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ABSTRACT
The sufficiency of test cases is essential for spectrum-based fault
localization (in short, SBFL). If a given set of test cases is not suffi-
cient, SBFL does not work. In such a case, we can improve the re-
liability of SBFL by adding new test cases. However, adding many
test cases without considering their properties is not appropriate
in the context of automated program repair (in short, APR). For ex-
ample, in the case of GenProg, which is the most famous APR tool,
all the test cases related to the bug module are executed for each of
the mutated programs. Execution results of test cases are used for
checking whether they pass all the test cases and inferring faulty
statements for a given bug. Thus, in the context of APR, it is impor-
tant to add necessary minimum test cases to improve the accuracy
of SBFL. In this paper, we propose three strategies for selecting
some test cases from a large number of automatically-generated
test cases. We conducted a small experiment on bug dataset De-
fect4J and confirmed that the accuracy of SBFL was improved for
56.3% of target bugs while the accuracy was decreased for 17.3% in
the case of the best strategy. We also confirmed that the increase
of the execution time was suppressed to 1.5 seconds at the median.
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1 INTRODUCTION
Fault Localization (in short, FL) is one of the well-known and well-
researched techniques to support debugging. FL infers the loca-
tions of defects in a given buggy program. Various FL methods
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public class IEEE754rUtils {
float max(float a, float b) {

if(Float.isNaN(a)) 
return a; //return b;

else if(Float.isNaN(b))
return a;

else
return Math.max(a, b);

}
float max(float[] array) {

...
float max = array[0];
for(int j = 1; j < array.length; j++)

max = max(array[j], max);
return max;

}
}
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Figure 1: An example of adding test cases that improve FL

have been proposed so far [6, 8, 12]. Spectrum-Based Fault Local-
ization (in short, SBFL), which is a kind of FL based on execution
paths of test cases, is one of the most actively studied methods in
recent years [14]. The basic idea of SBFL is that program state-
ments executed in failed test cases are likely to be defective, and
program statements executed in passed test cases are unlikely to
be defective. SBFL receives a buggy program and its test cases as
inputs, and then it infers faulty statements for the defects using the
information on the pass/failure of each test case and their spectra.
The accuracy of SBFL depends on the test cases given as inputs
because SBFL performs localizing defects using only information
obtained by executing test cases. Consequently, some studies fo-
cused on test cases to improve the accuracy of SBFL. Dandan’s re-
search [4] and Li’s research [11] show selecting some test cases
from original ones improves SBFL. However, their approach can-
not be applied when the number of original test cases is small.

Figure 1 is a part of the program included in Apache Commons
Lang (in short, Lang)1. In the program, the fourth line includes
a defect. The fourth line is ‘return a;’, but it must be ‘return
b;’. If test case t1, which is included in Lang, is executed for this
program, it fails. When an SBFL method is applied to the program,
the results indicate all statements executed by t1 are suspicious. In
this example, many lines of code are regarded as highly possible to
be defective, which will not help developers to localize the defect.
Thus, in this example, SBFL is not helpful if we use only test cases
attached to the target project, and it is impossible to select test
cases to improve SBFL because t1 is the only one for this program.

The authors consider that the accuracy of SBFL can be improved
if additional test cases are also used with the original test cases. In
Figure 1, we use three new test cases a1, a2, and a3, in addition to

1Some methods and statements have been omitted to simplify the explanation.
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Figure 2: Overview of the proposed technique

t1. When the same SBFL method is applied by using those four test
cases, the fourth line is regarded as the most suspicious statement.
However, in this example, we have to see the following facts:

• adding a2 and a3 can improve localizing the defect, but
• adding a1 does not contribute to the improvement.

This is because a2 and a3 have different spectra from the others,
whereas a1 has the same spectrum as t1, and it has only the same
information as t1. Thus, even if a test case like a1 is added, it does
not affect the accuracy, but only increases the execution time.

It is necessary to consider not only the accuracy but also the
execution time of SBFL when SBFL is used in the context of Au-
tomated Program Repair (in short, APR). APR is a technique that
automatically alters a given buggy program to remove defects. In
APR, SBFL is used to determine where to alter the program. It is
important to improve the accuracy of SBFL from the viewpoint of
selecting the faulty statements for altering. In generation & vali-
dation techniques of APR such as GenProg [10], all test cases are
executed for each of the mutated programs to validate them and
to perform SBFL. Thus, if test cases not contributing to improv-
ing SBFL are used in APR, APR tools finish program repairs with
unnecessarily-longer time or fail to repair programs due to time
constraint given by users. Consequently, it is important to add only
test cases contributing to improving SBFL in the context of APR.

