
The Journal of Systems and Software 165 (2020) 110571

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On tracking Java methods with Git mechanisms

Yoshiki Higo

a , ∗, Shinpei Hayashi b , Shinji Kusumoto

a

a Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1–5, Suita, Osaka 565–0871, Japan
b School of Computing, Tokyo Institute of Technology, Ookayama 2–12–1–W8–71, Ookayama, Meguro-ku, Tokyo 152–8550, Japan

a r t i c l e i n f o

Article history:

Received 11 August 2019

Revised 27 January 2020

Accepted 9 March 2020

Available online 13 March 2020

Keywords:

Mining software repositories

Source code analysis

Tracking Java methods

a b s t r a c t

Method-level historical information is useful in various research on mining software repositories such

as fault-prone module detection or evolutionary coupling identification. An existing technique named

Historage converts a Git repository of a Java project to a finer-grained one. In a finer-grained repository,

each Java method exists as a single file. Treating Java methods as files has an advantage, which is that

Java methods can be tracked with Git mechanisms. The biggest benefit of tracking methods with Git

mechanisms is that it can easily connect with any other tools and techniques build on Git infrastructure.

However, Historage ’s tracking has an issue of accuracy, especially on small methods. More concretely, in

the case that a small method is renamed or moved to another class, Historage has a limited capability

to track the method. In this paper, we propose a new technique, FinerGit , to improve the trackability

of Java methods with Git mechanisms. We implement FinerGit as a system and apply it to 182 open

source software projects, which include 1,768K methods in total. The experimental results show that our

tool has a higher capability of tracking methods in the case that methods are renamed or moved to other

classes.

© 2020 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

fi

w

a

r

u

c

t

t

c

p

t

m

H

i

t

H

o

o

r

c

a

r

w

p

t

t

t

j

t

g

a

o

c

h

0

. Introduction

One feature of version control systems is the ability to know

le-level change information. Thus, it is easy to identify which files

ere changed in given commits or counting changes for files in

 given repository. However, many approaches in mining software

epositories (in short, MSR) require information on finer-grained

nits such as Java methods or C functions. If we want to count

hanges for Java methods, we need to parse source files to iden-

ify method positions and then we need to match method posi-

ions with changed code positions to identify which methods were

hanged. To conduct finer-grained analyses, developers have to im-

lement code/scripts. Besides, incorrect analysis results will be ob-

ained if the implemented code/scripts include bugs.

Hata et al. proposed a technique, Historage , which enables Java

ethods to be tracked with Git mechanisms (Hata et al., 2011a).

istorage takes a Git repository of a Java project as its input, and

t outputs another Git repository in which each method gets ex-

racted as a file. Treating Java methods as files realizes that devel-
∗ Corresponding author.

E-mail addresses: higo@ist.osaka-u.ac.jp (Y. Higo), hayashi@c.titech.ac.jp (S.

ayashi), kusumoto@ist.osaka-u.ac.jp (S. Kusumoto).

i

f

ttps://doi.org/10.1016/j.jss.2020.110571

164-1212/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article
pers/practitioners can obtain method-level historical information

nly by executing Git commands such as git-log .
Fig. 1 shows a simple model of Git and Historage reposito-

ies. In the Git repository, file Person.java is managed. We

an see that Person.java was changed in two commits c100
nd c101 . Information for the changes on Person.java can be

etrieved by executing git-log . However, if we want to know

hich methods were changed in the two commits, we have to

arse Person.java to obtain the positions of the methods and

hen we have to match method positions with the positions of

he changed code in the two commits. On the other hand, in

he Historage repository, each method exists as a file. Thus,

ust executing git-log is sufficient to know in which commits

he two methods were changed. The command identifies that

etLength() in Person.java was changed in commit c100
nd setLength(int) was changed in c101 .

However, Historage has a limited capability of tracking meth-

ds in the case that methods are renamed or moved to other

lasses. We explain the issue with Fig. 2 , which shows refactor-

ngs on file Person.java in Fig. 1 . The refactorings include the

ollowing four changes.

Rename Class : Person → Engineer
Rename Field : length → height
Rename Method (Getter): getLength → getHeight
under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.jss.2020.110571
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110571&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:higo@ist.osaka-u.ac.jp
mailto:hayashi@c.titech.ac.jp
mailto:kusumoto@ist.osaka-u.ac.jp
https://doi.org/10.1016/j.jss.2020.110571
http://creativecommons.org/licenses/by/4.0/

2 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

Fig. 1. Differences between Git and Historage repositories.

Fig. 2. Trackability differences between Git and Historage repositories.

i

b

t

S

2

c

A

w

a

Rename Method (Setter): setLength → setHeight

In the case of the changes in Fig. 2 (a), the Git rename detec-

tion function can identify that file Person.java was renamed to

Engineer.java because the two files sufficiently share the iden-

tical lines. On the other hand, in the Historage repository, files of

Java methods get much smaller than their original file as shown in

Fig. 2 (b). Thus, the ratio of the changed lines against all the lines

gets higher, which makes the Git function not work well.

Hata et al. addressed that changing the threshold for the

Git rename function is a way to realize a better method track-

ing (Hata et al., 2011a). They recommend using 30% instead

of 60%, which is a default value of Git . However, we consider

that only using a lower threshold may produce incorrect track-

ing results. For example, if we use 30% instead of 60%, the

Git rename function can identify that Engineer/getHeight()
is a renamed file of Person/getLength() . However, at the

same time, Person/getLength() can be tracked wrongly from

Engineer/setHeight(int) because their similarity is 1/3,

which is higher than 30%.

Tracking method accurately is essential. If not, MSR approaches

using historical data gets affected. Hora et al. reported that be-

tween 10 and 21% of changes at the method level in 15 large

Java systems were untracked in the context of refactoring detec-

tion (Hora et al., 2018). They also found that 37% of the top-25%

most changed entities (classes and methods) have at least one

untracked change in their histories. By assessing two MSR ap-

proaches, they detected that their results could be improved when

untracked changes were resolved.
In this paper, we propose a new technique named FinerGit to

mprove the trackability of Java methods. Several research areas

enefit from FinerGit . FinerGit is useful for studies in the con-

ext of assessing bug introducing changes (Kim et al., 20 06; 20 08;
´ liwerski et al., 2005) or detecting code authorship (Meng et al.,

013; Rahman and Devanbu, 2011). More broadly, any study that

ompares two versions of methods can be benefited, for example,

PI evolution detection (Kim et al., 2011; Soares et al., 2010), code

arning prioritization (Balachandran, 2013; Kim and Ernst, 2007),

nd many other.

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 3

S

t

e

m

t

i

S

2

e

W

t

d

b

r

a

i

b

b

o

c

b

l

l

t

b

B

a

p

s

g

g

o

m

r

6

G

Fig. 3. Tracking files with our technique.

t

e

a

g

t

3

The main contributions of this paper are the followings.

• We raise an issue on method trackability in Historage .
• We propose a new technique, FinerGit , to increase method

trackability with Git mechanisms.
• We provide a software tool based on FinerGit . The tool is

open to the public on GitHub. 1 The tool is sufficiently fast

even for huge repositories, as shown in the evaluation.
• We show the experimental results on the tracking results of

182 open source software (OSS) projects. These experiments

have two aspects. First, they clarify the advantage of Fin-

erGit with an existing technique, Historage . Second, they

are the first attempt of large-scale empirical studies for the

tracking results of method-level repositories.

The remainder of this paper is organized as follows: in

ection 2 , we explain our research goal and our key idea to achieve

he goal; in Section 3 , we propose our new technique named Fin-

rGit on the top of the key idea; Section 4 describes an imple-

entation of FinerGit ; then, we report the evaluation results with

he implementation in Section 5 ; we also describe threats to valid-

ty on the experiments in Section 7 ; related work is introduced in

ection 8 ; lastly, we conclude this paper in Section 9 .

