
Empirical Software Engineering
https://doi.org/10.1007/s10664-020-09807-w

Ammonia: an approach for deriving project-specific
bug patterns

Yoshiki Higo1 · Shinpei Hayashi2 ·Hideaki Hata3 ·Meiyappan Nagappan4

© The Author(s) 2020

Abstract
Finding and fixing buggy code is an important and cost-intensive maintenance task, and
static analysis (SA) is one of the methods developers use to perform it. SA tools warn
developers about potential bugs by scanning their source code for commonly occurring bug
patterns, thus giving those developers opportunities to fix the warnings (potential bugs)
before they release the software. Typically, SA tools scan for general bug patterns that are
common to any software project (such as null pointer dereference), and not for project spe-
cific patterns. However, past research has pointed to this lack of customizability as a severe
limiting issue in SA. Accordingly, in this paper, we propose an approach called Ammonia,
which is based on statically analyzing changes across the development history of a project,
as a means to identify project-specific bug patterns. Furthermore, the bug patterns identi-
fied by our tool do not relate to just one developer or one specific commit, they reflect the
project as a whole and compliment the warnings from other SA tools that identify general
bug patterns. Herein, we report on the application of our implemented tool and approach
to four Java projects: Ant, Camel, POI, and Wicket. The results obtained show that our tool
could detect 19 project specific bug patterns across those four projects. Next, through man-
ual analysis, we determined that six of those change patterns were actual bugs and submitted
pull requests based on those bug patterns. As a result, five of the pull requests were merged.

Keywords Pattern mining · Change patterns · Project-specific bug patterns ·
Fix recommendation

1 Introduction

Software maintenance is a crucial activity during the development of any software product.
There are several objectives to software maintenance, as evidenced by the thriving research
community that has evolved around the International Conference on Software Maintenance
and Evolution (ICSME). One of those objectives is to make sure that bugs in software are

Communicated by: Miryung Kim

� Yoshiki Higo
higo@ist.osaka-u.ac.jp

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09807-w&domain=pdf
http://orcid.org/0000-0002-8278-8975
mailto: higo@ist.osaka-u.ac.jp


Empirical Software Engineering

fixed. Past studies have shown that bugs can be costly and sometimes even cause harm
to human life (Zhivich and Cunningham 2009). For those reasons, software practitioners
use both preventive and corrective measures to address the issue of bugs. Some of the
preventive techniques and analyses used by practitioners include testing (Xie 2016), code
review (Rigby et al. 2008), bug prediction (Hall et al. 2012), and static analysis (SA) (Rah-
man et al. 2014; Sadowski et al. 2015), which are applied before the software is released to
the end user. Corrective techniques and analyses include log file analysis (Shang et al. 2015),
crash report analysis (Kim et al. 2011), and bug localization (Wong et al. 2016), among oth-
ers, which are applied once the software is deployed to the end user. The bugs found will
then be reported to the developers through bug reporting systems such as Bugzilla or Jira.

In this paper, we will focus on complementing one preventive technique - static anal-
ysis (SA), which is a type of automated analysis that provides developers of the target
software with warnings regarding potential bugs in their source code. The underlying idea
behind SA tools is that there are some commonly occurring bugs across all software prod-
ucts (even those written in different languages) and that such bugs often have identifiable
patterns. For that reason, SA tools employ a set of rules (patterns) for commonly occurring
bugs and scan the target source code to detect such patterns. For example, it is possible to
automatically identify the code fragments where a bug like null pointer dereference, which
commonly appears in many software projects (including those written in different program-
ming languages) (Hoare 2009), can occur through a bug pattern. As a result, SA tools scan
source code for such code fragments and report them as warnings to developers.

Currently, there are a number of available SA tools. These include: Splint (http://www.
splint.org/), Cppcheck (http://cppcheck.sourceforge.net/), Clang Source Analyzer (http://
clang-analyzer.llvm.org/), FindBugs (http://findbugs.sourceforge.net/), and PMD (https://
pmd.github.io/).

Typically, the bug patterns in a software project are not just from a particular version of
the target software project, but also cover the software development as a whole. However,
while such bug patterns are beneficial, current SA tool databases do not contain any specific
bug patterns that are part of a particular target software project, and researchers like Johnson
et al. have previously pointed out that this lack of customizability is one of the reasons why
SA tools are infrequently used (Johnson et al. 2013).

One of the reasons for the lack of project-specific bug patterns (PSBPs) may be because
there might not be any such patterns. However, Ray et al. found that developers make a non-
trivial amount of similar changes in their software (Ray et al. 2015). Therefore, noting that
there is empirical evidence that PSBPs do exist, we propose an approach called Ammonia
to identify PSBPs that are specific to particular software projects.

We identify the PSBPs by mining past bug-fix changes in the target software project. Our
contributions in this paper are as follows:

– We propose an approach called Ammonia, which complements (and does not replace),
SA tools with bug patterns specific to a particular project.

– We provide an implementation of our approach that is available for anyone to download
and use.

– We describe a case study where we apply our tool to four open source software systems
and scan the latest versions of their source code to find PSBPs.

– We evaluate the quality of the PSBPs identified in the case study systems and submit
pull requests to fix the detected bugs.

– We conclude with a candid discussion of where our methodology needs improvement
so that future research can further develop our approach.

http://www.splint.org/
http://www.splint.org/
http://cppcheck.sourceforge.net/
http://clang-analyzer.llvm.org/
http://clang-analyzer.llvm.org/
http://findbugs.sourceforge.net/
https://pmd.github.io/
https://pmd.github.io/


Empirical Software Engineering

We begin by acknowledging that there are clone detection techniques and various SA
tools that already exist. However, our approach combines these techniques and tools, along
with change level analysis, in an effort to help developers and maintainers to find and fix
commonly occurring bugs. To accomplish this, we overcame engineering challenges that
helped scale the tool up for use in practical projects and not just toy examples. Hence, as
an engineering research area, we believe that our contributions (bringing previous research
ideas together, solving engineering challenges, building a working tool, and conducting a
real-world empirical case study with fixed bugs), are highly relevant.

Note that the pattern identification portion of our proposed approach described in this
paper is an enhanced version of our previous research (Higo and Kusumoto 2012). How-
ever, the approach proposed herein includes the two major differences from the previous
approach. Specifically:

– The newly proposed approach includes code normalization and hash-based comparison
to derive more appropriate change patterns. In contrast, source code lines are compared
as they are with the Unix diff command in the previous technique. The use of code
normalization makes it possible to make a change pattern from code changes whose
intrinsic contents are the same, even if their texts are different.

– Another enhancement is that the proposed approach considers bug-fix commits while
the previous approach does not. Considering bug-fix commits makes it possible to focus
on the most important changes and potentially reduces the number of false positives.

In this paper, we not only improve on our previous approach, we also build other tools
such as a graphical user interface (GUI) tool that can be used by a developer to identify
buggy code and find possible fixes for it. The resulting GUI is not simply a display of our
results, it also provides users with the ability to filter the data as they seem fit. Currently,
the GUI has filters that provide the following capabilities:

– The ability to show only latent buggy code that matches with PSBPs, including given
keywords in their commit logs.

– The ability to show only latent buggy code that matches with n-match PSBPs n

specified by a user.
– The ability to show only latent buggycode in files whose paths include specified keywords.

The first filter is useful when we want to concentrate on some specific types of buggy
code. For example, “race-condition”, “null pointer”, or issue IDs would be useful keywords
for this filter. The second filter is useful when we want to find latent buggy code efficiently
because we empirically know that few-match PSBPs are more likely to be buggy code than
many-match PSBPs. We assume that a user inputs 1 or 2 to use this filter. The third filter is
useful when we want to concentrate on some specific files. For example, by using the filter,
files under only a specific directory are shown to users.

The evaluation described in this paper was performed in a stricter manner. In this study, we
made pull requests for each buggy code that we found using our proposed approach and submitted
them to the software developers who then judged whether or not the pull requests were useful.