In this research, we are trying to develop a technique to obtain
test cases each of which contributes to improving SBFL. The pro-
posed technique generates test cases for a buggy program and se-
lects test cases that have different spectra from original test cases.
Removing test cases not improving FL prevents unnecessary in-
crease in the execution time. As an evaluation of the proposed
technique, we compared the results of applying the SBFL with the
proposed technique and the results of applying the SBFL only with
the original test cases. Those results showed that the accuracy of
SBFL was improved or the same for 82.7% of the faulty statements
for the target defects. The increase in execution time with the pro-
posed technique was suppressed to 1.5 seconds at the median.

2 SPECTRUM-BASED FAULT LOCALIZATION
Spectrum-based fault localization (in short, SBFL) is a kind of FL,
which is the technique to infer the locations of defects in a buggy

program. The input of SBFL is a buggy program and its test cases.
SBFL executes all test cases and collects the spectrum and the pass/fail
status of each test case. A spectrum of a test case is a set of program
statements with execution flags. A flag indicates whether the test
case covers the statement. Based on the spectra and the pass/fail
statuses, SBFL calculates the suspiciousness for all statements and
outputs it. Many methods to calculate suspiciousness have ever
been proposed. According to Abreu, Ochiai [3] is the best method
to calculate suspiciousness in the compared seven methods [1].
Ochiai calculates suspiciousness on the following formula (1)．

𝑠𝑢𝑠𝑝 (𝑠) = 𝑓 𝑎𝑖𝑙 (𝑠)√
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙 × (𝑓 𝑎𝑖𝑙 (𝑠) + 𝑝𝑎𝑠𝑠 (𝑠))

(1)

Each variable in the formula shows the following element:
𝑠: a statement,
𝑡𝑜𝑡𝑎𝑙 𝑓 𝑎𝑖𝑙 : the number of all failed test cases,
𝑓 𝑎𝑖𝑙 (𝑠): the number of failed test cases which cover 𝑠 , and
𝑝𝑎𝑠𝑠 (𝑠): the number of passed test cases which cover 𝑠 .

3 PROPOSED TECHNIQUE
To improve the accuracy of FL while suppressing the increase of
execution time, we propose a technique to obtain test cases whose
spectra are different from any of the original ones. Adding such test
cases enables to calculate more accurate suspiciousness for each
statement. Figure 2 shows an overview of the proposed technique.
The input of the technique is a buggy program and its original test
cases, and the output is test cases used for FL in addition to original
ones. The proposed technique consists of the following three steps:

Step1: generating test cases,
Step2: collecting the properties of all test cases, and
Step3: selecting test cases for FL in addition to original ones.

3.1 Generating test cases
The candidate test cases that are added to the original ones are gen-
erated by an automated test generation tool. There are two ways
to generate test cases by automated test generation tools:

• generating the input values by a tool, but specifying the ex-
pected values manually and
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• generating both the input and expected values by a tool.

In the former, the input values are generated from a buggy pro-
gram, but we need to understand the program behavior to spec-
ify the expected ones. The latter generates test cases without hu-
man effort, but it requires a non-buggy program to generate the
expected ones. Automatically generating the expected values is
challenging, known as the oracle problem [2]. Some automated
test generation tools regard the outputs of the input program as
the expected values. In this research, we generate both the input
and expected values by a tool to reduce the cost of test generation.
A program before defects occur is used as a non-buggy program.

3.2 Collecting properties of all test cases
All original test cases and all generated test cases are executed on
the buggy program. We collect the spectrum and the pass/fail sta-
tus as the properties of each test case.

3.3 Selecting test cases
We select test cases based on particular criteria from all test cases
generated in Step1 with the properties collected in Step2. Remov-
ing test cases which do not improve FL prevents increasing the
execution time unnecessarily.

