[] a) {
int sum = Calc.sum(a);
return sum / a.length;

public class Main {
void main() {
int[] a = {1, 2, 3};
println(Calc.ave(a));

b

) Calc.java

}
¥

) Calcjava

public class Calc {
int sum(int[] a) {

int sum;
for (int i: a)
sum += i;

return sum;

public class Calc {
int sum(int[] a) {
int sum;
for (int i: a)
sum += 1i;
return sum;

int ave(int[] a) {
int sum = sum(a);
return sum / a.length;

@deletion @insertion @move

Figure 1: An example of code move across files and detecting
code differences of GumTree

o In text-based techniques such as diff and cregit [4], differ-
ences are represented by two kinds of information, deletion,
and insertion. On the other hand, in AST-based techniques,
differences can be represented by four kinds of information,
deletion, insertion, move, and update.

e AST-based techniques such as GumTree and ChangeDis-
tiller [3] identify code differences in a more appropriate
range than text-based ones. For example, if a token in a line
has been deleted, diff regards the change as a deletion of the
whole line and an insertion of a new line while GumTree
identifies that the subtree for the token has been deleted.

GumTree has been used in many studies. For example, it has
been used to analyze Maven build files [6], detect bugfix pat-
terns [7], generate commit messages [1], and suggest API code [9].

However, GumTree (and other AST-based differencing tech-
niques) still has a problem. GumTree performs detecting code dif-
ferences for each file individually, which means that code moves
across files are not captured as they are, but they are captured as
code deletion in a file and code insertion in another file. The au-
thors consider that code moves across files happen frequently, and
detecting them will be helpful for developers to understand code
changes. In this research, the authors are trying to detect across-
file code moves. At this moment, our technique includes two new
technical contributions.

e Our technique constructs a single huge AST from all the
(compilable) source files in a project while GumTree con-
structs an AST for each file.

https://doi.org/10.1145/3387904.3389289
https://doi.org/10.1145/3387904.3389289

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

Input Exclude
unchanged files

L
L

After -
) —

Source files

|

Changed
source files

File-level ASTs generated
from each files

Construct

Generate
file-level ASTs S project-level ASTs
Before '..'- ’ E B (é)' §8 ’
_‘-l

Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto

Generate
an edit script

Perform a matching
and calculate differences.

Output

Insert
— Delete
Delete
Move
Move
Insert
— Move

Differences Edit script

whole of project

A project-level AST

Figure 2: Overview of proposed technique

e Our technique performs a staged tree matching. In the first
stage, our technique tries to find matching subtrees within
each file. In the second stage, it tries to find matching sub-
trees that have not been matched in the first stage.

The combination of the above two contributions can realize to de-
tect across-file code moves efficiently and accurately.

We have applied our technique to eight open source projects so
far. As a result, we detected 76,600 across-file code moves in total.
We also found that there are some common features in across-file
code moves.

2 GUMTREE

GumTree receives a pair of source files (before and after a change)
as inputs, and it outputs an edit script, which is a sequence of edit-
ing operations applied to the source code before the change to ob-
tain the source code after the change. GumTree outputs, as an edit
script, the operations of deletion/insertion/ move/update and the in-
formation of the AST nodes where the operations were performed.

GumTree constructs two ASTs for a pair of source files and per-
forms a matching to calculate differences between the tree struc-
tures. Matching is the process of associating AST nodes before
and after the change. The associated nodes are treated as the same
nodes before and after the change. GumTree identifies editing op-
erations by referring to the matching results.

e Nodes existing only in the AST before the change are treated
as deletion.

o Nodes existing only in the AST after the change are treated
as insertion.

e Nodes having different parent nodes before and after the
change are treated as move.

e Nodes including different values before and after the change
are treated as update.

3 RESEARCH MOTIVATION

GumTree can detect what operations have been performed on
changes in a single file. However, changes can be made to multiple
files at once. In such cases, GumTree has no capability of detecting
code moves across files.

