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Abstract—Understanding program comprehension is one of
the fundamental challenges of supporting software development.
Although code writing is usually performed on programming
specific environment, code reading is forced to be conducted
in general environments such as physical paper. Our main
hypothesis is that such a non-programming specific environment
has some obstacles for program comprehension in terms of code
presentation. The goal of this paper is to understand the effects
on cognitive load caused by the obstacles. If our hypothesis will
be proved and the goal will be achieved, we can provide the
best practice of code presentation in non-programming specific
environment.

Index Terms—Program comprehension, syntax highlighting,
typeface, EEG

I. INTRODUCTION

Understanding program comprehension is one of the funda-
mental challenges of supporting software development [1]. In
the past decade, various studies [2] [3] [4] have investigated
the developer’s brain activity during program comprehension.
Measuring brain activity may become a promising approach
to reveal spontaneous biological reactions such as brain region
activation [2], increase in cognitive load [3], and instinctive
emotional response [4].

Although code writing is usually performed on program-
ming specific environment (e.g., IDE), code reading is forced
to be conducted in general environments, including physical
paper, web browser, and PDF reader. For instance, researchers
often read pseudo or example code written in an academic
paper using a PDF reader. Most developers should have the
experience to read source code through a web browser because
the web is becoming a dominant information resource of
programming knowledge.

Our main hypothesis is that such a non-programming spe-
cific environment has some obstacles for program compre-
hension in terms of code presentation. In contrast to general
text documents, source code is displayed in a unique style
that applied rich syntax highlighting and legible typeface.
Syntax highlighting provides tiny but useful tips to distinguish
source code elements visually [5]. A legible typeface is also
an important presentation for the visibility of source code.
A monospaced and non-serif typeface is typically used as a
programming font. However, non-programming environments
do not guarantee to show source code in proper styles. Au-
tomated and full syntax highlighting requires syntax analysis

according to each programming language. Therefore, source
code in academic papers, written using LATEX and Microsoft
Word, is often limited to highlight only reserved words. The
worst case is that source code is provided with no-highlighting
and proportional typeface.

The goal of this paper is to understand the effects on cog-
nitive load caused by non-programming environments during
code reading. We believe that the higher cognitive load occurs
due to the lack of visibility which is supposed to be provided
by syntax highlighting and legible typeface. We conduct a code
reading experiment where subjects try to understand a given
program in various reading environment to achieve the goal.
The cognitive load is measured with an electroencephalogram
(EEG) for each experiment trial.

II. CODE READING IN NON-PROGRAMMING ENVIRONMENT

This paper defines a non-programming specific environment
as a general text reading environment that is not specialized
for programming tasks. Code reading, one of the programming
tasks, is a distinct activity compared with general text reading.
In code reading, a programmer firstly tries to grasp an overall
code structure, understand variable relations, and follow the
control flows. Proper source code presentation may help such
comprehension processes.

This paper aims to investigate the effect of the code pre-
sentations for code reading. We examine the following three
research questions.

• RQ1: Can EEG detect cognitive load in code reading?
• RQ2: Does syntax highlighting affect cognitive load?
• RQ3: Does typeface affect cognitive load?
Figure 1 shows the relation of the three research ques-

tions and compared code reading environments. The X-axis
means three typefaces, and the Y-axis shows four types of
highlighting. The compared reading environment is labeled as
Ehighlighttypeface . For example, E+ is the best reading environment
where source code is displayed with fully highlighted and
monospace typeface. We regard E as a baseline environ-
ment where only reserved words are highlighted with the
monospaced typeface. E is often used in academic papers
because of the simplicity of its application. The reserved word
highlighting requires not syntax analysis but just a dictionary
of keywords.
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Fig. 1: Three RQs and compared seven environments.

We prepare three unrealistic environments where the code is
shown with random highlighting (E--), cursive typeface (E--),
and both of them (E----) to answer the RQ1. In the RQ1, EEG of
the baseline environment (E) is compared with each unrealistic
environments (E--, E--, E----). RQ2 and RQ3 are confirmed by
comparing highlightation (E+, E, E-and E--) and typeface (E,
E- and E--), respectively.

III. EXPERIMENTS

A. Summary

The purpose of this experiment is to show the effect of
syntax highlighting and typeface on EEG during code reading.
The subjects are measured EEG until the subjects answer the
output of a given program.

In the experiment, we use β / α which is the ratio of beta
wave to alpha wave as an indicator to measure cognitive load
caused by the code reading. The alpha wave and the beta wave
are respectively normalized. This value has been indicated that
it is valid for observing the state of thinking [6]. The higher
this value indicates that the higher cognitive load occurs.

B. Tasks

We set small Java programs which have a certain output
as reading tasks. Each program has a comment which can be
a clue for understanding. We prepare 30 programs including
two practices. Besides, practice programs are easier than other
programs. 28 programs are composed of four classes for
every seven programs. The four classes are controlling list,
controlling string, mathematics and conditional branch.

In the experiment, the order of code reading is counterbal-
anced to avoid the effect on the results, comprehending speed
and habituation. We change the order of the programs and the
order of the environment of them.

C. EEG Measurement

A subject is attached EEG device to measure EEG during
code reading. Electrodes are located according to the monopo-
lar derivation method. A Ground electrode is located at the

right ear (A2). A Standard electrode is located at the left ear
(A1). Four measurement electrodes are located at the back
of the head (Pz), the glabella (Fpz) and the forehead (F3,
F4). EEG is easy to affect by myoelectric potential. Thus, We
instruct subjects to suppress the movement.

D. Experimental Procedure

(1) We explain the sequence of the experiment.
(2) We attach the EEG device to a subject. We measure the

EEG of the subject with eyes closed before beginning
the experiment to confirm whether we can measure the
subject’s EEG or not.

(3) The subject reads two practice programs to experience
reading and answering the output. Subjects read the first
practice program on E+ and the second program on E----
to experience the best and worst environments.

(4) The subject read the program on display. Then the
subject thinks the output of it. We measure the subject’s
EEG during code reading.

(5) The subject tells us that he understood the output of
the program. Then the subject answers the summary of
program behavior to show their understanding.

(6) We repeat step (4) and (5) 28 times. The subject takes
a one minute break for every seven reading to avoid the
effect of tiredness to avoid the effect of tiredness.

IV. CONCLUSION

In this paper, we show the experimental method for un-
derstanding the effect of cognitive load caused by syntax
highlighting and typeface by using EEG.

One important future work is to conduct this experiment
and confirm our hypothesis. In addition, combining other bio-
metrics, such as eye movement, will provide further indicators
of program comprehension.
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