. Basic approach

At present, there are various techniques of tracking source code

ntities (Dig et al., 2006; Godfrey and Zou, 2005; Kim et al., 2005;

u et al., 2010). Those techniques utilize many types of informa-

ion such as text similarities, data dependencies, and call depen-

encies. On the other hand, in this research, we utilize only line-

ased text similarity to track Java methods. The reason is that our

esearch goal is realizing accurate method tracking with Git mech-

nisms.

The biggest benefit of tracking methods with Git mechanisms

s that it can easily connect with any other tools and techniques

uilt on Git infrastructure. For example, the following analyses can

e easily performed by using the basic commands provided by Git .

• We can know how many times each method was changed in

the past by git-log .
• We can know how many developers changed a specified

method in the past by collecting author names of the com-

mits in which the method was changed.

Git performs file comparisons by using hash values. If the size

f a line is equal to or shorter than 64 bytes, a hash value is cal-

ulated from the entire line. If the size of a line is longer than 64

ytes, the line is chunked by 64 bytes, and a hash value is calcu-

ated from each chunk. Thus, even if just a single token in a given

ine (which is shorter than 64 bytes) has been changed, Git regards

hat the entire line has been changed.

Method-level tracking with Git mechanisms can be realized

y treating each method as a single file (a method file hereafter).

ased on this idea, Hata et al. developed technique named Histor-

ge (Hata et al., 2011b). However, as explained with Fig. 2 , sim-

le extraction as files are inadequate for small methods. In this re-

earch, we propose a file format that each line includes only a sin-

le token. By using this format, each hash is calculated from a sin-

le token. In Fig. 2 (b), Git regards that the two red lines of meth-

ds getLength and setLength were changed, though only the

ethod name and the field name were changed in methods. As a

esult, the ratio of unchanged lines becomes 1/3, which is less than

0% of Git ’s default value so that the method is not tracked with

it mechanisms.
1 https://github.com/kusumotolab/FinerGit .

r

d

F
We state two restrictions for the techniques to improve method

racking with Git mechanisms as follows.

• Since the file tracking mechanism in Git is based on line-

based text similarity, the characteristics of methods to be

used in comparison must be represented as a sequence of

text lines. Based on this restriction, complex comparison

techniques of file contents such as tf / idf are not applicable.
• Since the contents of method files are visible and are uti-

lized by developers, they should follow a representation of

source code in an understandable way by users. Users may

apply git-diff command to a method file to see how a

method was modified, and the obtained difference should

represent the difference of method contents in this case.

Based on this restriction, converting method contents to a

sequence of computed numeric values used only for a com-

parison purpose is not suitable.

Fig. 3 shows how the changes in Fig. 2 (b) are treated in Fin-

rGit . The file changing mechanism in this technique satisfies the

bove restrictions. The ratio of unchanged lines becomes 8/10 for

etLength and 11/15 for setLength . Both values are higher

han 60%, so that both methods are tracked with Git mechanisms.

. Proposed technique

Herein, we explain our proposed technique named FinerGit to

ealize a better method tracking with Git mechanisms. FinerGit is

esigned on the top of the basic approach explained in Section 2 .

inerGit consists of (1) naming convention and (2) two heuristics.

https://github.com/kusumotolab/FinerGit

4 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

Fig. 4. Tracking files w/o and w/ Heuristic-1.

i

c

o

v

o

t

t

t

F

t

s

c

r

i

e

t

3.1. Naming convention

In FinerGit , a file name for a Java method includes the follow-

ing information:

• A class name including the method,
• Access modifiers of the method,
• A return type of the method,
• A name of the method, and

• A list of parameter types of the method.

For example, the file name for method setLength in

Fig. 2 becomes as follows.

Person#public_void_setLength(int).mjava
Extension .mjava means that this is a method file and the

file includes source code of a Java method. Including the above in-

formation in the file name reflects code changes around a given

method as follows.

• If the name of the class including the given method is

changed, the file name of the given method gets changed,

but its contents are not changed.
• If another method in the class including the given method is

changed, neither file name nor contents of the given method

are changed.
• If the signature of the given method is changed, the file

name of the given method gets changed and its contents are

also slightly changed since the contents include the tokens

of the method signature.
• If the contents of the given method are changed, the file

name of the given method does not get changed while its

contents get changed.

We can track methods with Git mechanisms in any of the above

cases if either of them occurs alone. However, if a signature of a

method is changed and its contents are also changed broadly, it is

difficult to track the method.

3.2. Introducing heuristics

It is not difficult to imagine that Git tracks wrong methods with

FinerGit because each line has only a single token and such lines

will coincidentally match with many other lines. Thus, we intro-

duce two heuristics to reduce such coincidental matches of unre-

lated lines.

Heuristic-1: Classifying brackets, parentheses, and semicolons

of termination characters in detail.

Heuristic-2: Removing tokens existing in all methods from the

targets of similarity calculation.

3.2.1. Heuristic-1

Some termination characters such as brackets, parentheses, and

semicolons are omnipresent in Java source code. Such termination

characters are used as a part of various program elements. For ex-

ample, brackets (“{ ” and “} ”) are used to initialize arrays in addi-

tion to code blocks such as if-statements and for-statements. Thus,

if just a bracket is placed on a line, brackets of different roles are

coincidentally matched with each other. Such accidental matchings

make the similarity between deleted and added methods inappro-

priately higher. To prevent such accidental matchings, we classify

termination characters in detail. More concretely, we add a to-

ken explanation to each line. Token explanations prevent acciden-

tal matchings of different-role characters from being matched. In

this heuristic, semicolons, brackets, and parentheses are classified

into 18, 21, and 20 categories, respectively.
Fig. 4 shows how Heuristic-1 affects method tracking. Fig. 4 (a)

s a method file that Historage outputs. The deleted method in-

ludes an if-statement for checking whether variable a is null
r not. The added method includes a while-statement for adding

ariable b to variable total repeatedly. Those are different meth-

ds, which means a lower similarity between them is better. In

he case of Historage , the last line of the if-statement coinciden-

ally matches with the last line of the while-statement so that

he similarity between them becomes 1/3 (= 33%). In the case of

inerGit without Heuristic-1, the parentheses and the brackets of

he if-statement coincidentally matches with ones of the while-

tatement. Moreover, the semicolon of the return-statement coin-

identally matches with the one of the expression-statement. As a

esult, the similarity between them becomes 5/12 (= 42%). If we

ntroduce Heuristic-1 to this example, the parentheses, the brack-

ts, and the semicolons get unmatched. Thus, the similarity be-

ween them becomes 0/12 (= 0%).

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 5

Fig. 5. Tracking files w/ and w/o Heuristic-2.

3

b

m

J

g

i

s

c

i

t

a

s

t

i

f

H

c

b

4

o

t

G

F

e

fi

n

s

fi

F

fi

s

a

a

p

b

c

t

s

c

b

c

T

.

c

fi

t

t

fi

a

c

s

c

i

m

s

t

n

i

b

b

I

t

a

5

(

t

t

2 https://github.com/niyaton/kenja .
.2.2. Heuristic-2

The parentheses for parameters and the brackets for method

odies are omnipresent in compilable Java methods. The fact

eans that at least the four tokens always match between any

ava methods. Thus, the similarity between non-related methods

ets inappropriately higher. If methods include many tokens, the

mpact of the four tokens is negligible. However, if methods are

mall such as getters and setters, the impact of the four tokens be-

ome serious. Consequently, we decided not to put the four tokens

nto files for methods. By removing the four tokens, we prevent

he similarity of two non-related methods from getting higher in-

ppropriately.