Figure 1 shows a change where files Main. java and Calc. java
have been changed at the same time. In the change, method ave()
that existed in Main. java has been moved to Calc. java. If we
apply GumTree to this change, we obtain an edit script that ave ()

was deleted from Main. java and another edit script that ave()
was inserted to Calc.java. However, in this case, an edit script
that ave () was moved to Calc. java from Main. java is more ap-
propriate for expressing the operation actually performed. Conse-
quently, if a developer applies GumTree to this change, the devel-
oper may miss the fact that ave() was moved across files. Due to
this difference, developers may misunderstand the code change.

In this study, we propose a new technique of generating edit
scripts that has the capability of detecting code moves across files.
We consider that edit scripts generated by our technique are more
helpful in understanding changes in source code.

4 PROPOSED TECHNIQUE

If we simply construct a huge AST for all the source files in a
project and simply perform a matching on it, the following two
problems will happen.

o It will take a very long time to calculate differences because
a project-level AST is so huge.

e The accuracy of node matching in a project-level AST will
be decreased compared to a file-level AST because there are
so many matching candidates in a project-level AST.

To avoid the above problems, we propose to (1) use only
changed files to construct a project-level AST and (2) perform a
staged tree matching, each of which is described in detail in Sub-
sections 4.1 and 4.2, respectively.

An outline of our technique is shown in Figure 2. The input of
our technique is all source files included in a project before and
after a change, and it outputs an edit script. Our technique firstly
constructs an AST for each of the changed source files, and then,
those ASTs are connected with the common root node, which is
newly introduced in our technique. That is, a single AST is con-
structed for a set of changed source files. Then, our technique per-
forms a staged tree matching to calculate the differences.

4.1 Constructing a Project-level AST without
Unchanged Files

Figure 3 shows a simple example of constructing a project-level
AST from four source files. First, a file-level AST is constructed for
each of the files included in the project. Then, a common root node
is introduced, and it is connected with each of the root nodes of the
file-level ASTs. The order in which the generated ASTs are added
as child nodes is the alphabetical order of the source file names.

Staged Tree Matching for Detecting Code Move across Files

Root nodes of file-level ASTs
are connected to newly-introduced
common root node -

File-level ASTs

Source files
in the project

Figure 3: Construction of project-level AST

Before After
Ajava Ajava
1/ void foo() { 1/void foo() {
2 int num = 1; 2 int num = 1;
Inappropriate
f 4
. or (475 /1 matching } erten
) B.java i B.java
1/ void bar() { 1/void bar() {
2| doSomething(); 2™ int num = 1;
31} J 3| doSomething();
43
@deletion @insertion @move update

Figure 4: An example of false move detection

If a project-level AST is constructed from all the files in the
project, the number of nodes in the project-level AST becomes
huge, and the matching process on the AST will take so long time.
To avoid this problem, we proposed not to add the ASTs of un-
changed files to a project-level AST. In most of the commits, the
number of files in them is very small, which means that project-
level ASTs for such commits do not become so huge.

4.2 Staged Tree Matching

When the difference detection target is expanded from a single file
to the entire project, false positive of code moves across files will
be detected. This is due to GumTree not being able to match nodes
properly as the AST of the entire project. An example of false move
detection is shown in Figure 4. In this example, ‘int num = 1, is
included only in method A. java before the change. In the change,
‘int num = 1;’ is inserted to method B. java. If we apply GumTree
to a project-level AST on the change, GumTree regards

e ‘int num = 1;’in A. java has been moved to B. java, and
e another ‘int num = 1’ has been inserted to A. java.

The reason why the matching is not performed properly is that the
matching target is expanded to the entire project and the number
of candidates gets increased, so that an appropriate node does not
get matched. More concretely, in this case, ‘int num = 1;’ in
A.java of the before-change AST is coincidentally matched with
‘int num = 1;’ in ‘B. java’ of the after-change AST.