Our basic approach to select test cases considers the spectra.
Each of the generated test cases is checked whether its spectrum
is different from any other test cases. If so, it is selected. It is impor-
tant to get new information from additional test cases for improv-
ing FL. The new-spectrum test cases enable to make a difference
between the statements with the same suspiciousness. In the mo-
tivating example, the same-spectrum test cases do not improve FL,
but in some cases, they may contribute to imoroving FL. For exam-
ple, the test case that has the same spectrum as any of the original
ones, but its pass/fail status is different from them also has new
information. Such test cases correct false negative test results, that
is, correct suspiciousness for non-faulty statements with high sus-
piciousness and faulty ones with low suspiciousness. Failed test
cases may also contribute because Kucuk’s research [9] indicates
that SBFL tends to perform poorly if the number of failed test cases
is small. Thus, we try the following three strategies:

Strat1: selecting new-spectrum test cases,
Strat2: selecting new-spectrum test cases or the same-spectrum

test cases with a different pass/fail status, and
Strat3: selecting new-spectrum test cases or failed test cases.

Figure 3 is an example of selecting test cases2．t1 is the original
test case, and c1, c2, c3, and c4 are generated ones in Step1. Each
of test cases c1, c2, c3, and c4 shows the following properties:

c1: having a new spectrum and its status is ’passed’,
c2: having the same spectrum as t1 and its status is ’failed’,
c3: having a new spectrum and its status is ’failed’, and
c4: having the same spectrum as c3 and its status is ’passed’.

Consequently, c1 and c3 are selected with Strat1, c1, c3, and c4 are
selected with Strat2, c1, c2, and c3 are selected with Strat3.

2the subject is the same as Figure 1，but the test cases are changed for explanation
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public class IEEE754rUtils {
float max(float a, float b) {

if(Float.isNaN(a)) 
return a; //return b;

else if(Float.isNaN(b))
return a;

else
return Math.max(a, b);

}
float max(float[] array) {

...
float max = array[0];
for(int j = 1; j < array.length; j++)

max = max(array[j], max);
return max;

}
}
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Figure 3: An example of selecting test cases

4 EXPERIMENT
We conducted a small experiment on an open source project with
the proposed technique. The purposes of our experiment are an-
swering the following two questions.

RQ1: How much can our technique improve the accuracy?
RQ2: How much can our technique suppress the execution

time, compared with using all the generated test cases?

4.1 Subject program
The subject program of our experiment is Apache Commons Math
(in short，Math) in Defects4J [7]. Defects4J is a dataset that pro-
vides real bugs that occurred in the development of several open
source projects. It has the information which test cases are failed
and where faulty statements are. Math contains 106 bugs, and all
of them are used in our experiment. The reason why we use Math
is that it is often used as a benchmark in papers on FL [13].

4.2 Experimental setup
We generated test cases by using EvoSuite [5]. EvoSuite is an auto-
mated test generation tool and generates test source code for given
Java classes. We used default values for all the EvoSuite parame-
ters. Thus, the time budget to generate test cases was 60s. By using
those test cases, we made the following five sets of test cases:

𝑆1: original test cases + test cases selected with Strat1,
𝑆2: original test cases + test cases selected with Strat2,
𝑆3: original test cases + test cases selected with Strat3,
𝑆𝑎𝑙𝑙 : original test cases + all generated test cases, and
𝑆𝑜𝑟𝑖 : only original test cases.

Those test cases are different depending on bugs in Math because
they test buggy classes, which depend on bugs. The average num-
bers of test cases added to the original ones in 𝑆1, 𝑆2, 𝑆3 and 𝑆𝑎𝑙𝑙
were, 5.5, 6.0, 5.7, and 37.4 per class, respectively. We compared the
accuracy and the execution time of FL by using those test cases.

In this experiment, the rank of the faulty statements in the rank-
ing according to the suspiciousness was used as an evaluationmet-
ric for the accuracy of FL. If the suspiciousness of some statements
were the same, we considered the rank of the faulty statement was
the worst rank. For example, if the suspiciousness of the faulty
statement is the third largest, but other two statements also have
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Figure 4: Comparison of the rank of the faulty statements

the same suspiciousness, the rank of the faulty one is five. This
metric means how many statements developers need to check un-
til they identify the faulty statements.