The rest of the paper is organized as follows: Section 2 presents the background and defi-
nitions needed to understand our paper while Section 3 presents our approach and Section 4
provides a description of our tool. Section 5 presents the case study that we carried out
and its results, while Section 6 presents a discussion of where our approach needs devel-
opment (so that future research can improve upon our work). Section 7 presents our work
within the context of other related work and Section 8 presents threats to validity in our
study. Finally, Section 9 presents the conclusions of our study.



Empirical Software Engineering

2 Background and Definitions

In this section, we define the key terms behind our approach to identify PSBPs.

2.1 Changes in Source Code

When a bug is found as software is being used or tested, it is logged in a bug repository
such as Jira/Bugzilla. Each such bug is then assigned to a developer who discusses it with
colleagues and others, explores ways to fix it, and then submits a possible solution. This
solution is then tested and reviewed by other developers. After successful testing and code
review, the solution is committed to a source code repository such as Git/Subversion. Each
such commit has two parts:

Fig. 1 A change pattern in apache camel



Empirical Software Engineering

– the before-change source code, which in the case of a bug is a chunk of problematic
code, and

– the after-change source code, which in the case of a bug is a solution for the problematic
code.

The top of Fig. 1 shows a concrete example of a commit that we extracted from Apache
Camel. The line with prefix ‘–’ is the before-change source code and the line with ‘+’ is
after-change source code.

2.2 Change Patterns

The key idea behind our approach is that we mine all the commits in the entire development
history of a specific project and identify change patterns among them in order to build a
PSBP database. However, before we define what we mean by change patterns, let’s first
define the term code delta as follows:

– A code delta is a chunk of changed code. If a change is code addition, its chunk includes
only after-change text. If a change is code deletion, its chunk includes only before-
change text. If a change is code replacement, its chunk includes both before-change text
and after-change text. In this research, we regard before-change text as an empty string
in the case of code addition and after-change text is empty in the case of code deletion,
respectively.

Then, we define a change pattern as follows:

– A change pattern is an abstract pattern that represents how source code was changed. A
change pattern consists of code deltas whose both before-change text and after-change
text are abstractly identical to one another. The reason why we abstract before-change
and after-change texts is to disregard trivial differences among code deltas.

Figure 1 shows two commits from Apache Camel. In this figure, we can see that there
are more than four commits that include the same code deltas. In total, the same code deltas
occurred eight times in six different commits, and all of the code deltas form a single change
pattern, as shown in the bottom of the figure. If the commits from which the change pat-
tern is extracted are bug fix commits, we can then call the change pattern a PSBP. In our
approach, the history of a project is minded to extract a database of such PSBPs.

3 Our Approach to Identify PSBPs

In this section, we describe how we use our approach to determine PSBPs, which we call
Ammonia. There are three key phases in our approach:

– Change Extraction – For every commit in the development history of a particular
project, we identify the actual changes made to the source code (i.e., the before-change
and after-change texts) and then abstract them.

– Change Pattern Derivation – We then consider every abstracted change identified in
the previous step, and group them to form change patterns.

– PSBP Extraction - Then, based on certain conditions, extract PSBPs from the change
patterns derived in the previous step. Developers can then determine if each of the
extracted PSBPs is truly a bug-fix pattern.



Empirical Software Engineering

Figure 2 shows an overview of the proposed approach. In the following subsections, we
describe each of the three phases.

3.1 Change Extraction

In the change extraction phase, we have three subprocesses:

1. Identify the source files changed in a given commit. A code repository contains not
only source files, but also other kinds of files such as manual or copyright files. Such
files are ignored, even if they are changed in the given commit, because our approach
focuses solely on changes in the source files.

Fig. 2 PSBP extraction process



Empirical Software Engineering

2. Abstracting the source files. We could limit our examination strictly to code deltas in
the file, but if we only consider the code deltas, we face the following issues:

– Among other things, we do not know which token would be a variable and which
would be a type.

– Only a part of a program statement is included in the code delta if the program
statement is located within multiple lines of code of which only one line has been
changed.

Hence, we abstract the entire source file from the revision before the commit and the
same corresponding source file after the commit. To abstract the source files, we follow
the five-step process shown in Fig. 3. The example in this case is the source code before
Commit-1 in Fig. 1.

STEP-1: We perform lexical analysis and identify statement boundaries. Three kinds
of tokens, “;”, “{”, and “}” are used as statement boundaries.

STEP-2: We then arrange tokens for each statement in a line.
STEP-3: Next, we remove visibility modifiers such as “public” or “private”

and normalize identifiers such as “type names”, “primitive types”, and “variable
names”.

Removing visibility modifiers is a design choice aimed at mitigating false posi-
tives, such as whether public/private should be added/removed for field declarations,
which would cause our approach to point out a large number of false positives if
not removed. It works by making it impossible to derive change patterns relating
to adding/removing/changing visibility modifiers. However, at the same time, since
removing visibility modifiers can reduce false positives, we decided it would be best
to remove such visibility modifiers.

Variable names are normalized to “V#”. The numbers of “V#” show the appear-
ance pattern of variable names within a single statement. In each statement, the
same numbers are assigned to the same names, and different numbers are assigned
to different names. For example, three statements “a = a + 1;”, “a = b +
1;”, and “c = c + 1;” are normalized to “V0 = V0 + L;”, “V0 = V1 +
L”, and “V0 = V0 + L”, respectively. By normalizing code with this strategy, the
same normalized text is generated from “a = a + 1;” and “c = c + 1;”, but
different normalized text is generated from “a = b + 1;”. We do not normalize
method names because calls to different Application Program Interface (API) meth-
ods are very different semantically. We also normalize literals to L. Another design
choice we made was to normalize literals, because we empirically know that doing
so can reduce false positives. An example of identifier normalization is shown at the
bottom of Fig. 1.

STEP-4: We generate a normalized line of text for each statement by concatenating
tokens.

STEP-5: We calculate an MD5 hash for each normalized line of text.

3. Identify changes made by the commit. After abstracting the source files, we have
a hash array for each source file. A hash array of each source file from before the
commit is then compared to the hash array of the file from after the commit using the
longest common subsequence (LCS) algorithm. By applying the LCS algorithm, we
can identify deleted, added, and replaced hash values.

– A hash subsequence deletion means a code deletion.



Empirical Software Engineering

Fig. 3 Technique for abstracting the source code files



Empirical Software Engineering

– A hash subsequence addition means a code addition.
– A hash subsequence replacement means a code replacement.

Note that the proposed technique utilizes only code deletion and code replacement
because code addition cannot be utilized to identify code fragments that include latent
bugs.

We repeat these three subprocesses for every commit in the entire development history
of the project.

3.2 Change Pattern Derivation

In the change pattern derivation phase, we classify the extracted changes based on their
before-change and after-change code deltas. If both the normalized before-change and after-
change texts of any two given code deltas are the same, they are classified into the same
group. Code fragment matching is performed with their MD5 hashes while both string
and hash comparisons have similar performance. Figure 4 shows the change pattern that
we presented in Fig. 1. This pattern shows the importance of the identifier normalization
in our proposed technique. The instances of this pattern include different variable names,
camelContextName and identity. The same change occurred eight times in the
development history of Camel, but includes two different identifier patterns. If the proposed
technique did not include the code normalization, two different change patterns would have
been derived. This is important because if a single change pattern is detected as two differ-
ent patterns, it becomes more difficult to notice that the developers of Camel began using
class QuartzHelper instead of method getManagementName(). Therefore, once we
group every change identified in the previous phase, we have a collection of change groups,
each of which is a change pattern, and thus a database of change patterns that are specific
to a given project.

3.3 PSBP Extraction

Since the change patterns described in the last subsection are derived from all past changes,
some of them are not related to fixing bugs. Therefore, in order to obtain change patterns
that are more useful for finding latent problematic code in the latest version of the software
project, we begin by filtering out change patterns that are not related to fixing bugs. More
specifically, in our approach, we use the following two conditions: Change patterns that
satisfy both the conditions remain.

Fig. 4 A change pattern derived from different texts



Empirical Software Engineering

– Condition-1: change patterns related to bug-fix commits.
Commits in the repository of the target software projects can be classified into bug-fix
commits and other commits such as functional enhancement or refactoring. We only
use change patterns in which at least one of their constituent changes have appeared
in bug-fix commits. Our approach is designed to use the IDs of resolved and closed
bug-related issues to identify bug-fix commits. If a given commit includes any of the
bug-related issue IDs in its log messages, it is regarded as a bug-fix commit.

