
Master Thesis

Title

On Source Code Neutralization

– Integrating Preprocessing Methods for Static Code Analysis –

Supervisor

Prof. Shinji KUSUMOTO

by

Nozomi Nakajima

February 5, 2020

Departmant of Computer Science

Graduate School of Information Science and Technology

Osaka University

Master Thesis

On Source Code Neutralization

– Integrating Preprocessing Methods for Static Code Analysis –

Nozomi Nakajima

Abstract

Source code is a significant subject of research on software engineering, especially

in source code analysis. The purpose of the source code analysis includes quantitative

software quality assessment, prediction of source code problems, and reuse of existing

software. Especially, the appearance of Mining Software Repositories (MSR) accelerates

the momentum of source code analysis. MSR realizes various analyses combining source

code and development history information. In any programming language, source code

generally allows grammatical flexibility. The flexibility includes: selecting for-loop or

while-loop, using ternary operator or if-statement, and whether or not to use break or

continue statement. Coding style, which frequently sparks discussion between developers,

arises from such flexibility. Although the flexibility gives various implement options for

developers, it negatively affects source code analysis. When researchers conduct source

code analysis, they generally perform preprocessing methods for eliminating syntactic

differences before the analysis. Removing blank lines and code comments, formatting

source code, replacing variables with specific tokens are major methods of source code

preprocessing. Although source code preprocessing is a common task for many studies,

these know-hows and tools have not been shared enough. In this study, we propose

a concept of Source Code Neutralization. The purpose of neutralization is to avoid

negative effects on source code analysis by transforming the given code into the normalized

form. One of the important ideas is that neutralized source code behaves completely the

same as the original. Also, the neutralized code keeps syntactic correctness, which means

the code is always in compilable. The above restrictions enable fluent neutralization

chains as a pipeline which has been leveraged in many software systems such as Unix

and CI/CD (continuous integration and delivery). Under the concept of neutralization,

we integrate preprocessing methods conducted in existing studies. Besides, we propose a

tool named Neu4j as a prototype system. With Neu4j, researchers neutralize source code

collectively and try various neutralizations freely. In order to indicate the effectiveness

of neutralization and usefulness of Neu4j, we reproduced an existing experiment of cross-

project defect prediction.

Keywords

Source Code Analysis

Code Preprocessing

Code Variety

Contents

1 Introduction 1

2 Motivating Examples 3

2.1 The difference in unnecessary information 3

2.2 The difference in conditionals . 3

2.3 The difference in granularities of statements 4

3 Neutralization 5

3.1 Definition . 5

3.2 Methods . 5

3.3 Flow of Neutralization . 7

4 Neu4j 8

4.1 Overview . 8

4.2 Implementation . 9

4.3 Specification . 9

5 Usage Example 10

5.1 Measuring LLOC . 10

5.2 Measuring fine-grained LOC . 10

6 Experiment 12

6.1 Overview . 12

6.2 Experimental Methodologies . 12

6.2.1 Dataset . 12

6.2.2 Source Files . 13

6.2.3 Source Code Metrics . 15

6.2.4 Neutralization . 15

6.2.5 Prediction . 15

6.3 Results . 16

6.3.1 AUC . 16

6.3.2 Added lines/Total LOC . 17

6.3.3 Deleted lines/Total LOC . 17

6.3.4 Cyclomatic Complexity/Total LOC 17

6.3.5 (Added lines + Deleted lines)/(commits + 1) 17

6.4 Discussion . 23

7 Threats to Validity 25

i

8 Related Works 26

9 Conclusion 27

Acknowledgements 28

References 29

ii

List of Figures

1 Motivating examples. Both source code have exactly the same functionali-

ties but have some syntactic differences. 3

2 The flow of neutralization. ExampleA.java and ExampleB.java correspond

to Figure 1. After the neutralization, both .java files have the same imple-

mentation shown in Example.java. 7

3 Neutralization Process with Neu4j . 8

4 Naming rule of source files . 14

5 Prediction result with neutralized source code 18

6 Change ratio of Added lines/Total LOC metric 19

7 Change ratio of Deleted lines/Total LOC metric 20

8 Change ratio of cyclomatic complexity/Total LOC metric 21

9 Change ratio of (Added lines + Deleted lines)/(commits + 1) metric 22

10 Variance values of AUC . 23

iii

List of Tables

1 Neutralization Methods . 6

2 Projects in Public Bug Database . 13

3 Total number of stored source files . 14

iv

1 Introduction

Source code is a significant subject of research on software engineering, especially in

source code analysis [1] [2]. The purpose of the source code analysis includes quantitative

software quality assessment [3], prediction of source code problems [4], and reuse of existing

software [5]. Especially, the appearance of Mining Software Repositories (MSR) accelerates

the momentum of source code analysis. MSR realizes various analyses combining source

code and development history information.

Source code generally contains syntax differences arising from the flexibility of pro-

gramming languages. The flexibility includes selecting for-loop or while-loop, using ternary

operator or if-statement, and whether or not to use break or continue statement. Coding

style, which frequently sparks discussion between developers, arises from such flexibilities.

Although the flexibility gives various implementation options for developers, it negatively

affects source code analysis. Source code analysis is not performed by humans so that

understandability and readability are an obstacle. In order to eliminate such varieties and

obtain more meaningful results, source code has been preprocessed depending on the anal-

ysis [6] [7]. Well-known and often used methods of source code preprocessing are removing

blank lines and code comments, formatting source code, and replacing the variable name

with anonymous one (e.g., i → $1).

Preprocessing source code is also effectiveness when using various static code analysis

tools. Lincke et al. compared several tools for software metrics measurement [8]. They

pointed out that each tool takes a different policy, and the measurement results are dif-

ferent depending on tools. Even if measuring simple metrics such as logical LOC, metrics

tools indicate different numbers. In such a situation, source code preprocessing is an ef-

fective way to avoid the problem. By preprocessing source code with a certain standard,

researchers will do not have to care about such problems.

Although source code preprocessing is a common task for many studies, these know-

hows and tools have not been shared enough. So far, researchers eliminate code varieties

by using techniques such as program dependence graph (PDG) [9] [10] and abstract syn-

tax tree (AST) [11]. However, researchers have conducted such preprocessing methods

for a specific analysis. It is not clear that the preprocessed source code is reusable for

another kind of analysis. Also, the result of preprocessing is not uniformed. When re-

searchers develop a preprocessing tool, they will not develop the tool under the specific

rule. Therefore, it is not easy to reuse preprocessing methods for another type of analysis.

In this research, we propose a concept of Source Code Neutralization. We define Source

Code Neutralization as to transform given source code into normalized form by eliminating

specific syntax flexibility. Neutralized code behaves the same as the original and keeps

syntax correctness. Researchers can easily perform a series of neutralization methods like

a pipeline. Under the concept of neutralization, we integrate source code preprocessing

1

methods and perform them at one time. Besides, we propose a tool named Neu4j, which

neutralizes source code. Neu4j take source file or source file directory and neutralize them.