4.3 Analysis for the accuracy (RQ1)
In 106 Math bugs, there were 220 faulty statements for which were
calculated the suspiciousness. We compared the rank of the faulty
statements for the test cases 𝑆1, 𝑆2, 𝑆3, 𝑆𝑎𝑙𝑙 , and 𝑆𝑜𝑟𝑖 . Table 1 shows
the number of faulty statements where adding test cases improves
the accuracy of FL, has no impact, and worsens, compared with
𝑆𝑜𝑟𝑖 . 𝑆1 improved the accuracy for 56.3% faulty statements while
it worsened the accuracy for 17.3% ones, which was the best re-
sult in 𝑆1, 𝑆2, and 𝑆3. From those results, the same-spectrum test
cases with different pass/fail statuses and failed test cases may not
correct false negative results but worsens the results. Comparing
the results of 𝑆𝑎𝑙𝑙 and 𝑆1, 𝑆𝑎𝑙𝑙 more improved the accuracy than 𝑆1
by 30 faulty statements, but the number of the faulty statements
worsened was the same. In both cases, the accuracy of FL was im-
proved or the same for 82.7% of the 220 faulty statements.

Figure 4 shows a box plot of the rank of the faulty statements3．
The vertical axis presents the rank of faulty statements, and lower
values mean higher accuracy. The results show adding test cases
improved the accuracy of FL. The medians of the rank of the faulty
statements when 𝑆1, 𝑆2 𝑆3, 𝑆𝑎𝑙𝑙 or 𝑆𝑜𝑟𝑖 are used are 65.5, 71.0, 69.0,
67.5 or 87.0, respectively. There was little difference due to the
strategy for adding test cases, but 𝑆1 most improved the accuracy.
The rank of the faulty statements was improved by 21.5 at the me-
dian when 𝑆1 was used.

4.4 Analysis for the execution time (RQ2)
Figure 5 shows a box plot of execution time. The vertical axis presents
the execution time. The results show the execution time is reduced

Table 1: The number of faulty statements where adding test
cases improves the accuracy of FL (column Positive), has no
impact (column Neutral), and worsens (column Negative).

Test cases Positive Neutral Negative
𝑆1 124 (56.3%) 58 (26.4%) 38 (17.3%)
𝑆2 122 (55.5%) 58 (26.4%) 40 (18.1%)
𝑆3 122 (55.5%) 47 (21.3%) 51 (23.2%)
𝑆𝑎𝑙𝑙 154 (70.0%) 28 (12.7%) 38 (17.3%)

3Outliers are hidden for visibility
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when test cases are selected, comparedwith 𝑆𝑎𝑙𝑙 was used. Theme-
dians of the execution time when 𝑆1, 𝑆2, 𝑆3, 𝑆𝑎𝑙𝑙 , or 𝑆𝑜𝑟𝑖 are used
are 14.2s, 14.3s, 14.3s, 21.6s, or 12.7s, respectively. The increase in
the execution time due to the addition of selected test cases was
suppressed to the median of 1.5 seconds, which was 7.4s shorter
than when all the 𝑆𝑎𝑙𝑙 was used.

5 THREATS TO VALIDITY
In our experiment, we used EvoSuite to generate test cases. Evo-
Suite uses a randomized algorithm to generate test cases. Conse-
quently, it is possible to get different results if the same experi-
ment under the same conditions is conducted. We only used Math
in Defects4J as the experimental subject, although there are many
datasets of bugs. It is possible to get different results if subject pro-
grams with different characteristics are used for the experiment.

6 CONCLUSION
In this paper, we proposed a technique to obtain test cases hav-
ing different spectra from original test cases in order to increase
the accuracy of SBFL while suppressing the increase in execution
time. In the experiment, the test cases obtained by the proposed
technique were added to the original test cases, and then SBFL was
performed. The accuracy of SBFL for 82.7% of the faulty statements
for the target defects is the same as or better than the SBFL using
only the original test cases. The increase in execution time due
to the addition of test cases by the proposed technique was sup-
pressed to a median of 1.5 seconds, which was 7.4 seconds shorter
than when all the generated test cases were used.

As the next step of this research, we are going to incorporate
the proposed technique into APR. The experiment in this paper
shows the possibility that using the test cases generated by the
proposed technique in addition to the original ones improves the
accuracy of FL with a slight increase in execution time. However,
even if the increase in the execution time required for FL at a single
time is slight, it can have a significant effect when performing FL
at multiple times in APR. Thus, it is necessary to investigate how
the test cases added by the proposed technique affect the results
and the execution time of APR.
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