
Does This Code Change Affect Program Behavior?
–Identifying Nonbehavioral Changes with Bytecode–

Aoi Maejima∗, Yoshiki Higo∗, Junnosuke Matsumoto† and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

{a-maejim, higo, j-matumt, kusumoto}@ist.osaka-u.ac.jp

Abstract—Developers occasionally conduct some
source code changes that do not affect program be-
havior. We call such changes nonbehavioral changes. In
this research, we propose a technique for determining
whether a given commit includes only nonbehavioral
changes or not by checking the differences of bytecode
on the commit. If the bytecode is not affected by
the commit, the proposed technique determines that
the commit includes only nonbehavioral changes. As a
result of experiments on six Java open source projects,
out of the commits in which Java source files were
changed, the commits of 8.6%∼22.4% consisted of only
nonbehavioral changes. We also found new 25 patterns
of nonbehavioral changes compared to a previous study.

Index Terms—MSR, change analysis, bytecode

I. Introduction
There are many techniques to mine changes in code

repositories. Mined changes have been used in various
research studies such as defect prediction [1], [2] and code
dependency detection [3], [4]. Some code changes such as
modifying existing functions affect the program behavior.
In contrast, other changes such as changing variable names
do not affect the program behavior. In this research, we
use term behavioral changes and nonbehavioral changes to
show the former and the latter changes, respectively. Non-
behavioral changes are conducted to improve readability,
maintainability, or other attributes of the source code.
In this paper, we propose a technique to classify code

changes into behavioral/nonbehavioral ones by using byte-
code. The key idea of our technique is that, if the bytecode
after a given change is the same as the bytecode before the
change, the change is regarded as a nonbehavioral one.
Thus, our classification does not involve any subjectivity.
We conducted a small experiment on six open source

projects to answer the following research questions.
RQ1 How do many nonbehavioral changes exist?
RQ2 What nonbehavioral changes were conducted?

TABLE I: Target projects and targer periods
Project Start date End date

kGenProg 09/Apr/2018 04/Nov/2019
Apache Ant 01/Jan/2017 22/May/2019

Spring Framework Core 15/Aug/2016 24/Jan/2020
Hibernate ORM Core 16/Dec/2016 31/Jan/2020

Apache Tomcat 04/Jul/2017 15/Jan/2020
Apache POI 26/Jan/2018 13/Jan/2020

II. Identifying Nonbehavioral Changes
In this research, we identify nonbehavioral changes ac-

cording to the presence or absence of bytecode changes for
given source code changes. We define that code changes
that affect the byte are behavioral, and the others are
nonbehavioral. Our technique creates another repository
that is composed of Java source files and their decompiled
bytecode. In the created repository, commits in which only
Java source files are changed are nonbehavioral commits.

A. rjava Files
rjava files means files including decompiled bytecode.

We use command ‘javap -p -c [file]’ to decompile a
bytecode file included in class files. Option ‘-p’ specifies
that all methods and fields, including private ones, are
decompiled. Option ‘-c’ specifies that all instructions in
methods are decompiled, not only method signatures.

B. Creating a Census Repository
The following steps are iterated for all the commits

included in a given repository to create a census repository
including java and rjava files.
1) retrieve java files in a given commit.
2) compile java files to make class files.
3) decompile class files to make rjava files.
4) commit java/rjava files to the census repository.

C. Identifying Nonbehavioral Changes
We examine the change history of the census repository.

If at least a rjava file is changed together with java files,
the commit is regarded as a behavioral commit. Otherwise,
the commit is regarded as a nonbehavioral one.

III. Experiment
We conducted an experiment on six Java projects. Ta-

ble I shows the target projects and the target periods. The
testing files in the projects are ignored in the experiment.

TABLE II: Number of commits in which java files with
or without rjava files were changed

Project # .java commits # commits w/o .rjava
kGenProg 808 157 (19.4%)

Ant 323 64 (19.8%)
Spring 851 191 (22.4%)

Hibernate 1,253 114 (9.1%)
Tomcat 1,800 278 (15.4%)

POI 255 22 (8.6%)

1103

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.0-119

A. Analysis for RQ1
The experimental results are shown in Table II. Our

answer to RQ1 is that among the commits in which at
least a java file was changed, the commits of 8.6%∼22.4%
consist only of nonbehavioral changes.

B. Analysis for RQ2
We conducted visual confirmation for all the nonbehav-

ioral commits for the projects. Table IV shows a list of
the patterns of the nonbehavioral changes that we found.
Table III shows the ratio of changes in the newly-detected
patterns against all the nonbehavioral changes. The ratio
is between 20.0%∼39.6%. Our answer to RQ2 is that
we found 31 patterns of nonbehavioral changes, whereas
the previous research [5] defined the six patterns. The
upper six patterns in Table IV can be detected by the
previous research too, while the remaining 25 patterns can
be detected only by our technique.