– Condition-2: change patterns whose before-texts are different from the before-
texts of any other change patterns.
Although duplicated code fragments can be changed in different ways in version his-
tories, in the case of bug-fix changes, we assume that the duplicated problematic code
is changed in the same way. If two duplicated code fragments are changed in different
ways, our proposed technique regards the two changes as two different change patterns.
The two different change patterns share the same before-text, but their after-texts are
different. We use only change patterns consisting of at least two changes and whose
before-texts are different from the before-texts of all other change patterns.

The remaining change patterns ((a) that are part of a bug-fix commit, and (b) have
identical after-change texts for all the changes) are used to identify latent problematic
(buggy) code. We identify such change patterns as PSBPs. Since the before-change text
of the extracted patterns might be problematic code, we find code fragments in a given
revision (logically the latest revision, but potentially in any revision) that matches the
before-change part of the change patterns. Matched code fragments with a PSBP are can-
didates of latent problematic code, and the after-change part of a PSBP is suggested to the
developer as a possible fix for the buggy code.

We empirically know that there are some PSBPs whose before-change parts are matched
with many code fragments in a given revision (see Table 3). Single-match PSBPs are far
fewer as seen in Table 3 compared to all PSBPs. We did a manual analysis of many-match
PSBPs (see Section 6.3). Since many-match code fragments are not latent problematic code,
and since many-match PSBPs are rather useless, it is better to use the only PSBPs whose
before-change text is matched with only a few code fragments in a given revision.

4 Tool Description

We have implemented a toolchain based on our proposed approach, which is shown in Fig. 2.
At this moment, our only target programming language is Java, but it will not be difficult
to extend our proposed technique to other programming languages because it includes only
lightweight source code analysis, such as a lexical analyzer. In cases where the toolchain
supports another programming language, we simply need to implement a lexical analysis
module and then specify tokens to be used as statement boundaries.

The first tool (a command-line tool) takes a software repository and finds change patterns,
which are then stored in a structured query language (SQL) database. The second (GUI) tool,
combines a version of a software project and the SQL database to first find latent buggycode from
the version of source code. Next, it shows the matching results in a GUI window. Figure 5
shows a snapshot of the second tool. A quick guide to using this tool is described below:

– Immediately after launching the GUI tool, source files in the target revision are listed in
panel C, and all the other panels are empty. In C, each file has the number of matched
code fragments in the given revision. The first action needed is selecting a file in C.



Empirical Software Engineering

– If a file in C is selected, panel D shows the source code of the file and panel E lists the
set of PSBPs for the file. The second action is selecting a PSBP in E.

– If a PSBP in E is selected, D automatically scrolls to the matched code of the selected
PSBP and panel F shows past changes that were the reason for this suggestion. F pro-
vides before/after texts of code deltas included in the selected PSBP, the corresponding
commit ID, and commit logs of the past changes. We assume that the users of this tool
will investigate the PSBPs derived from our proposed approach with the information in
panels D and F.

The tool also has three filtering functions to remove inappropriately matched code
suggestions.

– Panel A is used to filter out change patterns. Code that matches with filtered-out change
patterns is not suggested to the developers. In Fig. 5, we are filtering out change pat-
terns whose commits do not include the term “race-condition”. Developers can use any
keyword to search through the commit logs, and hence get any change patterns.

– Panel B is used to filter out change patterns based on the number of matches they have
with the given revision. It is expected that developers might want to examine change
patterns that occur only once in the given revision (an overlooked bug), or change
patterns that have several matches within the given revision (a common bug).

– Panel C has a function to filter out files. For example, when test files or tool-generated
files are the targets of this filtering, we can remove them based on names included in
their file paths. In Fig. 5, we are removing files that include “test” in their file paths.

To make it easier to identify useful/important change patterns from a huge number of
such items, change patterns are characterized with some quantitative metrics in E. The
following are the metrics used to characterize change patterns:

– SIZE is the number of statements in the before-text of the given change pattern.
– FILES is the number of distinct files where the given change pattern appears.

a
b

c

d

f

e

Fig. 5 Tool snapshot



Empirical Software Engineering

– COMMITS is the number of commits where at least an instance (an actual change) of
the given change pattern appears.

– AUTHORS is the number of distinct authors that made commits where at least an
instance of the given change patterns appears.

– SUPPORT is the number of instances included in a given change pattern. Note that
SUPPORT and COMMITS are different because several instances of a change pattern
can occur in the same commit.

– MATCHED is the number of code fragments in the target source code revision that match
a particular change pattern, which is also used for the filtering function shown in Panel
B.

Our toolchain has been developed in Java, and is open to the public in GitHub.1 Since
we wanted to determine if our tool could find a real-world bug before we carried out a full-
fledged evaluation, we checked out the latest revision of Apache Ant issued on May 1, 2016,
and then made a database of change patterns by using the command-line tool from the entire
Ant history. Next, we launched the GUI tool with the latest revision and the database. The
GUI tool showed many code fragments that matched with either change pattern because,
at that time, we did not use Condition (b) (see Section 3.3) and we did not restrict our
search to single-match PSBPs, unlike the experiment described in Section 5. After investi-
gating dozens of matched code fragments one-by-one, we found a code fragment that was
very likely to be a bug in the file src/ main/ org/ apache/ tools/ ant/ taskdefs/ optional/
vss/ MSVSS.java. We then contacted the developer via email, who had committed the code
fragment, told us that the matched line of code was an overlooked part of his past bug-fix
changes, and that he had fixed it immediately. 2 The bugfix was then merged into the main
branch of the Ant development. 3

5 Evaluating our Approach

In this section, we evaluate the tool we implemented based on our approach (Ammonia) by
applying it to four open source software projects. In the following subsections, we describe
the open source software projects that we examined, the design of the evaluation, and the
results obtained.

5.1 Case Study Subjects

Table 1 shows some information about the four software projects used in our evaluation. We
provide information such as the first and last commit so that anyone wanting to replicate our
evaluation results will be able to do so. All of the software projects are written in Java and
are being developed in the Apache Software Foundation. We chose Java because our tool
works on Java projects, but one could easily make changes to our tool (which is available
as an open source project) to work on software written in other languages as well. We also
chose Apache Software Foundation projects since we wanted to use real-world projects
and not toy examples. By examining real-world examples, we could also determine if our
implementation has an adequate run time performance. The Git repositories for the four

1https://github.com/YoshikiHigo/NH3
2https://github.com/apache/ant/commit/5c24a7
3https://github.com/apache/ant/commit/fc0b2a

https://github.com/YoshikiHigo/NH3
https://github.com/apache/ant/commit/5c24a7
https://github.com/apache/ant/commit/fc0b2a


Empirical Software Engineering

Table 1 Case study subjects

Project # bugs First commit Last commit # commits # bug-fix commits

Ant 2,007 4/Jan/2010 30/Jul/2016 673 208

Camel 2,618 19/Mar/2007 30/Jul/2016 23,861 4,687

POI 1,782 1/Feb/2002 29/Jul/2016 6,226 1,381

Wicket 2,654 23/Sep/2004 30/Jul/2016 23,363 2,621

software projects are accessible via GitHub. We evaluated our tool on data from the four
projects that has been uploaded before July 2016. As we can see from Table 1, all projects
have a similar number of bugs and each bug in the table has a corresponding report in the
Jira reporting system.

To apply our approach, we first need to determine whether or not each past commit is
a bug-fix. Since the target software projects utilize Jira/Bugzilla, which are popular issue
tracking systems, to manage issues on their systems, we collected the IDs of resolved and
closed bug-related issues by using those systems. In this experiment, if a log message of a
given commit includes any of the bug-related issue IDs, the commit is regarded as a bug-
fix. The column of “# bugs” of Table 1 includes the number of past bug fix commits that we
collected.