By providing Neu4j, we expect to eliminate the current incoherent on preprocessing and

realize various combination and ordering of neutralization.

Besides, we reproduce an existing experiment of cross-project defect prediction with

neutralized source code. The purpose of this experiment is to confirm that neutralization

has some influence on static code analysis. As a result, it is indicated that neutralization

certainly affects the result of the analysis.

The remainder of this thesis is organized as follows: in Chapter 2, we show motivating

examples for this research. In Chapter 3, we explain our proposal concept of Source

Code Neutralization. In Chapter 4, we present our proposal tool of Neu4j. In Chapter 5,

we show the usage examples of our approach. In Chapter 6, we present our experiment

and evaluation of our approach. In Chapter 7, we discuss the threats to validity of the

evaluation. In Chapter 8, we provide related works for this research. Finally, in Chapter

9, we discuss the conclusions and future work.

2

ExampleB.java

$ trimCmt Original.java > CommentTrimmed.java
$ trimBlk CommentTrimmed.java > Lean.java
$ wc –-lines Lean.java

The difference in granularities of statements

The difference in unnecessary information

The difference in conditionals

ExampleA.java
import java.time.LocalDateTime;

public class ExampleA {

// output current time in 12-hour notation
public void run() {

LocalDateTime d = LocalDateTime.now();
int hour = d.getHour();
int min = d.getMinute();
String timeDiv = getAmOrPm(d);
String time = hour + ":" + min + " " + timeDiv;
System.out.println(time);

}

// return current time division, AM or PM
String getAmOrPm(LocalDateTime d) {

if (d.getHour() < 12) {
return "AM";

} else {
return "PM";

}
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
2
3
4
5
6

7
8
9
10
11

import java.time.LocalDateTime;

public class ExampleB {
public void run() {

LocalDateTime d = LocalDateTime.now();
System.out.println(d.getHour() + ":"
+ d.getMinute() + " " + getAmOrPm(d));

}
String getAmOrPm(LocalDateTime d) {

return d.getHour() < 12 ? "AM" : "PM";
}

}

Figure 1: Motivating examples. Both source code have exactly the same functionalities

but have some syntactic differences.

2 Motivating Examples

In this section, we introduce motivating examples of our work. ExampleA.java and

ExampleB.java, shown in Figure 1, have the same functionalities. However, they do not

have the same implementation.

2.1 The difference in unnecessary information

In Figure 1, yellowish-green highlights indicate comments and blank lines. Researchers

often regard comments and blank lines on source code as unnecessary information. Though

both lines give useful information for developers, they are unnecessary for analysis. Also,

the insertion frequency and the number of such lines depend on the developer. For ex-

ample, researchers often use logical lines of code (LLOC), which is the number of lines

excluding comments and blank lines [12].

2.2 The difference in conditionals

Blue highlights shown in Figure 1 indicate the difference in conditionals. In any pro-

gramming language, conditionals are a part of a significant basis. The use of such con-

ditional notations strongly depends on each developer [10] [13]. For example, lines 17

to 21 in ExampleA.java are conditionals using if-else statement. In ExampleB.java, a

ternary operator is used on line 9. Both ternary operator and if-else statement has the

same function. Nevertheless, their numbers of statements are quite different. Not only

that, switch case statement also have the same function. Such differences in conditionals

generate inequality.

3

2.3 The difference in granularities of statements

In Figure 1, pink highlights show the difference in granularities of statements. Some

developers prefer to use temporary variables for giving an explicit name, statements more

straightforward, or easing debugging. Others prefer to stuff information into one program

line. Such preference of developers occurs the difference in granularities of statements.

For example, ExampleA.java is described more finely than ExampleB.java. Lines 8 to

12 in ExampleA.java are the step to get the current time and output it. Some variables

such as hour and min are used temporary. On the other hand, line 6 in ExampleB.java

executes the above steps in one statement. There is no temporary variable for the output

string in ExampleB.java, and this leads to reduce the count of line. In the case of source

code analysis, It is desirable to eliminate such an imbalance of granularities. In order

to adjust the granularity of source code, Higo et al. proposed code flattening [14]. Code

flattening dissolves a complex program statement to multiple simple ones. It was indicated

that code flattening contributes to obtaining more meaningful results of the analysis.

4

3 Neutralization

In this section, we define our proposal concept of Source Code Neutralization and show

some examples. Hereafter, we call Source Code Neutralization as neutralization.

3.1 Definition

Our proposed concept, Source Code Neutralization is to transform a given source code

to remove its varieties without changing external behavior. The variety of source code

includes coding styles and other differences that arose from flexibilities on the program-

ming language. The purpose of neutralization is to avoid the negative effect on source

code analysis by removing these varieties. Since neutralization is assumed to be per-

formed for source code analysis, understandability and readability are not considered. As

a premise, the target of neutralization is compilable and valid source code. Before and

after neutralization, source code behaves completely the same as the original.

Refactoring performs a similar process with our concept in terms of source code trans-

formation. However, the purpose of refactoring is to improve maintainability, understand-

ability, and other qualities for developers. Neutralization is conducted for source code

analysis. Their purposes are definitively different.

3.2 Methods

Neutralization is conducted in various researches. Table 1 shows the neutralization

methods conducted by existing researches.

Removing blank lines and comments from source code is an example of neutralization

[7] [15]. Blank lines and comments are often removed to calculate LLOC. Reformatting

source code is also conducted [16] [17]. The varieties that arose from coding-styles are

unnecessary information for source code analysis.

Not only style neutralization, but there is also various syntax neutralization [10] [13]

[14]. Code flattening [14] neutralizes the granularities of source code. The difference in

selecting for-loop or while-loop, using a ternary operator or if-else statement, is also a

target of neutralization [10] [13]. Such kind of neutralizations transforms source code

structurally.