Fig. 5 shows how Heuristic-2 affects tracking. This example

hows a similarity calculation between getLength (before refac-

oring) and setHeight (after refactoring) in Fig. 2 . A lower sim-

larity between the two methods is better because they are dif-

erent methods. In the case that we calculate a similarity without

euristic-2, the similarity becomes 5/10 (= 50%). However, in the

ase that we adopt Heuristic-2, the similarity becomes 1/6 (= 17%)

ecause the four tokens are ignored.

. Implementation

We have implemented a tool based on FinerGit . Our tool is

pen to the public in GitHub , and anyone can use it freely. Our

ool takes a Git repository of a Java project, and it outputs another

it repository where each Java method gets extracted as a file. In

inerGit repositories, method files have extension .mjava . By ex-

cuting git-log command with option --follow for .mjava
les, we can get their histories.

The name of a method file includes the information of the sig-

ature of the method and the class name including the method

o that the file name occasionally becomes very long. Very long

le names are not compatible with widely-used operating systems.

or example, in the case of Windows 10, the absolute path of a

le must not exceed 260 characters. If a file name violates the re-

triction, its file cannot be accessed with Windows’ file manager
nd some other problems occur. In the case of Linux and MacOS,

 file name (not a file path) must not exceed 255 characters. For

ractical use in such widely-used operating systems, if a file name

ecomes longer than the restriction of operating systems, our tool

uts the file name in the middle and then it appends a hash value

hat is calculated from the entire file name. This manipulation can

horten the file name while keeping its identity.

There are three types of comments in Java source code: line

omments, block comments, and Javadoc comments. Line and

lock comments are removed from .mjava files while Javadoc

omments are included in .mjava files as they are in .java files.

his means that a Javadoc comment exists in the header part of

mjava file if its original method has it.

Our tool also has a function to extract each field in Java source

ode as a single file. Files for fields have extension .fjava . A

eld declaration includes multiple tokens such as field name, field

ype, modifiers, initializations, and annotations. Thus, fields can be

racked as well as methods by placing a single token on a line. A

le name for a Java field include the following information:

• A class including the field,
• Access modifiers of the field,
• A type of the field, and

• A name of the field.

For example, the file name for field length in Fig. 2 becomes

s follows.

Person#private_int_length.fjava
Including the above information in the file name reflects code

hanges around a given field as follows.

• If the name of class including the given field is changed, the

file name of the given method gets changes, but its contents

are not changed.
• If another method or field in the class including the given

field is changed, neither file name nor contents of the given

method are changed.
• If the access modifiers, type, or name of the field is changed,

the file name of the given field gets changed and its contents

are also changed.
• If the annotations and/or initializations of the field are

changed, the file name of the given field does not get

changed while its contents get changed.

In Historage repository, a file path of a method includes its

ignature information. Historage makes a directory for each Java

lass. Methods included in a class are placed in its correspond-

ng directory. On the other hand, our technique places files of Java

ethods in the same directory of their original Java files. A rea-

on why FinerGit does not make new directories for Java classes is

hat the conversion time of Historage is long and making a large

umber of directories in the conversion process is a factor of tak-

ng a long time. Both FinerGit and Historage make a large num-

er of files because each Java method is extracted as a single file,

ut our technique does not make new directories for Java classes.

n the both FinerGit and Historage , file name collisions for ex-

racted files do not occur as long as their source code is compil-

ble.

. Evaluation

We evaluated FinerGit by comparing it with Historage

 Hata et al., 2011a). We did not use the published version of His-

orage implementation

2 but we added Historage ’s functionality

o our tool. By using the same implementation for FinerGit and

https://github.com/niyaton/kenja

6 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

Fig. 6. Project size.

5

a

T

t

t

s

t

t

c

i

t

t

.

o

i

a

o

n

t

n

c

h

Historage , we can avoid different tracking results due to the dif-

ferences in implementation details. For example, original Histor-

age makes directories for each Java class while our Historage im-

plementation outputs files of Java methods in the same directory

as their original files. The file name convention of our Historage

implementation is the same as FinerGit . Thus, in this way, we can

evaluate how much method trackability with Git mechanisms gets

improved by FinerGit .

We selected 182 Java projects in GitHub as our evaluation tar-

gets. In the process of our target selection, we used Borges dataset

(Hudson Borges, 2016). This dataset includes 2279 popular projects

in GitHub . Firstly, we extracted 202 projects that are labeled as

“Java projects”. Borges et al. classified the projects in the dataset

into six categories: Application software, System software, Web li-

braries and frameworks, Non-web libraries and frameworks, Software

tools , and Documentation . Secondly, we extracted 185 projects that

are other than Documentation projects because they are reposi-

tories with documentation, tutorials, source code examples, etc.

(e.g., java-design-patterns 3). Documentation projects are outside of

the scope of this evaluation. Then, we cloned the 185 reposito-

ries to our local storage on March 4th 2019. Unfortunately, we

found that three of the 185 projects did not include .java file.

The three projects (google/iosched, afollestad/material-dialogs, and

googlesamples/android-topeka) are Kotlin projects. Finally, we re-

moved the three projects from the 185 projects.

Fig. 6 shows the distributions of the number of commits and

LOC of the target projects. The two largest repositories in the tar-

gets are platform_frameworks_base 4 and intellij-community. 5 The

two repositories include approximate 380K and 240K commits, and

their latest revisions consist of about 3.7M and 5.0M LOC, respec-

tively.

We generated FinerGit repositories and Historage ones from

the 182 target projects. Herein, FinerGit repositories have the file

format of including a single token per line with the two heuris-

tics while Historage repositories have the same line format as the

original repositories.

We have evaluated FinerGit from the five viewpoints:

• Tracking accuracy,
• Heuristics impacts,
• Project-level tracking results,
• Method-size-level tracking results, and
3 https://github.com/iluwatar/java- design- patterns .
4 https://github.com/aosp-mirror/platform _ frameworks _ base .
5 https://github.com/JetBrains/intellij-community .

• Execution time.

Hereafter in this section, we report the results in detail.

.1. Tracking accuracy

It is not realistic to manually check whether FinerGit gener-

tes correct tracking results for each method in the target projects.

hus, we make an oracle for a method for each target project with

he following procedure.

1. A method was randomly selected from each target project.

In total, 182 methods were selected.

2. Each of the methods in FinerGit repositories was tracked

with the following command.

> git log --follow -U15 -M20% -C20% -p
-- path/to/method .mjava

With the above command, a specified file is tracked even

if the file was renamed. If there is a file that has a 20% or

more similarity, Git regards that file renaming or copying

occurred.

3. The tracking results were examined, and oracles of renam-

ing and copying history were made by two of the authors

independently. Each author spent several hours on this task.

The two authors made different oracles for 34 out of the 182

methods.

4. The two authors discussed the 34 methods so that they ob-

tain consensus for them. After a two-hour discussion, they

got consensus oracles for the 34 methods.

With the above procedure, we obtained consensus oracles of

racking results for the 182 methods. Finally, we obtained the re-

ulting oracle set consisting of 426 renaming/copying changes for

he 182 methods in total.

Next, we track the methods in FinerGit ’s repositories and His-

orage ’s ones with different thresholds. We used the following

ommand to count how many times Git found renaming and copy-

ng with a specified threshold.

In the above command, t is the threshold that Git regards given

wo files have a renaming or copying relationship. We tracked the

arget methods with 13 different thresholds (i.e., 20%, 25%, 30%,

 . . , 80%). If tracking results for a method include a higher number

f renaming/copying than its oracle, we regard renaming/copying

n the over-tracking part as false positives. If tracking results for

 method include a lower number of renaming/copying than its

racle, we regard renaming/copying that are not detected as false

egatives. We calculated precision, recall, and F-measure for each

hreshold by summing up the number of false positives and false

egatives of all the methods.