5.2 Evaluation Design

As described in Section 4, our toolchain includes two tools. The first is a command line tool
used to extract change patterns. We applied this tool to the code repositories of all four case
study subjects in order to obtain a change pattern database for each of the four case study
subjects. The second (GUI) tool takes the change pattern database obtained via the first
tool and a target revision as input. The target revisions that we chose for each case study
subject are shown in Table 2. Note that there is no overlap between the chosen versions in
Table 2 (all in August 2016) and those in the input repositories (All up to July 2016). Using
these two inputs, the GUI tool can identify latent buggy code in the chosen revision. In this
experiment, we use only single-match PSBPs to identify latent buggy code.

5.3 Results

In Column 2 of Table 3, we present the total number of change patterns extracted from each
of the projects. For Ant, we only use commits data after January 1st, 2010 to derive change
patterns because prior to January 2010, Ant underwent significant design alterations that

Table 2 Target snapshots. The commit IDs are truncated. A whole commit ID consists of 40 digits in
hexadecimal notation. For the four target projects, the seven digits are sufficient for identifying the target
commits (git-log command works with the seven digits)

Project Commit ID Commit date # files LOC

Ant 1de4dfa... 7/Aug/2016 866 223,016

Camel dc77701... 1/Aug/2016 4,949 277,111

POI 34a6732... 11/Aug/2016 2,216 431,853

Wicket ba393ff... 20/Aug/2016 1,861 287,421



Empirical Software Engineering

Table 3 Number of change patterns and single-match PSBPs found by our tool

Project # all change # change patterns # change patterns # single-match

patterns satisfying (a) satisfying (a) and (b) PSBPs

Ant 3,975 644 30 1

Camel 73,802 9,851 1,573 7

POI 47,234 9,623 2,052 9

Wicket 55,272 4,317 532 2

resulted in method name, logging, and exception handling changes. As a result, only 3,975
change patterns were derived from Ant, with the other three case subjects having at least one
order of magnitude more change patterns.

As explained in Section 3.3, we use change patterns satisfying two conditions: (a) change
patterns whose changes occurred in bug fix commits at least once, and (b) change patterns
whose after-change texts are the same for all the changes. Columns 3 and 4 of Table 3 shows
the number of change patterns satisfying (a) and the number of change patterns satisfying
both (a) and (b). The change patterns satisfying both (a) and (b) are used to identify PSBPs.

In Column 5 of Table 3, we present the number of PSBPs found from each of the
projects. Those numbers are PSBPs that have only a single match in the chosen revision of
the case study subjects. In this experiment, we used only single-match PSBPs because, as
described in Section 3.3, we know that as the number of code fragments a PSBP matches
with increases, the less harmful those matched code fragments are.

Table 4 shows the results of the manual analysis we had carried out for each single-match
PSBP before submitting pull requests. The following is an explanation for the last three
columns of the table.

– Buggy. The number of matched code fragments that we determined as having the same
bugs as the before-change text in the PSBP.

– Non buggy. The number of matched code fragments that (based on manual analysis)
we did not regard as having the same bug as the before-change text in the PSBP.

– Unknown. The number of code fragments that we were not able to make any con-
clusions about, even after careful manual investigation. The reason for this is because
we are neither the developers nor experts in the case study systems that were exam-
ined. While it is likely that the relevant system developers could comment better on
these uncertain code fragments, we did not want to waste their time by asking them
for commits. Therefore, even though this remains an issue, we do not consider those

Table 4 Manual investigation results for single-match PSBPs

Project # PSBPs Buggy Non buggy Unknown

Ant 1 1 0 0

Camel 7 3 2 2

POI 9 1 8 0

Wicket 2 1 1 0

Total 19 6 (31.6%) 11 (57.9%) 2 (10.5%)



Empirical Software Engineering

code fragments to be useful and removed them from consideration in order to prevent
distorting our results.

In the judgment process, we first attempted to determine if each matched code fragment
should be considered a false positive. If we were able to find a reason, we confirmed it as
a false positive and regarded the code fragment as Non buggy. If we were not able to find
any reason to regard it as a false positive, and we considered it likely that the code fragment
included the same bug as the PSBP, we regarded it as Buggy. In cases where we were unable
to find reasons but did not consider it likely that the code fragment included the same bug,
we regarded it as Unknown. The reasons used in this identification process are discussed in
Section 6.

In total, 19 code fragments were suggested as potential latent bugs. Our manual analysis
then determined that six (approximately 6/19=31.6%) of the matched code fragments were
actual bugs. While a precision level of around 30% seems low, note that the number of
matched code fragments that remained listed as latent bugs after the filtering provided by
our tool dropped to just 19. In other words, from thousands of change patterns, our approach
identified only single-digit PSBPs per project (unlike the warnings from other SA tools
that number in the hundreds or thousands). Hence, even though the precision level is low,
since the total number of PSBPs is small, developers should be able to check each of them
manually.

Liu et al. experimented with 730 OSS projects with FindBugs (Liu et al. 2018) and found
16,918,530 distinct code violations, but the developers removed only 88,927 out of them.
In other words, the number of removed violations was only 0.5%, which is much less than
31.6% removed via the use of our process.

After the manual investigation that had been conducted in order to confirm if the latent
bugs that our tool identified were actually bugs, we submitted pull requests for six of them.

Table 5 Pull requests for bug-related issues



Empirical Software Engineering

Table 5 presents the details about all six of the pull requests. The ID column presents the
pull request ID for each project and can be used to see the pull request on GitHub.4 We also
present the status of the pull requests and when their status was last changed, the SUPPORT
value for the change pattern associated with each pull request (as this signifies the number
of changes in the past that has had the same bug fixed), and the actual change associated
with each pull request.

From the results, it can be seen that five (83.3%) of the six pull requests have been merged
and one pull request in Antwas rejected. The developer rejected the last pull request because
it would introduce a new bug to Ant.5 The suggested change was a micro-optimization
aimed at improving Ant’s performance by avoiding multiple invocations of size(), which
has occurred 57 times in the past. However, in this case, children can be added dynami-
cally. Consequently, optimizing the loop by replacing children.size()with a variable
would break Ant’s behavior.

We also ran PMD, which is a popular SA tool, on the same snapshot of the four systems to
which we applied Ammonia and found that PMD was not able to find latent buggy code for
any of the 19 single-match PSBPs including the ones which we submitted as pull requests
and were accepted by the developers. Thus we can see that Ammonia can find issues that
are not detected by a static analysis tool like PMD.

Evaluation Summary: Our tool was able to successfully extract PSBPs from the case
study subjects and about 31.6% (six out of 19) of the PSBPs resulted in the identification
of actual bugs in cases where only single-match PSBPs were used. Note that like any
current bug detection technique, we were unable to find all possible bugs, so it is impos-
sible to measure recall. All we can measure is precision and our current effectiveness.
Nevertheless, we successfully confirmed that about 31.6% of the identified PSBPs could
be used to fix bugs in four case study subjects.

6 Discussion

Herein, we discuss the results that we obtained in the experiment. First, Section 6.1
describes the reasons why we judged the matched code fragments as Non buggy. Second,
we show the results of another experiment in the case that we used not only the bug-related
issue IDs but also all the issue IDs. Third, we show some examples of the matched code frag-
ments that were found with many-match PSBPs while we only investigated single-match
PSBPs in the experiment of Section 5.

6.1 ReasonsWhyWe Judged theMatched Code Fragments as Non Buggy

From Table 4, we can see that about 31.6% of the code fragments that matched with
the PSBPs are bugs. While this is level of precision is quite good (in comparison to SA
tools (Ayewah and Pugh 2010; Liu et al. 2018)), it still means that about 57.9% of the
matched patterns were false-positives. Herein, we explain the reasons why we judged the
matched code fragments as Non buggy, focusing on three particular reasons we identified
in the judgment process of the experiment.

4https://github.com/apache/ant,camel,poi,wicket/pull/〈ID〉
5https://github.com/apache/ant/pull/20

https://github.com/apache/ant,camel,poi,wicket/pull/<ID>
https://github.com/apache/ant/pull/20


Empirical Software Engineering

Table 6 Classification of Non
buggy code fragments Project Accidental Mismatched Extract

coincidence context method

Ant 0 0 0

Camel 1 2 0

POI 0 6 2

Wicket 0 1 0

– Accidental coincidence. There were cases where the text in the change corresponds
to a method call, and the name of the method is very generic, like size(). Hence, we
initially matched a code fragment with a method that has the same name as the PSBP,
but on further perusal found that the invoked methods are indeed very different. Since
we do not abstract method names in our approach (see Section 3), we will avoid any
more such instances.