5

T
ab

le
1:

N
eu

tr
al
iz
at
io
n
M
et
h
o
d
s

N
am

e
D
es
cr
ip
ti
on

E
x
am

p
le

U
se
d
o
n

R
em

ov
in
g
b
la
n
k
li
n
es

A
ll
b
la
n
k
li
n
es

in
so
u
rc
e
co
d
e
w
il
l
b
e
re
m
ov
ed
.

m
et
ri
cs

m
ea
su
re
m
en
t
[1
8
]
[1
9
]
[2
0]

fa
u
lt
p
re
d
ic
ti
o
n
[2
1
]
[2
2
]

tr
a
ce
a
b
il
it
y
a
n
a
ly
si
s
[2
3
]

R
em

ov
in
g
co
m
m
en
ts

A
ll
co
m
m
en
ts

in
so
u
rc
e
co
d
e
w
il
l
b
e
re
m
ov
ed
.

i
=

i
+

1
;

/
/
c
o
m
m
e
n
t

m
et
ri
cs

m
ea
su
re
m
en
t
[1
8
]
[1
9
]
[2
0]

→
i

=
i

+
1
;

fa
u
lt
p
re
d
ic
ti
o
n
[2
1
]
[2
2
]

tr
a
ce
a
b
il
it
y
a
n
a
ly
si
s
[2
3
]

cl
o
n
e
d
et
ec
ti
o
n
[2
4
]

R
ef
o
rm

at
C
o
d
in
g
st
y
le

w
il
l
b
e
re
fo
rm

at
te
d
b
y
sp
ec
ifi
c
st
an

d
ar
s

g
it
re
fi
n
em

en
t
[2
5]

cl
o
n
e
d
et
ec
ti
o
n
[2
4
]

C
o
d
e
fl
at
te
n
in
g

A
co
m
p
le
x
p
ro
gr
am

st
at
em

en
t
w
il
l
b
e
d
is
so
lv
ed

c
=

a
.
f
n
(
)

+
b
.
f
n
(
)

cl
o
n
e
d
et
ec
ti
o
n
[1
4
]

in
to

m
u
lt
ip
le

si
m
p
le

on
es
.

→
$
1
=

a
.
f
n
(
)
;

$
2
=

b
.
f
n
(
)
;

m
et
ri
cs

m
ea
su
re
m
en
t
[1
4
]

c
=

$
1
+

$
2
;

S
ta
te
m
en
t
or
d
er
in
g

S
ta
te
m
en
ts

w
il
l
b
e
re
or
d
er
ed

n
ot

to
ch
an

ge
i
n
t

a
;

i
n
t

b
;

cl
o
n
e
d
et
ec
ti
o
n
[2
6
]

th
e
b
eh
av

io
r
of

so
u
rc
e
co
d
e.

→
i
n
t

b
;

i
n
t

a
;

co
m
p
re
h
en
si
b
il
it
y
[2
7]

[2
8
]

T
ok
en
iz
at
io
n

A
ll
to
k
en
s
w
il
l
b
e
se
p
ar
at
ed

b
y
n
ew

li
n
e
ch
ar
ac
te
r.

i
m
p
o
r
t

j
a
v
a

.
u
t
i
l

.
.
.
.

g
it
re
fi
n
em

en
t
[2
9]

n
at
u
ra
l
la
n
g
u
ag
e
p
ro
ce
ss
in
g
[3
0
]

cl
o
n
e
d
et
ec
ti
o
n
[3
1
]

N
o
rm

al
iz
in
g
co
n
d
it
io
n
al
s

A
ll
co
n
d
it
io
n
al

st
at
em

en
ts

su
ch

as
if
-e
ls
e
st
at
em

en
t

a
=

b
?

c
:

d
;

cl
o
n
e
d
et
ec
ti
o
n
[9
]
[1
0
]

an
d
te
rn
ar
y
op

er
at
or

w
il
l
b
e
u
n
ifi
ed

in
to

on
e
ty
p
e.

→
i
f
(
b
)

a
=

c
;

e
l
s
e

a
=

d
;

co
m
p
re
h
en
si
b
il
it
y
[3
2]

N
o
rm

al
iz
in
g
lo
op

s
A
ll
lo
op

st
at
em

en
ts

su
ch

as
fo
r-
lo
op

,
w
h
il
e-
lo
op

,
f
o
r
(
i

=
0
;

i
<

a
.
l
e
n
;
i
+
+
)

cl
o
n
e
d
et
ec
ti
o
n
[9
]
[1
0
]

an
d
en
h
an

ce
d
fo
r-
lo
op

w
il
l
b
e
u
n
ifi
ed

in
to

on
e
ty
p
e.

→
f
o
r
E
a
c
h
(
i
n
t

n
u
m

:
a
)

Im
p
li
ci
t
p
re
d
ic
at
es

Im
p
li
ci
t
p
re
d
ic
at
es

w
il
l
b
e
sp
ec
ifi
ed

cl
ea
rl
y.

i
f

(
5

%
3
)

co
m
p
re
h
en
si
b
il
it
y
[3
2]

→
i
f

(
5

%
3

!
=

0
)

A
b
st
ra
ct
in
g
id
en
ti
fi
er
s

Id
en
ti
fi
er
s
w
il
l
b
e
re
p
la
ce
d
sp
ec
ifi
c
to
k
en
s
to

in
go
re

i
n
t

c
o
u
n
t
→

i
n
t

$
1

cl
o
n
e
d
et
ec
ti
o
n
[3
3
]

th
e
d
iff
er
en
ce

of
id
en
ti
fi
er

n
am

es
.

E
x
p
an

d
in
g
id
en
ti
fi
er
s

A
b
b
re
v
ia
te
d
id
en
ti
fi
er
s
w
il
l
b
e
ex
p
an

d
ed

to
th
e

e
x
e
c
F
u
n
c

n
at
u
ra
l
la
n
g
u
ag
e
p
ro
ce
ss
in
g
[3
4
]

or
ig
in
al

w
or
d
.

→
e
x
e
c
u
t
e
F
u
n
c
t
i
o
n

6

$ neu rmComment | neu rmBlank | neu conditional | neu granularity

ExampleA.java

ExampleB.java

Neutralize
comments and

blank lines

Neutralize
conditionals

Neutralize
granularities of

statements

Example.java

Example.java

import java.time.LocalDateTime;
public class ExampleB {

public void run() {
LocalDateTime d = LocalDateTime.now();
int $3 = d.getHour();
int $4 = d.getMinute();
String $5 = getAmOrPm(d);
String $0 = $3 + ":" + $4 + " " + $5;
PrintStream $1 = System.out;
$1.println($0);

}
String getAmOrPm(LocalDateTime d) {
int $2 = d.getHour();
if ($2 < 12) {

return "AM";
} else {

return "PM";
}

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 2: The flow of neutralization. ExampleA.java and ExampleB.java correspond to

Figure 1. After the neutralization, both .java files have the same implementation shown

in Example.java.

3.3 Flow of Neutralization

Figure 2 shows the flow of neutralization. In this figure, two source codes in Figure 1

are neutralized in roughly three steps. At first, comments and blank lines are removed.

This step neutralizes the difference in unnecessary information. Second, conditionals are

normalized to if-else statements. This step neutralizes the difference in conditionals. At

last, the complex program statements are converted to multiple simple ones. This step

neutralizes the difference in granularities of statements. After all the steps, ExampleA.java

and ExampleB.java will have the same implementation, excluding variable names. It is

indicated that neutralization can narrow the gap of source code.