Fig. 7 shows how precision, recall, and F-measure changes ac-

ording to given thresholds. The graphs of Historage and FinerGit

ave the following features.

• Precision of Historage is very high. Historage has 93.01%

of precision even in the case of threshold 20%.
• Recall of Historage is low. Historage has only 57.04% of re-

call in the case of threshold 20%.
• FinerGit has high precision in the case of high thresholds,

but precision gets rapidly decreased for lower thresholds.
• FinerGit has higher recall than Historage for all the thresh-

olds. The recall differences between FinerGit and Historage
get bigger for lower thresholds.

https://github.com/iluwatar/java-design-patterns
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/JetBrains/intellij-community

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 7

Fig. 7. Precision, recall, and F-measure values.

Table 1

Maximum F-measure and maximum recall.

Repository type Max F-measure (thr.) Max Recall (thr.)

H1 OFF, H2 OFF 82.63% (40%) 58.45% (55%)

H1 ON, H2 OFF 83.77% (55%) 56.81% (65%)

H1 OFF, H2 ON 83.26% (35%) 60.09% (50%)

H1 ON, H2 ON 84.52% (50%) 68.78% (55%)

i

e

w

8

a

5

m

f

t

r

m

p

w

H

g

i

t

g

g

Fig. 8. Precision, recall, F-measure, and rename count when heuristics 1 and 2 are

on and/or off.

m

w

m

a

5

t
Historage has a low possibility to track wrong methods while

t often misses renaming and copying. On the other hand, in Fin-

rGit repositories, precision gets decreased for lower thresholds

hile recall improves much. The highest F-measure on FinerGit is

4.52% on threshold 50% while the highest F-measure on Histor-

ge is 70.72% and 70.23% on thresholds 20% and 25%, respectively.

.2. Heuristics impacts

To reveal how each heuristic impacts on method tracking, we

easured precision, recall, and F-measure and we also counted

ound renames for the following four types of fine-grained reposi-

ories. The target methods are the same as Subsection 5.1 . Herein,

ename count means the sum of found renames for all the target

ethods in a type of repositories.

H1 OFF, H2 OFF: neither heuristics are applied to.

H1 ON, H2 OFF: only Heuristic-1 is applied to.

H1 OFF, H2 ON: only Heuristic-2 is applied to.

H1 ON, H2 ON: both heuristics are applied to. This is the same

repository as what we used in Subsection 5.1 .

Fig. 8 shows the results. Applying only Heuristic-1 makes it

ossible to find more renaming so that precision gets decreased

hile recall gets increased. On the other hand, applying only

euristic-2 slightly shorten method tracking. As a result, precision

ets increased while recall gets decreased. The reasons why apply-

ng Heuristic-1 and Heuristic-2 have opposite impacts on method

racking are as follows.

• Applying Heuristic-1 reduces similarities between methods.

How much the similarities are decreased depends on the

contents on methods. Thus, a different method can be

tracked at a commit compared to the case that Heuristic-1

is not applied to.
• Applying Heuristic-2 reduces similarities between all meth-

ods. Unlike Heuristic-1, Heuristic-2 does not make a differ-

ent method tracked. Thus, Heuristic-2 just shortens method

tracking.

Table 1 shows the maximum F-measure for each type of finer-

rained repositories. In this table, the maximum F-measure is the

reatest F-measure in all data. All types have almost the same
aximum values. This table also shows the maximum recall when

e track methods with over 95% precision. These results show that

ore method renames are found with keeping 95% precision by

pplying both heuristics.

.3. Project-Level tracking results

In this evaluation, we measured the ratio of methods whose

racking results are different between the two tools for each

8 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

Fig. 9. Project-level comparisons. (a) shows the ratio of methods whose tracking

results are different between FinerGit and Historage for each project. (b) shows

the average of change counts for all the methods for each project.

Fig. 10. Relationships between the ratio of methods for which FinerGit found more

renames than Historage and the ratio of never-changed methods.

Fig. 11. The ratio of methods whose tracking results are different between FinerGit

and Historage for projects where 50% or more methods are never-changed ones.

d

1

n

f

o

m

a

n

n

f

a

c

t

a

o

v

m

5

p

T

d

a

C

r
project. We compare how much the number of detected renames is

different from FinerGit and Historage under the same precision.

As shown in the previous subsection, the two tools have different

precision values for different thresholds. To realize a fair compar-

ison, we decided to select different thresholds for FinerGit and

Historage that satisfy the following condition: method tracking

results with the thresholds have the same precision values and the

precision values are as high as possible. Thus, we used threshold

55% for FinerGit and 25% for Historage . The precision of Finer-

Git on threshold 55% is 95.73%, and Historage on threshold 25%

is 96.60%. Those precision values are almost the same and high

enough.

Fig. 9 shows the comparison results. In Fig. 9 (a), the blue box-

plot shows the ratio of methods for which FinerGit found more

renames than Historage per project and the red boxplot shows

the opposite one. FinerGit found more renames for 22.71% meth-

ods on average while the ratio of methods that Historage found

more renames than FinerGit is only 5.26%. In Fig. 9 (b), the blue

boxplot shows the average number of changes identified by Finer-

Git for all methods of each project. The red one shows the average

number of changes identified by Historage . The median values of

those boxplots are 3.67 and 2.86, respectively. These results mean

that FinerGit can find more renames for all the methods on aver-

age.

Next, we show that the tracking improvement by FinerGit is

effective via the following two ways:

• considering the fact that some methods were never changed

after their initial creation, and

• conducting statistical testing for the tracking results.

5.3.1. Considering never-changed methods

In software development, some methods are never changed af-

ter their initial creation. If the 182 target projects include many

never-changed methods, it is quite natural that the comparison re-

sults between FinerGit and Historage are not so different from

each other. Thus, we investigate how many never-changed methods

are included in the projects. It is not realistic to manually collect

real never-changed methods. In this experiment, we decided to re-

gard methods that both FinerGit and Historage were not able to

detect any changes as never-changed methods.

Fig. 10 shows the relationship between the ratio of never-

changed methods and the ratio of methods for which FinerGit

found more renames than Historage . The 25 percentile, the me-
ian, and the 75 percentile of never-changed methods are 6.88%,

5.27%, and 26.50%, respectively. The figure indicates that the more

ever-changed methods there are, the fewer methods FinerGit

ound more renames for. Fig. 11 shows the same figures as Fig. 9 (a)

nly for the projects that include 50% or more never-changed

ethods. As shown in Fig. 11 (a), the differences between FinerGit

nd Historage are small because the majority of their methods is

ever-changed. Fig. 11 (b) shows the differences after we removed

ever-changed methods from the projects. We can see that the dif-

erences between the two tools get much larger. MSR approaches

re naturally applied to methods that have change histories. Never-

hanged methods are exempt from MSR approaches.

We also investigated how many methods only FinerGit or His-

orage found at least a change for. The former number is 97,629

nd the latter one is 35,553. They are 5.52% and 2.01% of all meth-

ds, respectively. Finding changes for more methods means that

arious MSR approaches requiring past changes can be applied

ore broadly.

.3.2. Conducting statistical testing

We applied Paired Wilcoxson’s signed ranked test to the com-

arison results between FinerGit and Historage shown in Fig. 9 .

he test showed that the comparison results include significant

ifferences regarding both aspects of the ratio (p -value < 0.001)

nd average change counts (p -value < 0.001). We also applied

liff’s Delta to the comparison results to see the effect size. The

esulting values were computed as 0.712 for the ratio and 0.221

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 9

Fig. 12. Comparison based on method size.

f

e

s

p

5

c

T

s

m

L

p

o

t

t

f

m

i

t

o

5

i

m

e

4

w

t

s

1

o

a

Fig. 13. Execution time of FinerGit .