– Mismatched context. The context of a matched code fragment was different from the
context of code fragments where changes included in a given PSBP occurred. For exam-
ple, there are class A and its subclasses B and C. The PSBP was derived from changes
that occurred in B and C, but the matched code fragment is in A. Accordingly, we
concluded that applying the same change to the parent class was inappropriate.

– Extract method. The matched code fragment was refactored via extract method refac-
toring, but the before-change text of the given change pattern in this case was a
multi-line code chunk, and its after-change text was a method invocation. Hence, the
matched code fragment was actually the body of the extracted method.

Table 6 shows the number of Non buggy code fragments that were classified based on
each of the three reasons above. For all case study subjects except Ant, mismatched context
was the biggest reason for false positives. Since our proposed approach does not consider the
context surrounding the matched code, many Non buggy code fragments were misidentified
due to this reason.

For POI, refactored code are matched as well. Although it is possible to exclude them
automatically if we can identify and track refactoring changes (Mahouachi et al. 2013; Prete
et al. 2010; Xing and Stroulia 2006), the time required to mine software repositories will be
much longer if we use such techniques. In other words, it is a trade-off between accuracy
and performance.

For Camel, there was one case of accidental coincidences. Since our proposed approach
employs text-based rather than entity-based matching with semantic analysis, we expected
such false positives to occur, but we believe that the number of code fragments identified
due to this reason is small enough that developers can easily determine that those code
fragments are Non buggy.

6.2 Using Non Bug-Related Issue IDs

We only used bug-related issue IDs to identify bug-fix commits in the experiment;
however, we consider using non bug-related issue IDs is also useful. As an extra exper-
iment, we extracted PSBPs from Camel by regarding commits whose message include
“CAMEL-[0-9]+” as bug-fix commits. As a result, we detected 56,563 change patterns
satisfying (a), 4,163 change patterns satisfying both (a) and (b), and 133 single-match
PSBPs, respectively. In the experiment, we found seven single-match PSBPs from Camel



Empirical Software Engineering

Table 7 Pull requests for non bug-related issues

with bug-related issue IDs, which means 126 single-match PSBPs were derived from non
bug-related issue IDs. We made pull requests from five out of the 126 single-match PSBPs
and four of them were merged by the developers. Table 7 shows the pull requests. The
code changes are for deleting an unnecessary casting, adding a close method invoca-
tion after data sending processing, using a better API, and simplifying a text generation.
The proposed technique was able to suggest such non bug-fix changes in addition to bug-
fix changes. Thus, we can use all issue IDs instead of bug-related issue IDs but then the
false positives are going to increase because PSBPs derived from all issue IDs are suggest-
ing changes other than bugfixing. We cannot submit pull requests for all 126 single-match
PSBPs because GitHub bans people who try to submit such large number of automated pull
requests (Carlson et al. 2019).

6.3 Finding Code Fragments Without the Single-Match Limitation

We limited the number of matched code fragments to 1 in the experiment. To see the impact
of this limitation, we also searched for code fragments without the limitation. As a result, 45,
631, 940, and 66 code fragments were matched to PSBPs for the four target software prod-
ucts without the limitation. We then manually investigated dozens of the code fragments and
we found that matched code fragments are micro refactoring opportunities rather than latent
buggy code. We show some examples of this in Fig. 6. For example, in Fig. 6a, we can see
a change pattern that introduces a temporary variable to avoid invoking getException
twice. This change pattern matches 16 code fragments. In Fig. 6b we see a change pattern
that is used to simplify the finalization code. Here, 13 code fragments were matched to this
change pattern. Meanwhile, Fig. 6c shows a change pattern that replaces the copyInto
invocation with toArray invocation in order to make the code simpler. While we found
many refactoring opportunities with many-match PSBPs, we think that it is difficult to eval-
uate the refactoring opportunities that were found. Bug-fix changes are clearly evaluated
by checking whether or not the code change can fix the bug, even though there is neither
a generic nor strict standard that can be used to evaluate micro refactorings. It is generally
said that the size and complexity of the code are used as a standard, but in case of micro
refactorings, there are not many differences in such values between before and after code



Empirical Software Engineering

Fig. 6 Micro refactoring examples

changes. Multi-match PSBPs may be studied further as a way to identify micro-refactorings.
But that is out of the scope of this work.

7 RelatedWork

Several related studies influenced our approach. In this section, we divide them into the
following subsections:

7.1 Empirical Studies on SA Tools

Ayewah and Pugh reported the results of an extensive review of FindBugs warnings in
Google’s code base (Ayewah and Pugh 2010). Although many current SA tools can find
problems cheaply, some detected bug patterns do not accurately capture their developers’
concerns. They also found that developers overvalue some severe bug patterns that are rarely
feasible in practice, and yet undervalue subtle bug patterns that are often harmless, but
which can cause serious problems that are hard to detect. Their study motivated us to not
just examine general bug patterns captured in SA warnings, but also to look for PSBPs.



Empirical Software Engineering

Rahman et al. compared SA tools (FindBugs, Jlint, and PMD) on the context of defect
prediction by using historical data (Rahman et al. 2014). The reason for the comparison
is that all three products are aimed at finding and removing defects efficiently and accu-
rately. They reported that they have comparable benefits, and that SA tools can be enhanced
using the information obtained from defect predictions. These findings motivated us to use
historical data in our approach to finding bug patterns.

Avgustinov et al. tracked SA warnings over the revisions of various programs and inves-
tigated their developers’ characteristics of introducing and fixing typical warnings in those
program (Avgustinov et al. 2015). From their experimental study of several open source
projects written in Java, C++, Scala, and JavaScript, they captured the coding habits of
individual developers. Their work was similar to this study in that we also analyze histo-
ries to capture some patterns, but we do not limit patterns to just SA warnings. Instead, we
investigate all bug-related code changes within a given project.

Tricoder is a program analysis platform at Google (Sadowski et al. 2015) that can be
used by developers to evaluate warnings, which can then result in accuracy improvements.
Similar to their work, we also customize the bugs that we identify to a specific project.
However, unlike them, we use development histories and do not start from the warnings in
a SA tool. Additionally, we also provide possible fixes for the bugs detected.

7.2 Empirical Studies on Source Code Changes

Some empirical studies of source code evolution examined the nature of changes. For
example, Nguyen et al. studied the repetitiveness of code changes (Ray et al. 2013). They
considered changes as repeated if they matched other changes that have occurred in the past
and found a high level of repetitiveness for small size changes. Regarding bugfix changes,
they concluded that cross-project repetitiveness is higher than within projects, and that the
repetitiveness of small size changes in bug fixing is higher than that of general changes.
Meanwhile, Barr et al. studied the plastic surgery hypothesis, which posits that changes to
a code repository have snippets that already exist in the repository, and that these snippets
can be efficiently found and exploited (Barr et al. 2014). They also reported that, on aver-
age, 43% of changes could be reconstituted from existing code in 15,723 commits from 12
Java projects. In another study, Ray et al. considered changes unique if there are no similar
or identical lexical and syntactic content, or if they do not undergo the same edit opera-
tions, and conducted an empirical study of the uniqueness of changes in the Linux kernel
and industrial projects (Ray et al. 2015). They further insisted that since there is a consider-
able number of non-unique changes, developers can be helped in many ways by exploiting
those changes. While the above three papers show evidence for repetitive changes, they do
not implement tools that can be used to find bugs and fix them. Such empirical studies moti-
vated us to use change patterns to build a tool that could identify buggy code and provide
fixes to developers. While each paper comes up with its own way to examine changes, none
of them are about a tool (unlike ours) that can extract changes, abstract them to a pattern,
and find buggy code in a given version based on the detected patterns.