To avoid this problem, we propose a staged tree matching. An
overview of the staged tree matching is shown in Figure 5. In the
first stage, matching is performed within the subtrees of each file.
After that, as the second stage, another matching is performed for

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

(MMatching nodes within
each subtree for a file

sefore éj\i
| |

ol i

O Node matched 1st stage (File-level)
‘ Node matched 2nd stage (Project-level)

(@Matching nodes for the
entire of the project-level AST

Figure 5: Staged tree matching

the entire of the project-level AST. In the second stage, the match-
ing targets are only the nodes that failed to be matched in the first
stage. An AST matching within file-level subtrees is performed
first in our technique. This aims to reduce the number of matching
candidates in the second stage to realize an appropriate matching
across files.

If the staged tree matching is applied to the change of Figure 4,
the ‘“int num = 1;’ in A. java before the change is matched with
‘int num = 1;’ in A.Java after the change at the time of the
matching within file-level subtrees. On the other hand, ‘int num
= 1;’ in B. java after the change is not matched with any other
node at the first-stage and second-stage matchings. As a result,
‘int num = 1;’in B. java is regarded as inserted by the change,
which can avoid detecting false positives of across-file code move.

5 EXPERIMENT

We conducted an experiment on open source projects with
Graftast!, which is our implementation based on the proposed
technique. The purposes of this experiment are answering the fol-
lowing questions.

(1) Can our technique detect code moves across files?

(2) What are the features of code moves across files?

Our experimental targets are the projects included in CVS-
Vintage [8] that were used in the experiment of GumTree [2].
Among the projects included in CVS-Vintage, we used the projects
that have been migrated to Git as our experimental targets. The

Table 1: Target projects

Project Name | # of commits | Latest Commit Date

ArgoUML 16,144 Jan. 11, 2015
dnsjava 1,771 Oct. 27, 2019
Eclipse! 29,811 Nov. 11, 2019
JHotDraw 763 Aug. 27, 2018
JUnit 4 2,418 Now. 2, 2019
Apache Log4j 2 10,752 Nov. 1, 2019
Apache Struts 5,697 Nov. 4, 2019
Apache Tomcat 21,492 Nov. 6, 2019

10nly eclipse.ui.workbench was investigated.

!https://github.com/kusumotolab/Graftast

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

target projects are shown in Table 1. All the target projects are
written in Java.

In the experiment, source files before and after each commit in
the target projects were given as input to our technique, and we
counted the number of across-file code moves that were detected
by our technique. We also sampled and visually checked the de-
tected code moves across files in order to grasp the common fea-
tures in across-file code moves.

5.1 Results

Table 2 shows the number of the detected across-file code moves
and all the detected code moves. The parentheses next to the num-
ber of across-file code moves indicate the percentage of across-
file code moves to all detected code moves. The results show that
our technique detected across-file code moves from all the target
projects, but the ratio of them against all the detected code moves
are different (0.5~10.9%).

We classified the detected code moves based on their node types.
Table 3 shows the number of across-file code moves of method dec-
larations, while-statements, for-statements, and if-statements. We
can see that the number of method moves is the largest number,
but the developers also moved smaller code fragments such as con-
ditional blocks across files.

We also compared the detection results of our technique with
the detection results of ReffactoringMiner [10] on all the target
projects except Eclipse because ReffactoringMiner cannot spec-
ify subdirectories in a given target program. ReffactoringMiner
is a tool that detects refactorings from a given commit history,
and it has a capability of detecting 40 refactoring patterns such as
Purr Up METHOD or Pusa DowN METHOD. The comparison results
showed that only our technique was able to detect code moves of
methods that were declared in anonymous classes.

We manually investigated across-file code moves for nodes of
method declarations and conditional blocks. The remainder of this
section describes some features of code moves that we detected.

e When a large class was split into multiple classes, methods
in the class were moved to new classes.

o There are many cases that methods were moved to utility
classes whose names include Util or Helper.

e We also found that several methods were moved to non-
utility classes. In such cases, the names of classes where the
methods existed before and after the moves are similar to
each other.