7

Neu4j

…

Component

rmComment

rmBlank

conditional

granularity

reformat

…

Component

rmComment

rmBlank

conditional

granularity

reformat

…

Component

rmComment

rmBlank

conditional

granularity

reformat

…

Neutralized
Source Code

out/ExampleA.javaExampleA.java

Target
Source Code

$ neu rmComment -i ExampleA.java -o out/ExampleA.java | neu rmBlank | … | neu conditional

Figure 3: Neutralization Process with Neu4j

4 Neu4j

In this section, we introduce our proposal tool Neu4j for neutralization. Firstly, we

introduce an overview of Neu4j. Then, we describe the current implementation of Neu4j.

4.1 Overview

As mentioned in the previous section, many researchers refer to neutralize source code

or variety on source code. Moreover, some of them provide tools for neutralization. Nev-

ertheless, such neutralizations have not been integrated yet. Existing neutralizations are

existing independently. In order to integrate existing neutralizations, we propose Neu4j.

Neu4j1 is a command-line tool which provides many neutralization methods for Java.

Figure 3 shows a concrete example of neutralization process with Neu4j. At first, Neu4j

takes the target source code as input using -i option. Neu4j transform target source code

by selected preprocessing methods, which are called as components.

In Neu4j, neutralization is regarded as a combination of components. Actors select

necessary components and put them in the order they want to try. This sequential pro-

cessing is similar to pipelining such as Unix, Docker [35], and CI/CD [36]. Not only them,

pipelining is a significant philosophy and employed in various fields of software engineering.

The architecture of Neu4j imitates this philosophy of pipelining. As we showed in Section

2, source code is often neutralized continuously, but different tools conduct each process.

By using Neu4j, researchers do not have to collect and perform tools independently. Also,

1Neu4j means abbreviation of Neutralization for Java.

8

researchers do not have to care about the difference between the interface of tools. After

all preprocessing steps, Neu4j output neutralized source code.

4.2 Implementation

As of now, Neu4j provides six components of neutralization: rmComment, rmBlank,

reformat, granularity, conditional, and tokenize.

removeCommentLines. This component removes unnecessary information of com-

ments from source code. As an implementation, we use CommentRemover provided by

Higo [37].

removeBlankLines. This component neutralizes unnecessary of blank lines from

source code.

reformat. This component neutralizes the difference in coding style based on default

settings of Eclipse. Currently, all parameters are set as default of Eclipse2.

granularity. This component neutralizes the granularity of program statement. We

introduced JCodeFlattener provided by Higo et al. [14] to Neu4j.

conditional. This component neutralizes the difference of conditional expressions.

Current implementation convert ternary operators to if-else statements.

tokenize. This component neutralizes the granularity per one line. We introduced

JavaTokenizer provided by Doi [38] to Neu4j.

4.3 Specification

As shown in Figure 3, researchers can use Neu4j by starting with neu command.

The second argument of neu command is the component name to use for neutralization.

Although Figure 3 shows the example which neutralizes a source code file, Neu4j can

neutralize a specific source code directory. All source code files under the directory are

neutralized keeping the directory structure.

2https://github.com/eclipse/eclipse.jdt.core/blob/master/org.eclipse.jdt.core/

formatter/org/eclipse/jdt/core/formatter/CodeFormatter.java

9

5 Usage Example

In order to show the use case of Neu4j, we neutralize the differences of source code

shown in Figure 1. For providing familiar examples, we assume two cases of neutralization

for measuring different types of lines of code (LOC).

5.1 Measuring LLOC

Before measuring LLOC, we have to eliminate blank lines and comments from source

code. As we mentioned in Section 1, we have to clear the definition of each metric on the

tool when we use a metrics tool. The definition of the metrics depends on each tool. By

neutralization of source code, we can avoid such efforts. When counting the lines of a file,

we can use wc command with --lines option. Before the use of wc command, we have

to neutralize source code. We can eliminate blank lines and comments by the following

command.

$ neu rmComment -i ExampleA.java \

-o out/ExampleA.java | neu rmBlank

The processes eliminating comments and blank lines are combined by pipeline. Though

file-path is inherited to the next component, Neu4j does not require to set input/output

options every component. After this neutralization process, we can count the LLOC by

the following command.

$ wc -l out/ExampleA.java

In addition, Neu4j can take a source file directory as input. When neutralizing source

files under src directory, the following command is executable.

$ neu rmComment -i src/ -o out/ \

| neu rmBlank

By specification of a directory path, researchers do not have to neutralize each source file

independently. Besides, it handles differences between component interfaces.

5.2 Measuring fine-grained LOC

In this section, we define fine-grained LOC as the LLOC of a neutralized source file. For

example, as shown in Figure 1, the granularity per one program statement depends on each

developer. By neutralization of granularities, we can expect to obtain more fine-grained

results. Before the measurement of fine-grained LOC, we have to remove unnecessary

information and neutralize the granularity of source code. We can neutralize source code

for fine-grained LOC with the following command.

10

$ neu rmComment -i ExampleA.java \

-o out/ExampleA.java \

| neu rmBlank | neu granularity

Only adding the command of neu granularity to the command shown in Section 5.1,

we can neutralize source code as we would like.

Moreover, we can easily add and reorder components. Directory specification is also

available.

$ neu rmComment -i src/ -o out/ \

| neu rmBlank | neu conditional \

| neu granularity \

Especially when using preprocessing tools provided by researchers or developers, researchers

need to care about the difference in the interface such as input/output specification and

option name. In order to avoid such efforts, Neu4j integrates preprocessing tools and be-

haves as a wrapper of the tools. Furthermore, Neu4j always outputs a compilable source

code. This premise enables fluent neutralization chains as a pipeline.

11

6 Experiment

6.1 Overview

In this section, we explain our experiment to confirm the influence of neutralization

on static code analysis. We reproduced a cross-project defect prediction conducted by

Zimmermann et al [39]. However, our experiment did not completely reproduce the ex-

periment for some reason. First, the dataset used in the experiment is not available.

We use another bug dataset alternatively. Besides, some metrics proposed by them were

unclear, and we could not extract the metrics.

In general, the purpose of defect prediction is to predict the number of bugs included

in the source file by statistical approaches including supervised machine learning. Some

software metrics were extracted from the source files and historical information of the de-

velopment. The extracted metrics were used as explanatory variables of machine learning,

and the number of bugs used as an objective variable. Ideally, prediction model is trained

with the data of the project to predict. However, training data is often not available or

insufficient when the project is in the step of first release or developing company is too

small [39]. In the case of cross-project defect prediction, the model is constructed by

the metrics extracted from other software development projects. Therefore, the result of

defect prediction may be influenced by the varieties on the project used for learning. We

considered that the result of defect prediction would be changed by neutralization.