7.3 Change Pattern-Based Approaches

There are several approaches (FixWizard (Nguyen et al. 2010), SBD (Liang et al. 2013),
BugMem (Kim et al. 2006), SYDIT and LASE (Kim and Notkin 2009; Loh and Kim 2010;
Meng et al. 2011, 2013) that can be used to extract patterns from changes or source code
snapshots and utilize them to support further changes. These approaches are the ones that



Empirical Software Engineering

Table 8 Brief comparison of the bug-fix pattern extraction approaches

Cardinality Representation

Approach Inputs Outputs Bug pattern Fix pattern

FixWizard (Nguyen et al. 2010) One change One pattern Program flow graph Program flow graph

SBD (Liang et al. 2013) One change One pattern Graph Statement Insertion

BugMem (Kim et al. 2006) One change One pattern Token sequence Token sequence

LASE (Meng et al. 2013) Changes One pattern AST subtree AST subtree

Ammonia Changes Patterns Token sequence Token sequence

are closest to Ammonia. However, while they share their motivation with ours, the techni-
cal details and the expected outcomes differ from ours. The comparison of Ammonia with
existing approaches is shown in Table 8.

The most significant difference between the existing approaches and Ammonia is that,
except for Ammonia, all of the other approaches are designed to derive a pattern from
changes that have been prepared manually. This means that a developer has to select what
changes need to be abstracted to a pattern and then feed them into the approach. On top
of that, approaches like FixWizard, SBD, and BugMem distill only one change instance to a
pattern representation that can then be reused. LASE, on the other hand, extracts the com-
monality of multiple change instances and outputs a change pattern. This means that, to
derive a pattern, these approaches require users to manually specify a set of related changes
as the source of the derived pattern. In contrast, Ammonia extracts change patterns from
all the changes and then automatically determines all the PSBPs relevant to a project. This
means that the developers do not need to guess which change could potentially be a pattern
or code written elsewhere. Since, in all related approaches, the changes had to be curated
manually, we are unable to perform meaningful comparisons. In order to prepare all the
changes to be fed into the related approaches, it would be necessary to implement another
tool. Additionally, even if we were to prepare all the changes manually, we find that, except
for LASE, none of the other tools are available. Note that, in the case of LASE, the available
version cannot be run with any current version of the Eclipse IDE or Java. Hence, none of
the currently available tools can be executed by researchers or developers.

Furthermore, because our approach analyzes all the changes, performance is an important
aspect. Although graph-based (FixWizard (Nguyen et al. 2010)) or AST-based representa-
tions of change patterns are effective when used to precisely express program structures,
they require higher computational costs to extract patterns from change instances, which
makes them unsuitable when a large number of change instances are used as inputs. Thus,
even if we did reimplement all the other tools, they would not scale to repositories with
thousands of changes.

7.4 Other Related Studies

AST differencing AST-based program differencing approaches (Falleri et al. 2014; Fluri
et al. 2007) compare two source code versions, compute tree-edit operations, and then
map each tree-edit to atomic AST-level change types. Kim et al. proposed an algorithm
that identifies entity mapping at the function level across revisions when an entity’s
name changes (Kim et al. 2005). They also proposed a rule-based program differencing
approach that discovers and presents systematic changes as well as high-level software



Empirical Software Engineering

changes (Goues et al. 2015). Although these studies are similar to our approach in that they
build tools that distill changes from the repository, they stop at distilling changes and do not
conduct evaluations to see if the changes they distilled can be used to fix bugs in any partic-
ular version of a project. This is because they do not have a mechanism to match and find
latent bugs in a particular version of the project. In contrast, our approach uses the changes
and has been used to submit pull requests that have been accepted in real-world projects.

Co-change pattern mining DynaMine finds bugfix patterns related to method invoca-
tions (Livshits and Zimmermann 2005). For example, the tool found that method write-
Unlock should be invoked after an invocation of method writeLock in their experiment. If
invocations of the methods exist in this order, they are regarded as being used correctly.
However, if only one of the two methods is invoked, or if the two methods are invoked in
the inverse order, such usages are reported as error usage patterns by the tool. Ammonia, on
the other hand, does not restrict its analysis to just method invocations and any change can
be abstracted to a pattern.

Automatic repair Automatic program repair techniques are designed to suggest fixes to
developers when a bug is identified (typically due to a failing test). Typically the fixes are
generated through search-based software engineering techniques (Ke et al. 2015; Le Goues
et al. 2012), program synthesis and constraint solving techniques (Long and Rinard 2015;
Mechtaev et al. 2016; Nguyen et al. 2013), or by manually identifying fix templates in
human written fixes. While automated repair focuses on fixing bugs commonly known to
humans, our approach will find buggy code automatically, like SA tools, and also suggest
possible fixes based on the bug fix history in a project.

Pattern mining from source code PR-Miner finds implicit coding rules and detects their
violations (Li and Zhou 2005). It finds rules with frequent itemset mining, which looks for
programming elements that frequently occur together in source code. If developers violate
rules by failing to include elements that should appear with other elements, PR-Miner can
warn them of the problems. Liang et al. proposed AntMiner, which improves the precision
of mining by removing noise using program slicing (Liang et al. 2016). MAPO takes into
account the order of program elements by applying frequent subsequence mining (Zhong
et al. 2009), which means it can detect order-sensitive problems.

Although code pattern mining techniques can capture coding patterns, they do so in a
single snapshot. There is another set of approaches that capture coding patterns in changes.
For example, Kagdi et al. showed that it was possible to extract the set of files that were
changed together from the source code repository and then apply frequent sequence mining
to determine which files in that set of files needed to be changed when a particular file under-
goes changes (Kagdi et al. 2006). Zimmermann et al. focused on providing much broader
granularity for three frequently changing elements: file level, method level, and variable
level (Zimmermann et al. 2005). To accomplish this, they applied association rule mining to
guide developers to the elements that need to be changed when a particular element is modi-
fied. Hanam et al. proposed cross-project bug patterns for JavaScript software (Hanam et al.
2016) with the goal of discovering the bug patterns that are inherent to JavaScript. However,
in contrast to our automated approach, their detection process includes manual work in the com-
ponent building process. Fluri et al. proposed a technique that can be used to find frequent
change patterns (Fluri et al. 2008), but the technique does not focus on bugfix patterns.



Empirical Software Engineering

Code clone detection techniques can also be utilized to find code patterns. For example,
Li et al. developed a clone detection tool named CP-Miner (Li et al. 2006) and utilized it to
check whether normalized variable names match between clones. If variables in a clone pair
are matched partially, it is likely to include a bug that can then be reported to developers.
Similarly, Inoue et al. applied a code clone detector to two mobile software projects devel-
oped in a company and detected 26 latent bugs in the systems (Inoue et al. 2012). In both
studies, inconsistencies, and hence bugs, were identified between clone pairs.

Our approach is fundamentally different from the above approaches in that we mine code
changes and not the source code snapshot of a project. Hence, we can see what code is
buggy, how to fix that bug, is the change a pattern, are there instances of the buggy code in a
given version of the project, and how to potentially fix them. Although we could have used
any of these clone detection techniques in our approach to finding pattern changes, we chose
not to because such techniques do not scale well to thousands of changes over thousands of
code versions. Our technique, which aims to replace variable names with special tokens and
then calculate a hash value for each program statement in order to derive change patterns,
is inspired by a few other clone detection techniques (Dang et al. 2012; Li et al. 2006;
Murakami et al. 2013; Roy and Cordy 2008).

Overall, we acknowledge that there are clone detection techniques and that a variety of
SA tools already exist. However, we brought those techniques and tools together, along with
change level analysis, to help developers and maintainers find and fix commonly occurring
bugs. In the process of doing so, we had to overcome engineering challenges needed to help
the tool scale to practical projects and not just toy examples. As an engineering research
area, we think that our contributions (bringing previous research ideas together, solving
engineering challenges, building a working tool, and conducting a real-world empirical case
study with fixed bugs) are highly relevant.