6

a

A

s

(

l

g

c

t

R

R

c

J

i

2

s

6

w

T

t

e

s

f

1

s

o

i

A

p

o

c

b

n

or the average change counts, which revealed a large and a small

ffect size of the improvement achieved by using FinerGit , re-

pectively. Consequently, we can say that FinerGit significantly im-

roves tracking Java methods compared to Historage .

.4. Method-size-level tracking results

We also conducted comparisons based on method size. In this

omparison, we made several method groups based on their size.

hen, we compared the tracking results for each group. Fig. 12

hows the comparison results. We can see that there are 1,036K

ethods whose LOC is in the range between 1 and 5. Herein, the

OC was computed using the original format, not the single-token-

er-line one. FinerGit generated longer tracking results for 26.21%

f the 1,036K methods. Our research motivation was improving the

rackability for small methods, but surprisingly FinerGit improved

he trackability for methods of any size.

This figure also shows the average rename counts that were

ound by FinerGit and Historage . We can see that FinerGit found

ore renames for methods of any size than Historage . Interest-

ngly, more renames tend to be found for larger methods by both

ools.

Consequently, we conclude that the method tracking capability

f FinerGit is higher than Historage .

.5. Execution time

We measured the time that FinerGit reconstructed the repos-

tories of the target projects on MacBook Pro. 6 Fig. 13 shows the

easurement results. This figure shows that FinerGit is scalable

nough for large repositories. In the longest case, FinerGit took

209 seconds to reconstruct the repository of intellij-community,

hich includes more than 240K commits. Of course, this execution

ime can be shorter if a higher specification computer is used. 7

Fig. 13 includes the regression line for all the data. The regres-

ion line shows that FinerGit takes around 100 s to process each

0K commits for large repositories.
6 CPU: 2.7GHz quad-core Intel Core i7, memory size: 16 GBytes.
7 We also measured execution time with our workstation whose CPU is 3.6GHz

ctet-core Intel Core i9 and memory size is 32 GBytes. The execution time was

pproximately 22% of MacBook Pro’s one.

. Comparisons with other techniques

We also compared FinerGit with two other techniques, AURA

nd RefactoringMiner (RMiner). The first comparison target is

URA , which is a technique that takes two versions of Java

ource code and generates mappings of methods between them

 Wu et al., 2010). AURA performs call dependency and text simi-

arity analyses to generate mappings. The second comparison tar-

et is RMiner , which is a technique that detects refactorings from

ommit history (Tsantalis et al., 2018). RMiner ’s refactoring de-

ection is based on an AST-based statement matching algorithm.

Miner defines different rules for different refactoring patterns.

Miner checks if matching results of two ASTs before and after

hanges in a given commit follow any of the rules.

We conducted this comparison on the development history of

HotDraw between releases 5.2 and 5.3. This development history

s one of the evaluation targets in AURA ’s literature (Wu et al.,

010). Releases 5.2 and 5.3 include 1519 and 1981 methods, re-

pectively. There are 19 commits between releases 5.2 and 5.3.

.1. AURA

We made FinerGit ’s repository and tracked the 1981 methods

ith 20% threshold with the command shown in Subsection 5.1 .

he tracking results of 185 methods included renaming and the to-

al number of renaming was 241. Two of the authors independently

xamined the tracking results to make oracles. Each author spent

everal hours on this task. The two authors make different oracles

or 18 out of the 185 methods. The authors had a discussion on the

8 methods to obtain consensus for them. After a one-hour discus-

ion, they got consensus oracles for the 18 methods. Our consensus

racle includes 161 renamings on 124 methods.

Next, we tracked the 1981 methods with 50% threshold, which

s the best F-measure threshold in the evaluation in Subsection 5.1 .

s a result, we obtained 161 renamings on 124 methods. By com-

aring the tracking results of 50% threshold with the consensus

racle, We calculated two kinds of precision and recall: one was

alculated based on renaming instances; the other was calculated

ased on methods whose tracking results included at least one re-

aming in the consensus oracle.

• From the viewpoint of renaming instances, precision and re-

call were 91.30% and 83.52%, respectively.
• From the viewpoint of methods including renames, precision
and recall were 86.29% and 83.59%, respectively.

10 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

Table 2

Refactorings detected by RMiner .

Refactoring pattern # of detected instances

Change Parameter Type 56

Change Return Type 10

Move Method 3

Rename Method 44

Rename Parameter 45

Total 158

Table 3

Precision and recall of RMiner in literature

(Tsantalis et al., 2018).

Refactoring pattern Precision Recall

Move Method 95.17% 76.36%

Rename Method 97.78% 83.28%

R

s

l

p

t

o

s

a

d

i

i

R

7

g

b

t

m

i

f

t

t

s

c

b

t

e

s

i

h

W

c

I

t

(

w

n

h

p

c

i

s

b

S

o
According to AURA ’s literature (Wu et al., 2010), AURA gener-

ated mappings for 97 rules 8 and its precision was 92.38%. By com-

paring those results, we conclude that FinerGit generated map-

pings for more methods with slightly-lower precision.

AURA utilizes text similarity and call dependency to generate

mappings while FinerGit utilizes only text similarity. On the other

hand, AURA takes only two versions of source code to generate

mappings while FinerGit utilizes all commits to track methods.

Those are the reason why the precision values of the two tools

were not so different.

6.2. RefactoringMiner

We performed RMiner 9 on the commit history of JHotDraw be-

tween release 5.2 and 5.3. RMiner has a capability of detecting

38 types of refactoring patterns and the following five refactoring

patterns correspond to renamings that FinerGit detects: Change

Parameter Type , Change Return Type , Move Method , Rename

Method , and Rename Parameter . RMiner detected 158 refactor-

ing instances of the five patterns. The detail numbers of refactor-

ings detected by RMiner are shown in Table 2 . We compared the

158 refactorings with the 161 renamings detected by FinerGit with

50% threshold. The number of common instances was 65, which

was 41.14% of RMiner ’s refactorings and 40.37% of FinerGit ’s re-

namings.

The FinerGit evaluation in Subsection 6.1 shows that FinerGit ’s

tracking accuracy on JHotDraw is high (precision and recall are

91.30% and 83.52%, respectively in 50% threshold). Table 3 shows

precision and recall of RMiner for each refactoring pattern in lit-

erature (Tsantalis et al., 2018). 10 According to this table, precision

and recall of RMiner are also high. However, the common in-

stances between FinerGit and RMiner do not occupy a large por-

tion of all instances detected by either of the techniques. We man-

ually investigated renames and refactorings that had been detected

only either of the techniques and found that the results faithfully

reflected their different inheritances. There were two major cases

of renames that were detected only by FinerGit .

• New parameters were added to methods or return types of

methods were changed according to the changes in method’s
8 A rule is a mapping group of multiple methods.
9 RMiner is available at https://github.com/tsantalis/RefactoringMiner . We used

the latest version of the tool at 17th November, 2019. The commit ID is

4bb0e11550b781b61ce1c382a58ea182a2f46944 .
10

Change Parameter Type , Change Return Type , and Rename Parameter were

not investigated in the literature because those refactoring patterns have been re-

cently supported by RMiner .

f

r

a

8

H
bodies. Those changes were not refactorings but functional

enhancements.
• Access modifiers (public , protected , and private)

were added/removed/changed. Such changes were refactor-

ings; however they were not supported by RMiner .