We briefly describe the flow of this experiment. At first, we retrieved source files of the

projects by checking out their Git repositories. Then, all source files were neutralized by a

variety of combinations. After that, we calculated the metrics of source code. The defect

prediction was conducted with the metrics, and we compared the results of prediction.

6.2 Experimental Methodologies

6.2.1 Dataset

The dataset used in the experiment by Zimmermann et al. [39] is not available. Instead,

we used Bug Database of GitHub Projects published by Tóth et al [40] for bug prediction.

Table 2 shows a list of projects included in Bug Database of GitHub Projects. In this

dataset, there is information about fifteen projects. However, this dataset was published

four years ago, and some of them lack the data for defect prediction. For instance, we

could not find the hash of Oryx from its Git repository. One possible reason is that Oryx

project had applied re-construction for their Git repository. Moreover, we wanted to use

the version with most bugs and the previous one. However, Android Universal I. L. and

Mission Control T. did not have the previous data. They did not satisfy the conditions,

so we removed them from the target. As a result, we use twelve projects for the next step.

12

6.2.2 Source Files

In the bug database, all source files are assigned a specific id which can uniquely

identify the file. This id can be used to map an actual source file to bug information. In

order to map source files to bug information, we stored all committed source files in all

projects and assigned a unique name to them. Figure 4 shows the naming rule of source

files. All files were named based on the following three keys.

id: This key can be used to map source files to bug information.

order: This key means the committed order of each file. The starting point of the

order is the latest commit in the version. The order is reversed from the time axis.

commit hash: This key is the first six characters of commit hash.

With these three keys, all source files are named. All files were stored in the directory

for each project in serial.

Table 3 shows the total number of stored source files for each project. The numbers

of source files heavily depended on the projects. As a premise, the purpose of this exper-

iment is to confirm the influence of neutralization. Therefore, we need to eliminate data

imbalance for learning. In order to eliminate the imbalance, we limited the number of

stored source files from 1000 to 5000. Finally, we selected six projects shown in Table 3.

Table 2: Projects in Public Bug Database

Project name Date of latest commit in database Hash (version with most bugs)

Android Universal I. L. 2013/1/19 48d5c652

ANTLR v4 2014/2/3 5e05b71e

BroadleafCommerce 2014/3/5 72255ca6

Eclipse p. for Ceylon 2014/10/8 29c9597b

Elasticsearch 2014/2/3 bd8cb4eb

Hazelcast 2014/5/9 139f7eb8

jUnit 2011/8/22 61f06547

MapDB 2013/9/27 f6d1d916

mcMMO 2013/7/11 4a5307f4

Mission Control T. 2012/6/29 0cc9d801

Neo4j 2014/4/9 04576eb6

Netty 2013/2/21 b644d4e9

OrientDB 2013/12/10 bbb45db9

Oryx 2013/11/10 291ba768

Titan 2014/10/9 495402f9

13

000

L192

L193

L194

001002

000001002

002003 000001

L 192-000-a12345.java
L 192-001-bqlf2k.java
L 192-002-p03nq2.java

L 193-000-a12345.java
L 193-001-7fna2o.java
L 193-002-1gqnb2.java

L 194-000-a12345.java
L 194-001-vmfnw2.java
L 194-002-7fna2o.java
L 194-003-1gqnb2.java

a12345vmfn2w7fna2obqlf2k1gqnb2p03nq2
Stored file name

A.java

B.java

C.java

id

commit hash

order

Figure 4: Naming rule of source files

Table 3: Total number of stored source files

Project Name Total stored files Selected for prediction

ANTLR v4 771

BroadleafCommerce 1,895 ◦
Eclipse p. for Ceylon 4,596 ◦
Elasticsearch 11,203

Hazelcast 8,285

jUnit 472

MapDB 745

mcMMO 2,351 ◦
Neo4j 12,901

Netty 3,721 ◦
OrientDB 3,799 ◦
Titan 3,898 ◦

14

6.2.3 Source Code Metrics

This experiment is based on the experiment conducted by Zimmermann et al [39]. We

calculated the following four metrics which are used in their experiment.

Added lines/Total LOC: This metric means the ratio of added lines to total LOC.

The reason to use relative metrics is that existing studies have shown that absolute metrics

are poor in predicting pre- and post-release defects. Using normalized metrics is highly

effective to qualify the change in a system. This metric was calculated by the number of

added lines between the version with most bugs and the previous one.

Deleted lines/Total LOC: This metric means the ratio of deleted lines to total LOC.

This metric was calculated by the number of deleted lines between the version with most

bugs and the previous one.

Cyclomatic Complexity/Total LOC: This metric means the cyclomatic complexity

per total LOC. This metric was calculated by cyclomatic complexity of source file in the

version with most bugs. We use PMD [41] to measure cyclomatic complexity.

(Added lines + Deleted lines)/(commits + 1): This metric means the number

of modified lines between each commit. Adding the number of added lines and deleted

lines is equal to the number of modified lines. The number of modified lines was divided

by the number of commits plus one.

6.2.4 Neutralization

In the experiment by Zimmermann et al. [39], source code was used without any

preprocessing. In our experiment, we neutralized source code by Neu4j and used it for

prediction.

As shown in the previous section, we used the metrics which heavily depend on the

LOC in this experiment. Therefore, we selected four components: removeBlankLines,

removeCommentLines, granularity, and tokenize. Each component is abbreviated

as B, C, G, and T, respectively. We conducted nine combinations of neutralization: B,

C, G, T, BC, BG, CG, GT, and BCG. Since the component of tokenize includes rmBlank

and rmComment, we did not combine tokenize and rmBlank or rmComment. Besides,

these combinations output the same neutralized source code regardless of the order of

components.

6.2.5 Prediction

We performed machine learning for prediction. As a learning algorithm, we selected

Random Forest [42]. Random Forest was indicated its high performance in Bug Database

of GitHub Projects [40].

15

Though it is general to conduct parameter tuning in machine learning, we used default

parameters. Our purpose was not to improve the performance of the model but to confirm

the influence by neutralization on analysis. We constructed six learning models. These

models learned data of five projects and predicted the remaining one project.

As an evaluation index, we employed Area Under the Curve (AUC) [43] of Receiver

Operating Characteristic Curve (ROC) [44]. Also, we analyzed the change of each metric

by neutralization. In this experiment, we calculated AUC of ROC with the following steps.

1. Data Sorting

Before the calculation of AUC, we preprocessed the prediction data. At first, all

data were sorted in descending order based on the predicted number of bugs. Next,

data were also sorted in descending order based on the actual number of bugs not

to change the order of the predicted number of bugs.