8 Threats to Validity

8.1 Internal Validity

Internal validity refers to confounding factors that might affect the causal relations estab-
lished throughout an experiment (Wohlin et al. 2012). In our experiment, we filtered out the
maximum number of false positives possible to ensure the latent bugs identified by our tool
would result in a manageable number of pull requests for developers. Furthermore, while
there could also be false positives among these latent bugs, we do not think that this risk is
severe because developers can apply the same filtering steps we used in our tool, and thus
will not have an excessive number of potential bugs to examine at one time. To address any
mistakes that could have made in our evaluation or our implementation (threat to internal
validity), we openly provide the source code of our tool, the binary version of our tool, and
the raw data collected from applying our tool to the four case study subjects to anyone who
would like to examine them. 6

There is another risk related to our work. Our proposed technique is based on the assump-
tion that the same problematic code will be modified in the same way. Thus, if the same

6https://doi.org/10.5281/zenodo.3460378

https://doi.org/10.5281/zenodo.3460378


Empirical Software Engineering

problematic code is modified in two or more different ways, our proposed technique cannot
detect PSBPs for the problematic code. At this moment, however, it is difficult to gauge how
often our proposed technique incorrectly filters out PSBPs from change patterns because
the number of change patterns is several thousand or more, and it would be unrealistic to
manually analyze such a large number of change patterns. Asking real experts to use the
tool is one of our future work.

8.2 External Validity

Threats to external validity impact the generalizability of the results obtained in a
study (Wohlin et al. 2012). While we evaluated our tool only on four Java projects that used
Git as a version control system, our approach is general enough that it can be applied to
any version control system and any programming language. The reason we used the four
projects chosen for this study is that they manage issues well with Jira/Bugzilla, which meant
we were able to easily obtain the IDs of the resolved and closed bug-related issues. Our
approach utilizes bug-related issue IDs to determine whether or not a given commit is a bug
fix. More specifically, if a log message of a given commit includes any of the bug-related
issue IDs, it is regarded as a bug fix commit. For example, in the case of Camel, the bug-
related issue IDs are “CAMEL-72” or “CAMEL-80”. We believe that our method of using
bug-related issue IDs is equal to or better than methods that use keywords such as “bug”
or “fix” to identify bug fix commits. We also manually confirmed that the 19 single-match
PSBPs consists of at least a bug-fix commit. Note that the PSBP extraction approach still
works if clean bug-fix data does not exist. However, we think that there would be more false
positives as non-bug-fix commits might be included in the analysis.

8.3 Construct Validity

Construct validity refers to the degree to which the various performance measures accurately
capture the concepts they intend to measure (Wohlin et al. 2012). In our experiment, there
were minimal threats to construct validity since we evaluated the proposed technique by
using the number of pull requests that were accepted by the developers of the target projects.

9 Conclusions

In this paper, we proposed a new technique named Ammonia to identify project-specific
bug patterns (PSBPs). We derive those PSBPs from the past development history of a given
software project and use them to find latent buggy code. Our proposed approach not only
finds buggy code in a given revision of a software project, it also suggests a solution for each
buggy code that is identified. We also implemented a software tool based on our proposed
approach and applied it to four open source software projects. In doing so, we brought
together previous research ideas and overcame engineering challenges that helped the tool
scale up to practical projects and not just toy examples. Our evaluation indicates that our
tool was useful for identifying latent buggy code in a given revision of a software project.
Indeed, five out of the six pull requests that we made based on our tool’s findings were
merged by the developers of their related software projects. Furthermore, our analysis of the
false positives identified in this study can be expected to provide us with guidance on how
we can improve our approach and tools in the future.



Empirical Software Engineering

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

References

Avgustinov P, Baars AI, Henriksen AS, Lavender G, Menzel G, de Moor O, Schäfer M, Tibble J (2015)
Tracking static analysis violations over time to capture developer characteristics. In: Proceedings of the
37th International Conference on Software Engineering, vol 1, pp 437–447

Ayewah N, Pugh W (2010) The Google FindBugs fixit. In: Proceedings of the 19th International Symposium
on Software Testing and Analysis, pp 241–252

Barr ET, Brun Y, Devanbu P, Harman M, Sarro F (2014) The plastic surgery hypothesis. In: Procee-
dings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp 306–317

Carlson B, Leach K, Marinov D, Nagappan M, Prakash A (2019) Open source vulnerability notification. In:
Open Source Systems, Springer International Publishing, pp 12–23

Clang Static Analyzer. http://clang-analyzer.llvm.org/, 2016. [Online; accessed 1-February-2016]
Cppcheck. http://cppcheck.sourceforge.net/, 2016. [Online; accessed 2-February-2016]
Dang Y, Zhang D, Ge S, Chu C, Qiu Y, Xie T (2012) Xiao: Tuning code clones at hands of engineers in

practice. In: Proceedings of the 28th Annual Computer Security Applications Conference, pp 369–378
Falleri J-R, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code

differencing. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, pp 313–324

FindBugs. http://findbugs.sourceforge.net/, 2015. [Online; accessed 2-February-2016]
Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: Proceedings of the 23rd

IEEE/ACM International Conference on Automated Software Engineering, pp 463–466
Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: tree differencing for fine-grained source

code change extraction. IEEE Trans Softw Eng 33(11):725–743
Goues CL, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The ManyBugs and

IntroClass benchmarks for automated repair of C programs. IEEE Trans Softw Eng 41(12):1236–1256
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction

performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304
Hanam Q, Brito FSdM, Mesbah A (2016) Discovering bug patterns in JavaScript. In: Proceedings of the 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 144–156
Higo Y, Kusumoto S (2012) How often do unintended inconsistencies happen? Deriving modification

patterns and detecting overlooked code fragments. In: Proceedings of the 28th IEEE International
Conference on Software Maintenance, pp 222–231

Hoare T (2009) Null references: The billion dollar mistake. In: QCOn Conference
Inexpensive Program Analysis Group at University of Virginia, Department of Computer Science. Splint –

Secure Programming Lint. http://www.splint.org/, 2010. [Online; accessed 2-February-2016]
Inoue K, Higo Y, Yoshida N, Choi E, Kusumoto S, Kim K, Park W, Lee E (2012) Experience of finding

inconsistently-changed bugs in code clones of mobile software. In: Proceedings of the 6th International
Workshop on Software Clones, pp 94–95

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don’t software developers use static analysis
tools to find bugs?In: Proceedings of the 35th International Conference on Software Engineering,
pp 672–681

Kagdi H, Yusuf S, Maletic JI (2006) Mining sequences of changed-files from version histories. In:
Proceedings of the 3th International Workshop on Mining Software Repositories, pp 47–53

Ke Y, Stolee KT, Goues CL, Brun Y (2015) Repairing programs with semantic code search (t). In:
Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering,
pp 295–306

https://creativecommons.org/licenses/by/4.0/
http://clang-analyzer.llvm.org/
http://cppcheck.sourceforge.net/
http://findbugs.sourceforge.net/
http://www.splint.org/


Empirical Software Engineering

Kim D, Wang X, Kim S, Zeller A, Cheung SC, Park S (2011) Which crashes should I fix first?: Predicting
top crashes at an early stage to prioritize debugging efforts. IEEE Trans Softw Eng 37(3):430–447

Kim M, Notkin D (2009) Discovering and representing systematic code changes. In: Proceedings of the 31st
International Conference on Software Engineering, pp 309–319

Kim S, Pan K, Whitehead EEJJr (2006) Memories of bug fixes. In: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp 35–45

Kim S, Pan K, Whitehead EJ Jr (2005) When functions change their names: Automatic detection of origin
relationships. In: Proceedings of the 12th Working Conference on Reverse Engineering, pp 143–152

Le Goues C, Nguyen T, Forrest S, Weimer W (2012) GenProg: A generic method for automatic software
repair. IEEE Trans Softw Eng 38(1):54–72

Li Z, Lu S, Myagmar S, Zhou Y (2006) CP-Miner: Finding copy-paste and related bugs in large-scale
software code. IEEE Trans Softw Eng 32(3):176–192

Li Z, Zhou Y (2005) PR-Miner: Automatically extracting implicit programming rules and detecting
violations in large software code. In: Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp 306–315

Liang B, Bian P, Zhang Y, Shi W, You W, Cai Y (2016) AntMiner: Mining more bugs by reducing noise
interference. In: Proceedings of the 38th International Conference on Software Engineering, pp 333–344

Liang G, Wang Q, Xie T, Mei H (2013) Inferring project-specific bug patterns for detecting sibling bugs. In:
Proceedings of the 9th Joint Meeting on Foundations of Software Engineering, pp 565–575