On the other hand, refactorings that were detected only by

Miner had changed a large part of method’s bodies. Thus, line

imilarities of method’s bodies between such refactorings become

ow, which leaded to fail to be detected as a renaming by FinerGit .

Herein, we compared FinerGit with RMiner ; however their

urposes are different from each other. The FinerGit ’s purpose is

racking Java methods with high accuracy. No matter what kinds

f changes are made, FinerGit is able to track methods if a line

imilarity of the method’s bodies between a change is higher than

 given threshold. On the other hand, the purpose of RMiner is

etecting refactorings in a commit history. No matter how unsim-

lar between method’s bodies are between a refactoring, RMiner

s able to detect the refactoring if the refactoring is supported by

Miner .

. Threats to validity

In the experiment, we used 182 Java projects, and we investi-

ated on tracking results on 1,768K methods in total. Those num-

ers of projects and methods are large enough so that we expect

hat the same results are obtained if we conduct another experi-

ent on different Java projects.

To measure precision, recall, and F-measure of method track-

ng by FinerGit and Historage , we manually constructed oracle

or 182 methods. Firstly, two of the authors made oracle for all

he 182 methods independently, and then they discussed for which

hey made different oracle. This process of making oracle is de-

igned to avoid making mistakes and to reduce subjective view on

onstructing oracle as much as possible.

One more thing about oracle is that, essentially, oracle should

e made independently from tracking results of FinerGit and His-

orage . However, constructing oracle with a fully-manual work is

xtraordinarily difficult even for a small number of methods. Con-

equently, in the experiment, we firstly obtained high-recall track-

ng results with an enough low threshold, and then, we checked

ow many false positives were included in the tracking results.

e consider that this construction process does not ensure 100%-

orrect oracle but high enough for comparing different techniques.

n other word, we made oracle of reasonable quality with a realis-

ic time cost.

In the manual investigation, we checked surrounding 15 lines

as shown in Subsection 5.1) of changes in commits to judge

hether method tracking by FinerGit was correct or not. The

umber 15 came from our experiences with FinerGit because we

ad checked tracking results of FinerGit before conducting the ex-

eriment in this paper.

In the experiment, we discussed the comparison results by fo-

using on whether FinerGit had found more renaming and copy-

ng for Java methods than Historage . However, we also need to

ee the fact that there were some cases that short tracking results

y FinerGit were better than long tracking results by Historage .

uch cases mean that FinerGit was able to avoid tracking meth-

ds incorrectly. We investigated some of such cases, and then we

ound that the reason why Historage found a higher number of

enames is due to the existences of coincidentally matched lines

s shown in Fig. 4 (a).

. Related work

The research that is most related to this paper is of course

istorage (Hata et al., 2011a). Historage is useful in research

https://github.com/tsantalis/RefactoringMiner

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 11

o

J

s

o

F

t

p

e

l

a

g

p

s

a

w

c

d

c

d

t

s

o

I

w

C

w

a

p

c

t

a

t

f

c

T

u

i

a

t

(

i

c

T

s

s

r

a

o

comes 37/40.
n mining software repositories because researchers can obtain

ava method histories without implementing code/scripts by them-

elves. Historage has been used in many research before now.

• Hata et al. researched predicting fault-prone Java meth-

ods by using method histories obtained with Historage

(Hata et al., 2012). Their experimental results showed that

the method-level prediction outperformed package-level and

file-level predictions from the viewpoint of efforts for find-

ing bugs.
• Hata et al. also used Historage to infer restructuring opera-

tions on the logical structure of Java source code (Hata et al.,

2011b).
• Fujiwara et al. developed a hosting service of Historage

repositories, Kataribe 11 (Fujiwara et al., 2014). Kataribe en-

ables researchers/practitioners to browse method histories

on the web, and they can clone Historage repositories in

Kataribe into their local storages if they want to conduct fur-

ther analyses.
• Tantithamthavorn et al. investigated the impact of granular-

ity levels (class-level and function-level) on a feature loca-

tion technique (Tantithamthavorn et al., 2014). The results

indicated that function-level feature location technique out-

performs class-level feature location technique. Moreover,

function-level feature location technique also required seven

times less effort than class-level feature location technique

to localize the first relevant source code entity.
• Kashiwabara et al. proposed a technique to recommend

appropriate verbs for a method name of a given method

so that developers can use various verbs consistently

(Kashiwabara et al., 2015). Their technique recommends can-

didate verbs by using association rules extracted from exist-

ing methods. They extracted renamed methods from reposi-

tories of target projects using Historage .
• Oliveira et al. presented an approach to analyze the concep-

tual cohesion of the source code associated with co-changed

clusters of fine-grained entities (Oliveira et al., 2015). They

obtained change histories of Java methods with Historage .

By using the change histories, they identified a set of meth-

ods that were frequently changed together.
• Yamamori et al. proposed to use two types of logical cou-

plings of Java methods for recommending code changes

(Yamamori et al., 2017). The first type is logical couplings

that are extracted from code repositories. They used Histor-

age and Kataribe to obtain logical couplings of Java meth-

ods. The second type is logical couplings that are extracted

from interaction data. They used a dataset that had been col-

lected by Mylyn (Kersten and Murphy, 2005). Their experi-

mental results showed that there was a significant improve-

ment in the efficiency of the change recommendation pro-

cess.
• Yuzuki et al. conducted an empirical study to investigate

how often change conflicts happen in large projects and how

they are resolved (Yuzuki et al., 2015). In their empirical

study, they used Historage to conduct method-level analy-

sis. As a result, they found that 44% of conflicts were caused

by changing concurrently the same positions of methods,

48% is by deleting methods, and 8% is by renaming meth-

ods. They also found that 99% of the conflicts were resolved

by adopting one method directly.
• Suzuki et al. investigated relationships between method

names and their implementation features (Suzuki et al.,

2017). They showed that focusing on the gap between

method names and their implementation features is useful
11 http://sdlab.naist.jp/kataribe/ .
to predict fault-prone methods. They used Historage to col-

lect change histories of Java methods in the investigation.

All the above research can be conducted with FinerGit instead

f Historage . Moreover, the experimental results may change if

inerGit is used because there is a significant difference in the

racking results between FinerGit and Historage .

We are not the first research group that has used single-token-

er-line format for Git repositories. To the best of our knowl-

dge, the study by German et al. was the first attempt to fol-

ow this approach (German et al., 2019). They proposed to re-

rrange source files with single-token-per-line for enabling fine-

rained git-blame . By using their technique, we can see the

erson who changed last for each token of the source code. They

howed that blame-by-token reports the correct commit that adds

 given source code token between 94.5% and 99.2% of the times,

hile the traditional approach of blame-by-line reports the correct

ommit that adds a given token between 74.8% and 90.9%. German

eveloped a system cregit 12 based on their proposed technique.

regit has being used in Linux development community. 13 cregit

oes not extract Java methods as files, which is a difference be-

ween cregit and FinerGit .

Heuristic-1, which is described in Subsection 3.2 , is refining

ymbols in source code. On the one hand, symbol refinements are

ften performed in the process of code clone detection techniques.

n the context of clone detection, some symbols are replaced

ith special ones prior to the matching process. For example, in

CFinder (Kamiya et al., 2002) and NICAD (Roy and Cordy, 2008),

hich are representative code clone detection techniques, all vari-

bles and literals are replaced with a specific wildcard symbol. The

urpose of replacements is to detect syntactically-similar code as

ode clones as much as possible. Such replacements can realize

hat the matching process ignores differences in variables or liter-

ls. On the other hand, in the context of FinerGit , we do not want

o ignore differences in variables or literals. If we ignore such dif-

erences, the similarity between non-related methods can rise ac-

identally, which leads FinerGit to make wrong method tracking.

he purpose of our Heuristic-1 is to calculate lower similarity val-

es between non-related methods.