2. Plotting and Calculation

In order to calculate the AUC, we plotted ROC. For normalization, we plotted three

cases of ROC: prediction, best, and worst. ROC in the case of prediction is the plot

of the integrated value of predict number of bugs. ROC in the best case is plotted

based on the integrated value of the actual number of bugs in order of Step 1. ROC

in the worst case is the plot of the integrated value of the actual number of bugs in

the reversed order of Step 1.

3. Normalization

Based on three cases of ROC, we calculated AUC. AUC will be maximum in case of

best and be minimum in case of worst.

In this experiment, it was required to compare the results of the six projects. So, we

normalized ROC to the range of 0 to 1. When the case X of AUC is described as

AUC(X), normalized AUC in the case of prediction is calculated with the following

formula.
AUC(prediction)−AUC(min)

AUC(max)−AUC(min)

6.3 Results

6.3.1 AUC

Figure 5 shows the prediction result with neutralized source code. The vertical axis

shows the value of AUC. The horizontal axis shows project names used for prediction. AUC

significantly increased in the prediction of ceylon-ide-eclipse and mcMMO. Especially,

AUC of mcMMO was improved about 0.2 points in case of neutralization by GT. AUC

tends to improve when the value was low without neutralization. Though AUC of orientdb

16

and titan did not change, AUC of BroadleafCommerce and netty decreased. AUC also

tends to get worse when the value was high without neutralization.

6.3.2 Added lines/Total LOC

Figure 6 shows the change of Added lines/Total LOC metric. The vertical axis shows

the change ratio compared to the metric calculated with source code without neutral-

ization. When the value in the vertical axis is one, it is the same as in the case without

neutralization. Overall, the change tendency is similar to each other. However, the change

ratio of BroadleafCommerce is greatly different from other projects. The change ratio of

orientdb is also different from others. Also, when introducing the component of G, the

ratio tends to become high. As shown in Figure 6a, one-time neutralization did not change

the metric so much excluding the component of G.

6.3.3 Deleted lines/Total LOC

Figure 7 shows the change of Deleted lines/Total LOC metric. Although the change

tendency is similar to Figure 6, the change rate is a little lower. In the case of this

metric, the change ratio of BroadleafCommerce and orientdb is different from others.

This tendency is also similar to the case of Figure 6. As shown in Figure 7a, one-time

neutralization did not change the metric so much excluding the component of G.

6.3.4 Cyclomatic Complexity/Total LOC

Figure 8 shows the change of Cyclomatic Complexity/Total LOC metric. Compared

to previous results, this metric was not changed so much. Besides, this metric greatly

decreased with neutralization by T and GT. Neutralization by tokenize increased the

number of total LOC, this may strongly affect the metric. Also, the metric extracted from

netty tends to be affected more strongly than other projects.

6.3.5 (Added lines + Deleted lines)/(commits + 1)

Figure 9 shows the change of (Added lines + Deleted lines)/(commits + 1) metric.

Unlike the other figures, the vertical axis is shown as a logarithmic. This metric became

lower with neutralization by B, C, and BC. Before the neutralization, such unnecessary

manipulation was also included in the development history. Neutralization by the combi-

nation with G and T made the metric higher. This metric greatly changes in the case of

BroadleafCommerce. Especially, the metric was over 160 times greater in the case of GT

than without neutralization.

17

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w/o neutralization B C G T

Ca
lc

ul
at

ed
 A

U
C

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

(a) Prediction with one-time neutralization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w/o neutralization BC BG CG GT BCG

Ca
lc

ul
at

ed
 A

U
C

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

(b) Prediction with combined neutralization

Figure 5: Prediction result with neutralized source code

18

0

5

10

15

20

25

30

w/o neutralization B C G T

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

1

(a) Change ratio by one-time neutralization

0

5

10

15

20

25

30

w/o neutralization BC BG CG GT BCG

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

1

(b) Change ratio by combined neutralization

Figure 6: Change ratio of Added lines/Total LOC metric

19

0

5

10

15

20

25

w/o neutralization B C G T

R
at

io
 o

f t
he

 c
ha

ng
e

of
 th

e
ta

rg
et

 m
et

ric

(c
om

pa
re

d
w

ith
 o

rig
in

)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

1

(a) Change ratio by one-time neutralization

0

5

10

15

20

25

w/o neutralization BC BG CG GT BCG

R
at

io
 o

f t
he

 c
ha

ng
e

of
 th

e
ta

rg
et

 m
et

ric

(c
om

pa
re

d
w

ith
 o

rig
in

)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

1

(b) Change ratio by combined neutralization

Figure 7: Change ratio of Deleted lines/Total LOC metric

20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w/o neutralization B C G T

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

(a) Change ratio by one-time neutralization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w/o neutralization BC BG CG GT BCG

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

(b) Change ratio by combined neutralization

Figure 8: Change ratio of cyclomatic complexity/Total LOC metric

21

0.1

1

10

100

w/o neutralization B C G T

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

0

(a) Change ratio by one-time neutralization

0.1

1

10

100

w/o neutralization BC BG CG GT BCG

Ra
tio

 o
f t

he
 c

ha
ng

e
of

 th
e

ta
rg

et
 m

et
ric

(c

om
pa

re
d

w
ith

 o
rig

in
)

BroadleafCommerce ceylon-ide-eclipse mcMMO netty orientdb titan

0

(b) Change ratio by combined neutralization

Figure 9: Change ratio of (Added lines + Deleted lines)/(commits + 1) metric

22

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

5.0E-03

w/o
neutralization

B C G T BC BG CG GT BCG

Va
ria

nc
e

va
lu

e

Figure 10: Variance values of AUC

6.4 Discussion

We discuss the result of this experiment from two viewpoints.

At first, we discuss the result from the viewpoint of cross-project defect prediction.

Figure 10 shows the variance values of AUC. The vertical axis shows the variance values of

AUC in the case of each neutralization. As shown in the figure, the variance values of AUC

is decreased with neutralization. Especially, combining some methods of neutralization

is effective for reducing the variance values. This tendency means that neutralization

neutralizes the result of prediction. Though AUC became worse in some cases shown

in Figure 5, it is indicated that learning models got more versatile with neutralization.

Even if the target project for prediction is characteristic, the learning model can keep the

constant prediction accuracy. For constructing a versatile prediction model, learning with

neutralized source code is extremely effective.

Next, we describe the usefulness of Neu4j on static code analysis. In our experiment,

we could employ the neutralization methods proposed by other researchers. This is be-

cause Neu4j imports existing neutralization methods to itself. This feature can solve the

problem that existing neutralization techniques are inapplicable to other analysis in most

cases. Besides, we could easily try various combinations of neutralization methods in our

23

experiment. For example, components of granularity and tokenize are provided by other

developers, and their interfaces are not the same. Nevertheless, we did not have to care

about such differences and could conduct frequent neutralization. Neu4j enables to chain

some neutralization methods like pipelining, so researchers do not have to care about such

differences. It is indicated that this feature contributes to examine which neutralization is

effective in the analysis. From the above reasons, researchers can easily introduce various

neutralization with Neu4j.