Liu K, Kim D, Bissyandè TF, Yoo S, Traon YL (2018) Mining fix patterns for FindBugs violations. IEEE
Transactions on Software Engineering. https://doi.org/10.1109/TSE.2018.2884955

Livshits B, Zimmermann T (2005) DynaMine: Finding common error patterns by mining software revision
histories. In: Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 296–305

Loh A, Kim M (2010) LSdiff: A program differencing tool to identify systematic structural differences.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol 2,
pp 263–266

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering, pp 166–178

Mahouachi R, Kessentini M, Cinnéide MÓ (2013) Search-based refactoring detection. In: Proceedings of the
15th Annual Conference Companion on Genetic and Evolutionary Computation, pp 205–206

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch synthesis via symbolic
analysis. In: Proceedings of the 38th International Conference on Software Engineering, pp 691–701

Meng N, Kim M, McKinley KS (2011) Sydit: Creating and applying a program transformation from an
example. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, pp 440–443

Meng N, Kim M, McKinley KS (2013) LASE: Locating and applying systematic edits by learning from
examples. In: Proceedings of the 35th International Conference on Software Engineering, pp 502–511

Murakami H, Hotta K, Higo Y, Igaki H, Kusumoto S (2013) Gapped code clone detection with lightweight
source code analysis. In: Proceedings of the 21st International Conference on Program Comprehension,
pp 93–102

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: Program repair via semantic analysis. In:
Proceedings of the 35th International Conference on Software Engineering, pp 772–781

Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi J, Nguyen TN (2010) Recurring bug fixes in object-oriented
programs. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering,
vol 1, pp 315–324

PMD. https://pmd.github.io/, 2015. [Online; accessed 2-February-2016]
Prete K, Rachatasumrit N, Sudan N, Kim M (2010) Template-based reconstruction of complex refactorings.

In: Proceedings of the 26th IEEE International Conference on Software Maintenance, pp 1–10
Rahman F, Khatri S, Barr ET, Devanbu P (2014) Comparing static bug finders and statistical prediction. In:

Proceedings of the 36th International Conference on Software Engineering, pp 424–434
Ray B, Kim M, Person S, Rungta N (2013) Detecting and characterizing semantic inconsistencies in

ported code. In: Proceedings of the 28th IEEE/ACM International Conference on Automated Software
Engineering, pp 367–377

Ray B, Nagappan M, Bird C, Nagappan N, Zimmermann T (2015) The uniqueness of changes: Characteris-
tics and applications. In: Proceedings of the 12th Working Conference on Mining Software Repositories,
pp 34–44

https://doi.org/10.1109/TSE.2018.2884955
https://pmd.github.io/


Empirical Software Engineering

Rigby PC, German DM, Storey M-A (2008) Open source software peer review practices: A case study
of the Apache server. in: Proceedings of the 30th International Conference on Software Engineering,
pp 541–550

Roy CK, Cordy JR (2008) NICAD: Accurate detection of near-miss intentional clones using flexible pretty-
printing and code normalization. In: Proceedings of the 16th IEEE International Conference on Program
Comprehension, pp 172–181

Sadowski C, van Gogh J, Jaspan C, Söderberg E, Winter C (2015) Tricorder: Building a program ana-
lysis ecosystem. In: Proceedings of the 37th International Conference on Software Engineering, vol 1,
pp 598–608

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empir Softw Eng 20(1):1–27

Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A (2012) Experimentation in software
engineering. Springer Publishing Company, Incorporated

Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software fault localization. IEEE Trans
Softw Eng 42(8):707–740

Xie T (2016) Software testing research survey bibliography. http://taoxie.cs.illinois.edu/
testingresearchsurvey.htm, 2016. [Online; accessed 12-October-2016]

Xing Z, Stroulia E (2006) Refactoring detection based on UMLDiff change-facts queries. In: Proceedings of
the 13th Working Conference on Reverse Engineering, pp 263–274

Zhivich M, Cunningham RK (2009) The real cost of software errors. IEEE Secur Priv 7(2):87–90
Zhong H, Xie T, Zhang L, Pei J, Mei H (2009) MAPO: Mining and recommending API usage patterns. In:

Proceedings of the 23rd European Conference on Object-Oriented Programming, pp 318–343
Zimmermann T, Weissgerber P, Diehl S, Zeller A (2005) Mining version histories to guide software changes.

IEEE Trans Softw Eng 31(6):429–445

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Yoshiki Higo received his master’s degree and PhD degree in information science and technology fromOsaka
University in 2004 and 2006, respectively. At present he is an associate professor at Osaka University. His
research interests include mining software repositories, program analysis, and automated program repair. He
is a member of the IEEE, IPSJ, IEICE, and JSSST.

http://taoxie.cs.illinois.edu/testingresearchsurvey.htm
http://taoxie.cs.illinois.edu/testingresearchsurvey.htm


Empirical Software Engineering

Shinpei Hayashi is an associate professor of School of Computing at Tokyo Institute of Technology. His
research interests include software maintenance and evolution, software development environments, and
mining software repositories. He received a Dr.Eng. degree in computer science from Tokyo Institute of
Technology in 2008. He is a member of IEEE and ACM.

Hideaki Hata is an assistant professor at the Nara Institute of Science and Technology. His research interests
include software ecosystems, human capital in software engineering, and software economics. He received a
Ph.D. in information science from Osaka University. He is a Member of the IEEE and ACM.



Empirical Software Engineering

Meiyappan Nagappan is an Assistant Professor in the David R. Cheriton School of Computer Science at
the University of Waterloo. His research is centred around the use of large-scale Software Engineering (SE)
data to address the concerns of the various stakeholders (e.g., developers, operators, and managers). He has
also received best paper awards at the International Working Conference on Mining Software Repositories
(MSR ’12, ’15). In 2018, he was awarded the Early Career Achievement Award at the MSR conference.
He is an associate editor for EMSE, TSE, and JSS and has served on the PC of several conferences like
ICSE, MSR, and ICSME. Currently, he is serving a three-year term on the steering committee of the MSR
conference. He continues to collaborate with both industrial and academic researchers from the US, Canada,
Japan, Germany, Italy, and India. You can find more at mei-nagappan.com.

Affiliations

Yoshiki Higo1 · Shinpei Hayashi2 ·Hideaki Hata3 ·Meiyappan Nagappan4

Shinpei Hayashi
hayashi@c.titech.ac.jp

Hideaki Hata
hata@is.naist.jp

Meiyappan Nagappan
mei.nagappan@uwaterloo.ca

1 Graduate School of Information Science and Technology, Osaka University, 1–5, Yamadaoka, Suita,
Osaka 565–0871, Japan

2 School of Computing, Tokyo Institute of Technology, Ookayama 2–12–1–W8–71, Ookayama,
Meguro-ku, Tokyo 152–8550, Japan

3 Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916–5
Takayama-cho, Ikoma, Nara 630–0192, Japan

4 Cheriton School of Computer Science, University of Waterloo, 200, University Avenue West Waterloo,
Ontario, Canada

http://mei-nagappan.com
http://orcid.org/0000-0002-8278-8975
mailto: hayashi@c.titech.ac.jp
mailto: hata@is.naist.jp
mailto: mei.nagappan@uwaterloo.ca

	Ammonia: an approach for deriving project-specific bug patterns
	Abstract
	Introduction
	Background and Definitions
	Changes in Source Code
	Change Patterns

	Our Approach to Identify PSBPs
	Change Extraction
	Change Pattern Derivation
	PSBP Extraction

	Tool Description
	Evaluating our Approach
	Case Study Subjects
	Evaluation Design
	Results

	Discussion
	Reasons Why We Judged the Matched Code Fragments as Non Buggy
	Using Non Bug-Related Issue IDs
	Finding Code Fragments Without the Single-Match Limitation

	Related Work
	Empirical Studies on SA Tools
	Empirical Studies on Source Code Changes
	Change Pattern-Based Approaches
	Other Related Studies
	AST differencing
	Co-change pattern mining
	Automatic repair
	Pattern mining from source code



	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions
	References
	Affiliations