There are many research studies of program element match-

ng other than Historage (Godfrey and Zou, 2005). Lozano et al.

nd Saha et al. implemented method tracking techniques since

hey need to track method-level clones in their experiments

 Angela Lozano, 2008; Saha et al., 2011). Their method-level track-

ng techniques are line-based comparisons and their comparisons

ompute numerical similarity values by comparing lines as texts.

hus, in the case that only a small part of a line is changed, the

imilarity between a before-change line and its after-change line

hould be high while a simple line-based comparison like diff
egards that a before-change line is completely different from its

fter-change line. However, their comparisons are still line-based

nes, which include some flaws compared to token-based ones.

• In the cases that the first token of the line is moved to the

previous line or the last token of the line is moved to the

next line (e.g., left bracket (“{”) is moved to the next line

due to format change), their line-based techniques regard

that multiple lines have been changed while our technique

regards that no lines have been changed.
• The same changes have different impacts on lines of differ-

ent length. For example, variable abc is changed to def in

a 10-character line, the similarity becomes 7/10 while the

same change occur in a 40-character line, the similarity be-
12 https://github.com/cregit/ .
13 https://cregit.linuxsources.org/ .

http://sdlab.naist.jp/kataribe/
https://github.com/cregit/
https://cregit.linuxsources.org/

12 Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571

e

t

K

W

A

J

R

A

B

D

F

G

G

H

H

H

K

K

K

K

K

K

K

K

M

O

Godfrey and Zou detected merging and splitting source code

entities such as files and functions. They extended origin anal-

ysis (Tu and Godfrey, 2002) to track source code entities. They

utilize various information for entities such as entity names,

caller/callee relationship, and code metrics values. Wu et al. pro-

posed a technique to identify change rules for one-replaced-by-

many and many-replaced-by-one methods (Wu et al., 2010). Their

approach is a hybrid one, which means that it uses two kinds

of data: caller/callee relationship and text similarity. Kim et al.

proposed a technique to track functions even if their names get

changed (Kim et al., 2005). Their technique computes function sim-

ilarities between given two methods. They introduced eight simi-

larity factors such as complexity metrics and clone existences to

determine if a function is renamed from another function. Dig

et al. proposed a technique to detect refactorings performed during

component evolution (Dig et al., 2006). Their technique can track

methods even if refactorings change their names. Their detection

algorithm uses a combination of a fast syntactic analysis to detect

refactoring candidates and a more expensive semantic analysis to

refine the results. There are many other approaches for identifying

refactorings, and many of them support refactorings that changes

method names/signatures such as Rename Method and Parame-

terize Method pattern (Kim et al., 2010; Milea et al., 2014; Prete

et al., 2010; Silva and Valente, 2017; Tsantalis et al., 2018; Weiss-

gerber and Diehl, 2006; Xing and Stroulia, 2005). The advantage of

the proposed technique against the above approach should be the

ease to use because it utilizes Git mechanisms to track methods. A

researcher/practitioner who wants method evolution data does not

have to learn how to use new tools.

9. Conclusion

In this paper, we firstly introduce Historage , which converts a

Git repository to a finer-grained one. In the finer-grained reposi-

tory, each Java method exists as a single file. Thus, we can track

Java method with Git commands such as git-log . However,

tracking small methods with Git mechanisms does not work well

because small methods do not have good chemistry with the Git

rename detection function. Thus, we proposed a new technique

that puts only a single token of Java methods per line. In other

words, in our technique, each line includes only a single token. We

also derived two heuristics to reduce incorrect tracking.

We implemented a software tool based on the proposed tech-

nique. We applied our tool and Historage to 182 repositories of

Java OSS projects to compare the two tools. The 182 repositories

include 1,768K methods in total, which are the targets our com-

parisons. We found that FinerGit scored 84.52% as maximum F-

measure while Historage scored 70.23%. We also confirmed that

the proposed technique worked well for methods of any size in

spite that our research motivation was to realize better tracking for

small methods. Furthermore, we showed that our tool took only

short time to construct finer-grained repositories even for large

repositories.

In the future, we are going to replicate some experiments of ex-

isting research with FinerGit to check whether the better tracking

of our tool changes experimental results or not.

Declaration of Competing Interests

There are no interests to declare.

CRediT authorship contribution statement

Yoshiki Higo: Conceptualization, Methodology, Software, Vali-

dation, Investigation, Writing - original draft, Writing - review &
diting, Project administration. Shinpei Hayashi: Software, Valida-

ion, Investigation, Data curation, Writing - review & editing. Shinji

usumoto: Investigation, Data curation, Writing - original draft,

riting - review & editing.

cknowledgements

This work was supported by JSPS KAKENHI grant number

P17H01725 and JP18K11238 .

eferences

ngela Lozano, M.W. , 2008. Assessing the effect of clones on changeability. In: Pro-
ceedings of the 24th IEEE International Conference on Software Maintenance,

pp. 227–236 .
alachandran, V. , 2013. Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer recommendation.

In: Proceedings of the 35th International Conference on Software Engineering,
pp. 931–940 .

ig, D. , Comertoglu, C. , Marinov, D. , Johnson, R. , 2006. Automated detection of refac-
torings in evolving components. In: Proceedings of the 20th European Confer-

ence on Object-Oriented Programming, pp. 404–428 .
ujiwara, K. , Hata, H. , Makihara, E. , Fujihara, Y. , Nakayama, N. , Iida, H. , Mat-

sumoto, K. , 2014. Kataribe: a hosting service of Historage repositories. In: Pro-

ceedings of the 11th Working Conference on Mining Software Repositories,
pp. 380–383 .

erman, D.M. , Adams, B. , Stewart, K. , 2019. cregit: token-level blame information in
git version control repositories. Empir. Softw. Eng. 24 (4), 2725–2763 .

odfrey, M.W. , Zou, L. , 2005. Using origin analysis to detect merging and splitting
of source code entities. IEEE Trans. Softw. Eng. 31 (2), 166–181 .

Hata, H. , Mizuno, O. , Kikuno, T. , 2011. Historage: fine-grained version control system
for Java. In: Proceedings of the 12th International Workshop on Principles of

Software Evolution and the 7th Annual ERCIM Workshop on Software Evolution,

pp. 96–100 .
ata, H. , Mizuno, O. , Kikuno, T. , 2011. Inferring restructuring operations on logical

structure of java source code. In: Proceedings of 3rd International Workshop on
Empirical Software Engineering in Practice, pp. 17–22 .

ata, H. , Mizuno, O. , Kikuno, T. , 2012. Bug prediction based on fine-grained mod-
ule histories. In: Proceedings of the 34th International Conference on Software

Engineering, pp. 200–210 .

ora, A. , Silva, D. , Tulio, M. , Robbes, R. , 2018. Assessing the threat of untracked
changes in software evolution. In: Proceedings of the 40th International Con-

ference on Software Engineering, pp. 1102–1113 .
Hudson Borges, M.T.V. , Hora, A. , 2016. Understanding the factors that impact the

popularity of GitHub repositories. In: Proceedings of the 32nd International
Conference on Software Maintenance and Evolution, pp. 1–11 .

amiya, T. , Kusumoto, S. , Inoue, K. , 2002. CCFinder: a multilinguistic token-based

code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28 (7), 654–670 .

Kashiwabara, Y. , Ishio, T. , Hata, H. , Inoue, K. , 2015. Method verb recommendation
using association rule mining in a set of existing projects. IEICE Trans. Inf. Syst.