Table 2: Number of detected code moves

Project Name | Across-file Moves | All Moves
ArgoUML 9514 (10.5%) 90,811
dnsjava 1,589 (0.5%) | 325,362
Eclipse 25,177 (10.9%) 231,814
JHotDraw 5,711 (0.7%) 847,946
JUnit 4 2,830 (9.7%) 29,262
Apache Log4j 2 6,852 (5.8%) 117,102
Apache Struts 3,708 (7.2%) 51,768
Apache Tomcat | 21,258 (8.9%) 259,447

Akira Fujimoto, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto

e Nodes of while-statement, for-statement, if-statement are
moved to other classes and they are encapsulated in new
method declarations. Such code moves were conducted
where the original methods were long, and refactorings
were performed to cut out the processing as new methods.

e When the inheritance relationship between classes
changed, across-file code moves occurred. Most of such
cases are code moves from concrete classes to abstract
classes. Code moves from abstract classes to concrete
classes are minority cases.

6 CONCLUSION

In this research, we are trying to detect code moves across files
with AST-based differencing techniques. We proposed a staged
tree matching in this paper to realize high-performance and high-
accuracy detection of across-file code moves. We also conducted
a pilot experiment and found that the proposed technique had
the capability of detecting across-file code moves from large-scale
projects.

This research is still in the early stage, and we have many future
works. The followings are some of them.

e We found that the detection results included false posi-
tives when we checked the detected across-file code moves
shown in Table 3. Our first future work is to measure the
detection accuracy of the proposed technique.

e We need to conduct a detailed comparison with Reffactor-
ingMiner because at this moment we only have compared
the number of detected code moves.

e We plan to evaluate the performance of the staged tree
matching.

e Providing raw text of edit script that includes across-file
code moves is still not enough to understand what changes
happened. We are going to develop a GUI-frontend by ex-
tending the visualization tool included in the GumTree
package.

e We are going to integrate the functionality of detecting
copy-and-paste operations [5] to our proposed technique.

ACKNOWLEDGMENT
This work was supported by MEXT/JSPS KAKENHI 17H01725.

Table 3: Number of across-file code moves on some specific
node types

Project Name | method | while | for | if
ArgoUML 186 13 8 | 138
dnsjava 88 0 1| 25
Eclipse 978 18 | 23 | 368
JHotDraw 204 1 71 48
JUnit 4 166 2| 11
Apache Log4j 2 365 3 4| 44
Apache Struts 211 1 2| 43
Apache Tomcat 974 15| 16 | 364

Staged Tree Matching for Detecting Code Move across Files

REFERENCES

[1] Md Salman Ahmed and Anika Tabassum. 2018. Automatic Contextual Commit

[2

]

=

Message Generation : A Two-phase Conversion Approach.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Inter-
national Conference on Automated Software Engineering, Vasteras, Sweden - 19,
2014. 313-324.

Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. 2007. Change
Distilling: Tree Differencing for Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725-743.

Daniel M. German, Bram Adams, and Kate Stewart. 2019. Cregit: Token-Level
Blame Information in Git Version Control Repositories. Empirical Software En-
gineering 24, 4 (2019), 2725-2763.

Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto. 2017. Generating Sim-
pler AST Edit Scripts by Considering Copy-and-Paste. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering.

ICPC °20, October 5-6, 2020, Seoul, Republic of Korea

532-542.

Christian Macho, Shane McIntosh, and Martin Pinzger. 2017. Extracting build
changes with builddiff. In The 14th International Conference on Mining Software
Repositories. 368-378.

Fernanda Madeiral, Thomas Durieux, Victor Sobreira, and Marcelo Maia. 2018.
Towards an automated approach for bug fix pattern detection.

Martin Monperrus and Matias Martinez. [n.d.]. CVS-Vintage: A Dataset of 14
CVS Repositories of Java Software.

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily
Mast, Eli Rademacher, Tien N Nguyen, and Danny Dig. 2016. API code recom-
mendation using statistical learning from fine-grained changes. In International
Symposium on Foundations of Software Engineering. ACM, 511-522.

Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineer-
ing. 483-494.

	Abstract
	1 Introduction
	2 GumTree
	3 Research Motivation
	4 Proposed Technique
	4.1 Constructing a Project-level AST without Unchanged Files
	4.2 Staged Tree Matching

	5 Experiment
	5.1 Results

	6 Conclusion
	References