24

7 Threats to Validity

In the evaluation, there are some factors which may affect the validity of the results.

First, our experiment could not completely reproduce the experiment by Zimmermann et

al [39]. There are mainly two reasons for this.

When we measure metrics, we could not clarify the definition of some metrics. There-

fore, two metrics used in the original experiment are unused in our experiment. The lack

of metrics may influence the validity of the prediction result. Also, the dataset is quite

different from the original experiment. If used metrics are not effective on the dataset,

they also influence on learning and prediction.

Besides, we did not use all projects in the dataset. This is because unused projects did

not meet the conditions of our experiment. In the case of prediction based on all projects,

the result may be different from ours.

25

8 Related Works

Source code analysis has been conducted for long decades [1] [2]. The analytical method

and purpose of the analysis are diverse. The measurement of software metrics is one of

the significant analysis methods. Software metrics are used in various fields, such as

defect prediction [4] and quality measurement [45]. Metrics enable quantitative software

evaluation [16]. Code clone is also significant on source code analysis [6]. They contribute

to software reuse [5] and refactoring [13]. Recently, source code analysis is conducted with

various techniques such as natural language processing [46] and deep learning [47].

So far, some researchers proposed neutralization methods for source code analysis.

Higo et al. propose code flattening, which transforms a complex program into simple

one [14]. Code flattening neutralizes the granularity of the statement per one line. Qiao

pointed out that there are various implementations for the same scenario [10]. For example,

loop implementation has several types: for-loop, enhanced for-loop, and while-loop. Using

a ternary operator or if-else statement is another example of various implementations.

Since such varieties directly affect source code analysis, they are desirable to eliminate. In

Neu4j, we employ such effective neutralization methods. By using Neu4j, researchers can

try various combinations of neutralizations.

26

9 Conclusion

In this paper, we introduced the concept of Source Code Neutralization. The purpose of

neutralization is to avoid negative effects on source code analysis by transforming the given

code into the normalized form. Also, we proposed a tool named Neu4j, which neutralizes

source code. Neu4j enables neutralization chains like a pipeline which has been leveraged

in many software systems such as Unix and CI/CD. In order to confirm the influence by

neutralization on static code analysis, we conducted reproduce experiment.

There are mainly two future works. Currently, Neu4j is just a prototype and has

only four components of neutralization. Also, the three components neutralize from the

viewpoint of source code format. Therefore, current Neu4j do not change the structure of

the source code drastically. The components which change the structure of source code

affect the result of analysis more directly. Not only that, reordering and combining such

components may generate other formats of neutralized source code. In order to expand

the possibilities of Neu4j, we are planning to introduce more components to Neu4j. Also,

Neu4j has not been evaluated empirically. We need to evaluate and show the effectiveness

of Neu4j.

27

Acknowledgements

During this work, I have been fortunate to have received assistance from many people.

This work could not have been possible without their valuable contributions. First, I wish

to express my deepest gratitude to my supervisor Professor Shinji Kusumoto at Osaka

University, for his continuous support, encouragement and guidance of the work. I also

thank him for providing me an opportunity to do this work.

I am also deeply grateful to Yoshiki Higo, Associate Professor at Osaka University for

his encouragement, practical advice, valuable suggestions, helpful comments and discus-

sions throughout this work.

I would like to express my sincere gratitude to Shinsuke Matsumoto, Assistant Profes-

sor at Osaka University for his adequate guidance, valuable suggestions and discussions

throughout this work. Without his supports, this work would never have reached comple-

tion.

I thank greatly, Hiroto Tanaka, Masayuki Doi, and Junnosuke Matsumoto, a colleague

in Kusumoto Laboratory for their constant encouragements and valuable advices.

Finally, I would like to thank all of my friends in the Department of Computer Science

at Osaka University, especially the members in Kusumoto Laboratory, for their helpful

advices, suggestions and assistance.

28

References

[1] David Binkley. Source Code Analysis: A Road Map. In Future of Software Engineer-

ing, pp. 104–119. IEEE Computer Society, 2007.

[2] Mark Harman. Why Source Code Analysis and Manipulation Will Always Be Impor-

tant. In Proceedings of the 10th IEEE Working Conference on Source Code Analysis

and Manipulation, pp. 7–19. IEEE Computer Society, 2010.

[3] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi Mat-

sumoto. Software Quality Analysis by Code Clones in Industrial Legacy Software.

In Proceedings of the 8th International Symposium on Software Metrics, pp. 87–94.

IEEE Computer Society, 2002.

[4] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault Prediction. IEEE Trans. Softw.

Eng., Vol. 31, No. 10, pp. 897–910, 2005.

[5] Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda, Raula Gaikovina Kula, Coen

De Roover, and Katsuro Inoue. Identifying Source Code Reuse across Repositories

Using LCS-Based Source Code Similarity. In Proceedings of IEEE 14th International

Working Conference on Source Code Analysis and Manipulation, pp. 305–314, 2014.

[6] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A Multilinguis-

tic Token-Based Code Clone Detection System for Large Scale Source Code. IEEE

Transactions on Software Engineering, Vol. 28, No. 7, pp. 654–670, 2002.

[7] Brenda Sue. Baker. On Finding Duplication and Near-duplication in Large Software

Systems. In Proceedings of the Second Working Conference on Reverse Engineering,

pp. 86–. IEEE Computer Society, 1995.

[8] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing Software Metrics Tools.

In Proceedings of the International Symposium on Software Testing and Analysis, pp.

131–142, 2008.

[9] Tiantian Wang, Kechao Wang, Xiaohong Su, and Peijun Ma. Detection of semanti-

cally similar code. Frontiers of Computer Science, Vol. 8, pp. 996–1011, 12 2014.

[10] Guo, Qiao. Mining and Analysis of Control Structure Variant Clones. Master thesis,

Concordia University, 2015.

[11] Peter Bulychev and Marius Minea. Duplicate Code Detection Using Anti-Unification.

2008.

29

[12] Reisha Humaira, Kazunori Sakamoto, Akira Ohashi, Hironori Washizaki, and Yoshi-

aki Fukazawa. Towards a Unified Source Code Measurement Framework Supporting

Multiple Programming Languages. In Proceedings of the 24th International Confer-

ence on Software Engineering & Knowledge Engineering, pp. 480–485, 2012.

[13] Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta.

JDeodorant: Clone Refactoring. In Proceedings of the 38th International Confer-

ence on Software Engineering Companion, pp. 613–616. ACM, 2016.

[14] Yoshiki Higo and Shinji Kusumoto. Flattening Code for Metrics Measurement and

Analysis. In Proceedings of IEEE International Conference on Software Maintenance

and Evolution, pp. 494–498, 2017.