E98–D (3), 627–636 .
ersten, M. , Murphy, G.C. , 2005. Mylar: a degree-of-interest model for IDEs. In: Pro-

ceedings of the 4th International Conference on Aspect-oriented Software De-

velopment, pp. 159–168 .
im, M. , Cai, D. , Kim, S. , 2011. An empirical investigation into the role of API-level

refactorings during software evolution. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 151–160 .

im, M. , Gee, M. , Loh, A. , Rachatasumrit, N. , 2010. Ref-Finder: a refactoring recon-
struction tool based on logic query templates. In: Proceedings of the 18th Inter-

national Symposium on Foundations of Software Engineering, pp. 371–372 .

im, S. , Ernst, M.D. , 2007. Which warnings should I fix first? In: Proceedings of
the 6th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
pp. 45–54 .

im, S. , Pan, K. , Whitehead Jr., E.J. , 2005. When functions change their names: au-
tomatic detection of origin relationships. In: Proceedings of the 12th Working

Conference on Reverse Engineering, pp. 143–152 .

im, S. , Whitehead Jr., E.J. , Zhang, Y. , 2008. Classifying software changes: clean or
buggy? IEEE Trans. Softw. Eng. 34 (2), 181–196 .

im, S. , Zimmermann, T. , Pan, K. , Whitehead, E.J.J. , 2006. Automatic identification
of bug-introducing changes. In: Proceedings of the 21st IEEE/ACM International

Conference on Automated Software Engineering, pp. 81–90 .
Meng, X. , Miller, B.P. , Williams, W.R. , Bernat, A.R. , 2013. Mining software repositories

for accurate authorship. In: Proceedings of the 29th IEEE International Confer-
ence on Software Maintenance, pp. 250–259 .

ilea, N.A. , Jiang, L. , Khoo, S.-C. , 2014. Vector abstraction and concretization for

scalable detection of refactorings. In: Proceedings of the 22nd International
Symposium on Foundations of Software Engineering, pp. 86–97 .

liveira, M.C.D. , Almeida, R.B.D. , Ramos, G.N. , Ribeiro, M. , 2015. On the conceptual
cohesion of co-change clusters. In: Proceedings of the 29th Brazilian Symposium

on Software Engineering, pp. 120–129 .

https://doi.org/10.13039/501100001691
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0001
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0003
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0014
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0023

Y. Higo, S. Hayashi and S. Kusumoto / The Journal of Systems and Software 165 (2020) 110571 13

P

R

R

S

S

S

S

S

T

T

T

W

W

X

Y

Y

Y

a

h

i

m

S

o

s

a

a

S

p

c

a

q

rete, K. , Rachatasumrit, N. , Sudan, N. , Kim, M. , 2010. Template-based reconstruction
of complex refactorings. In: Proceedings of the 26th International Conference on

Software Maintenance, pp. 1–10 .
ahman, F. , Devanbu, P. , 2011. Ownership, experience and defects: a fine-grained

study of authorship. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 491–500 .

oy, C.K. , Cordy, J.R. , 2008. NICAD: accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. In: Proceed-

ings of the 16th IEEE International Conference on Program Comprehension,

pp. 172–181 .
aha, R.K. , Roy, C.K. , Schneider, K.A. , 2011. An automatic framework for extracting

and classifying near-miss clone genealogies. In: Proceedings of the 27th IEEE
International Conference on Software Maintenance, pp. 293–302 .

ilva, D. , Valente, M.T. , 2017. RefDiff: Detecting refactorings in version histories. In:
Proceedings of the 14th International Conference on Mining Software Reposito-

ries, pp. 269–279 .
´ liwerski, J. , Zimmermann, T. , Zeller, A. , 2005. When do changes induce fixes? In:

Proceedings of the 2nd International Workshop on Mining Software Reposito-

ries, pp. 1–5 .
oares, G. , Gheyi, R. , Serey, D. , Massoni, T. , 2010. Making program refactoring safer.

IEEE Software 27 (4), 52–57 .
uzuki, S. , Aman, H. , Kawahara, M. , 2017. Empirical study of fault-prone method’s

name and implementation: analysis on three prefixes—get, set and be. In: Pro-

ceedings of 2nd International Conference on Big Data, Cloud Computing, Data
Science & Engineering, pp. 266–271 .

antithamthavorn, C. , Ihara, A. , Hata, H. , Matsumoto, K. , 2014. Impact analysis of
granularity levels on feature location technique. In: Proceedings of 1st Asia Pa-

cific Requirements Engineering Symposium, pp. 135–149 .
santalis, N. , Mansouri, M. , Eshkevari, L.M. , Mazinanian, D. , Dig, D. , 2018. Accurate

and efficient refactoring detection in commit history. In: Proceedings of the

40th International Conference on Software Engineering, pp. 4 83–4 94 .
u, Q. , Godfrey, M. , 2002. An integrated approach for studying software architectural

evolution. In: Proceedings of 10th International Workshop on Program Compre-
hension, pp. 127–136 .

eissgerber, P. , Diehl, S. , 2006. Identifying refactorings from source-code changes.
In: Proceedings of the 21st International Conference on Automated Software En-

gineering, pp. 231–240 .
u, W. , Guéhéneuc, Y.-G. , Antoniol, G. , Kim, M. , 2010. AURA: A hybrid approach to
identify framework evolution. In: Proceedings of the 32nd International Confer-

ence on Software Engineering, pp. 325–334 .
ing, Z. , Stroulia, E. , 2005. UMLDiff: An algorithm for object-oriented design dif-

ferencing. In: Proceedings of the 20th International Conference on Automated
Software Engineering, pp. 54–65 .

amamori, A . , Hagward, A .M. , Kobayashi, T. , 2017. Can developers’ interaction data
improve change recommendation? In: Proceedings of 41st Annual Computer

Software and Applications Conference, pp. 128–137 .

uzuki, R. , Hata, H. , Matsumoto, K. , 2015. How we resolve conflict: An empirical
study of method-level conflict resolution. In: Proceedings of 1st International

Workshop on Software Analytics, pp. 21–24 .

oshiki Higo received his master’s degree and Ph.D degree in information science

nd technology from Osaka University in 2004 and 2006, respectively. At present

e is an associate professor at Osaka University. His research interests include min-
ng software repositories, program analysis, and automated program repair. He is a

ember of IEEE, IPSJ, IEICE, and JSSST.

hinpei Hayashi is an associate professor of School of Computing at Tokyo Institute

f Technology. His research interests include software maintenance and evolution,
oftware development environments, and mining software repositories. He received

 DE degree in computer science from Tokyo Institute of Technology in 2008. He is

 member of IEEE and ACM.

hinji Kusumoto received the BE, ME, and DE degrees in information and com-

uter sciences from Osaka University in 1988, 1990, and 1993, respectively. He is

urrently a professor in the Graduate School of Information Science and Technology
t Osaka University. His research interests include software metrics and software

uality assurance technique. He is a member of IEEE, IEICE, and JFPUG.

http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30052-2/sbref0039

	On tracking Java methods with Git mechanisms
	1 Introduction
	2 Basic approach
	3 Proposed technique
	3.1 Naming convention
	3.2 Introducing heuristics
	3.2.1 Heuristic-1
	3.2.2 Heuristic-2

	4 Implementation
	5 Evaluation
	5.1 Tracking accuracy
	5.2 Heuristics impacts
	5.3 Project-Level tracking results
	5.3.1 Considering never-changed methods
	5.3.2 Conducting statistical testing

	5.4 Method-size-level tracking results
	5.5 Execution time

	6 Comparisons with other techniques
	6.1 AURA
	6.2 RefactoringMiner

	7 Threats to validity
	8 Related work
	9 Conclusion
	Declaration of Competing Interests
	CRediT authorship contribution statement
	Acknowledgements
	References