TABLE III: Newly-detected nonbehavioral changes
Project # all nonbehavioral # newly-detected

changes nonbehavioral changes
kGenProg 164 65 (39.6%)

Ant 75 15 (20.0%)
Spring 245 67 (27.3%)

Hibernate 139 37 (26.6%)
Tomcat 324 69 (21.3%)

POI 35 8 (22.9%)

IV. Conclusion
In this paper, we proposed a technique to identify non-

behavioral changes according to the presence or absence
of bytecode changes. As a result of the investigation,
we confirmed that in the six Java projects, the commits
of 8.6%∼22.4% consisted of only nonbehavioral changes.
Moreover, 25 new changes were defined as nonbehavioral
changes compared to the previous research [5].
In the next step, we are going to apply our technique

to reduce testing time in software developments with
continuous integration.

References
[1] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting

fault incidence using software change history,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 7, pp. 653–661, July
2000.

[2] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. International Conference
on Software Engineering, May. 2005, pp. 284–292.

[3] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data
for detecting logical couplings,” in Proc. International Workshop
on Principles of Software Evolution, Sep. 2003, pp. 13–23.

[4] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE
Transactions on Software Engineering, vol. 30, no. 9, pp. 574–
586, Sep. 2004.

[5] D. Kawrykow and M. P. Robillard, “Non-essential changes in
version histories,” in Proc. International Conference on Software
Engineering, May. 2011, pp. 351–360.

TABLE IV: Patterns of Nonbehavioral Changes
Pattern Total kGenProg Ant Spring Hibernate Tomcat POI
Commits 457 (46.7%) 56 (34.1%) 42 (56.0%) 133 (55.1%) 61 (43.9%) 150 (46.3%) 15 (42.9%)
Formats 212 (21.7%) 26 (15.9%) 15 (20.0%) 30 (12.4%) 40 (28.8%) 93 (28.7%) 8 (22.9%)
Trivial Type Update 11 (1.1%) 2 (1.2%) 1 (1.3%) 4 (1.7%) 3 (0.9%) 1 (2.9%)
Local Variable Renames 22 (2.2%) 10 (6.1%) 1 (1.3%) 5 (2.1%) 5 (1.5%) 1 (2.9%)
Method Parameter Renames 12 (1.2%) 3 (1.8%) 1 (1.3%) 2 (0.8%) 1(0.7%) 4 (1.2%) 1 (2.9%)
this. Insertions/Deletions 7 (0.7%) 2 (1.2%) 4 (1.7%) 1 (2.9%)
final Insertions/Deletions 22 (2.2%) 19 (11.6%) 1 (0.4%) 1 (0.7%) 1 (0.3%)
Import Statements 56 (5.7%) 18 (11.0%) 5 (6.7%) 14 (5.8%) 9 (6.5%) 8 (2.5%) 2 (5.7%)
Annotations 100 (10.2%) 25 (15.2%) 5 (6.7%) 31 (12.9%) 22 (15.8%) 16 (4.9%) 1 (2.9%)
public Insertions/Deletions 3 (0.3%) 1 (0.6%) 2 (1.4%)for Methods in Interfaces
Unnecessary Casts 1 (0.1%) 1 (0.6%)
Type in Lambda Expressions 1 (0.1%) 1 (0.4%)
Empty Statements 5 (0.5%) 1 (0.6%) 1 (0.4%) 1 (0.7%) 1 (0.3%) 1 (2.9%)
De Morgan in Expressions 1 (0.1%) 1 (0.4%)
Parentheses Expressions 11 (1.1%) 7 (2.9%) 3 (0.9%) 1 (2.9%)
Brackets for Blocks 11 (1.1%) 2 (1.4%) 8 (2.5%) 1 (2.9%)
If-Condition Consolidation 1 (0.1%) 1 (1.3%)
if-else-if to two if 1 (0.1%) 1 (0.4%)
Unnecesary else 1 (0.1%) 1 (0.4%)
Generics 8 (0.8%) 3 (4.0%) 3 (1.2%) 2 (0.6%)
Diamond Operator 4 (0.4%) 1 (1.3%) 3 (0.9%)
Array Type Definition 1 (0.1%) 1 (0.4%)
Reorder Modifiers 2 (0.2%) 1 (0.4%) 1 (0.3%)
Empty String Concatination 1 (0.1%) 1 (0.3%)
Init. w/ or w/o Static Block 1 (0.1%) 1 (0.3%)
Iterator to Enhanced For-Block 1 (0.1%) 1 (0.3%)
Autoboxing and Unboxing 19 (1.9%) 19 (5.9%)
Number Type Specification 1 (0.1%) 1 (2.9%)
Use Constants 1 (0.1%) 1 (0.3%)
static for Enum Declarations 3 (0.3%) 3 (0.9%)
Semicolon for Enum Constants 1 (0.1%) 1 (2.9%)

1104