[15] James A. Jones and Mary Jean Harrold. Empirical Evaluation of the Tarantula Au-

tomatic Fault-localization Technique. In Proceedings of the 20th IEEE/ACM Inter-

national Conference on Automated Software Engineering, pp. 273–282. ACM, 2005.

[16] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On the Effectiveness of

Clone Detection by String Matching: Research Articles. Journal of Software Main-

tenance and Evolution, Vol. 18, No. 1, pp. 37–58, 2006.

[17] Yusuke Sasaki, Tetsuo Yamamoto, Yasuhiro Hayase, and Katsuro Inoue. Finding file

clones in FreeBSD Ports Collection. In Proceedings 7th IEEE Working Conference

on Mining Software Repositories, pp. 102–105, 2010.

[18] Marcos Dósea, Cláudio Sant’Anna, and Bruno C. da Silva. How do Design Decisions

Affect the Distribution of Software Metrics? In Proceedings of the 26th International

Conference on Program Comprehension, pp. 74–85, 04 2018.

[19] Greg Wilson Andy Oram. Making Software What Really Works, and Why We Believe

It. O’Reilly Media, 10 2010.

[20] Samuel. Daniel. Conte, Hubert. Earl. Dunsmore, and Vincent. Shen. Benjamin-

Cummings Publishing Co., Inc., USA, 1986.

[21] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing Design and

Code Metrics for Software Quality Prediction. In Proceedings of the 4th International

Workshop on Predictor Models in Software Engineering, 2008.

[22] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and E. White-

head. Does Bug Prediction Support Human Developers? Findings From a Google

Case Study. In Proceedings of the 2013 International Conference on Software Engi-

neering, pp. 372–381, 05 2013.

30

[23] Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. CER-

BERUS: Tracing Requirements to Source Code Using Information Retrieval, Dynamic

Analysis, and Program Analysis. pp. 53–62, 07 2008.

[24] Jens Krinke. A Study of Consistent and Inconsistent Changes to Code Clones. In

Proceedings of the 14th Working Conference on Reverse Engineering, pp. 170–178,

Oct 2007.

[25] Naoto Ogura, Shinsuke Matsumoto, Hideaki Hata, and Shinji Kusumoto. Bring Your

Own Coding Style. In Proceedings of the IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering, Vol. 1, pp. 527–531, March 2018.

[26] Yusuke Sabi, Yoshiki Higo, and Shinji Kusumoto. Rearranging the Order of Program

Statements for Code Clone Detection. In Proceedings of the 11th IEEE International

Workshop on Software Clones, pp. 15–21, 2 2017.

[27] Yorai Geffen and Shahar Maoz. On Method Ordering. In Proceedings of the IEEE

24th International Conference on Program Comprehension, pp. 1–10, May 2016.

[28] Yui Sasaki, Yoshiki Higo, and Shinji Kusumoto. Reordering Program Statements for

Improving Readability. In Proceedings of the 17th European Conference on Software

Maintenance and Reengineering, pp. 361–364, March 2013.

[29] Daniel M. German, Bram Adams, and Kate Stewart. cregit: Token-level blame infor-

mation in git version control repositories. Empirical Software Engineering, Vol. 24,

No. 4, pp. 2725–2763, Aug 2019.

[30] Vasiliki Efstathiou and Diomidis Spinellis. Semantic Source Code Models Using Iden-

tifier Embeddings. In Proceedings of the 16th International Conference on Mining

Software Repositories, pp. 29–33, 2019.

[31] Hamid Abdul Basit, Simon J. Puglisi, William F. Smyth, Andrew Turpin, and Stan

Jarzabek. Efficient Token Based Clone Detection with Flexible Tokenization. In

Proceedings of the 6th Joint Meeting on European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering:

Companion Papers, pp. 513–516. Association for Computing Machinery, 2007.

[32] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-

C. Yeh, and Justin Cappos. Understanding Misunderstandings in Source Code. In

Proceedings of the Joint Meeting on Foundations of Software Engineering, pp. 129–

139. Association for Computing Machinery, 2017.

31

[33] Mark Gabel and Zhendong Su. A Study of the Uniqueness of Source Code. In Pro-

ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering, pp. 147–156. Association for Computing Machinery, 2010.

[34] Dawn Lawrie and Dave Binkley. Expanding Identifiers to Normalize Source Code

Vocabulary. In Proceedings of the 27th IEEE International Conference on Software

Maintenance, pp. 113–122, Sep. 2011.

[35] Carl Boettiger. An Introduction to Docker for Reproducible Research. Operating

Systems Review, Vol. 49, No. 1, pp. 71–79, 2015.

[36] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous Integration,

Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges

and Practices. IEEE Access, Vol. 5, pp. 3909–3943, 2017.

[37] CommentRemover. https://github.com/YoshikiHigo/CommentRemover.

[38] JavaTokenizer. https://github.com/DoiMasayuki/JavaTokenizer.

[39] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and

Brendan Murphy. Cross-Project Defect Prediction: A Large Scale Experiment on

Data vs. Domain vs. Process. In Proceedings of the 7th Joint Meeting of the Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pp. 91–100. Association for Computing Ma-

chinery, 2009.

[40] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database of GitHub

Projects and Its Application in Bug Prediction. In Proceedings of the International

Conference on Computational Science and Its Applications,, pp. 625–638. Springer

International Publishing, 2016.

[41] PMD. https://pmd.github.io/.

[42] Tin Kam Ho. Random Decision Forests. In Proceedings of the Third International

Conference on Document Analysis and Recognition (Volume 1) - Volume 1, p. 278.

IEEE Computer Society, 1995.

[43] Joel Myerson, Leonard Green, and Missaka Warusawitharana. Area under the curve

as a measure of discounting. Journal of the experimental analysis of behavior, Vol.

76 2, pp. 235–43, 2001.

[44] Nancy Cook. Use and Misuse of the Receiver Operating Characteristic Curve in Risk

Prediction. Circulation, Vol. 115, pp. 928–35, 03 2007.

32

[45] Henrike Barkmann, Rudiger Lincke, and Welf Lowe. Quantitative Evaluation of

Software Quality Metrics in Open-Source Projects. In Proceedings of the International

Conference on Advanced Information Networking and Applications Workshops. IEEE

Computer Society, 2009.

[46] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

On the Naturalness of Software. In Proceedings of the 34th International Conference

on Software Engineering, pp. 837–847. IEEE Press, 2012.

[47] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin

White, and Denys Poshyvanyk. Deep Learning Similarities from Different Repre-

sentations of Source Code. In Proceedings of the 15th International Conference on

Mining Software Repositories, pp. 542–553. ACM, 2018.

33

