
Simultaneous Modification Support based on Code Clone Analysis

Yoshiki Higo† Yasushi Ueda‡ Shinji Kusumoto† Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

‡JAXA’s Engineering Digital Innovation Center, Japan Aerospace Exploration Agency
2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan

{higo, kusumoto, inoue}@ist.osaka-u.ac.jp, ueda.yasushi@jaxa.jp

Abstract

Maintaining software systems becomes more diffi-
cult as their size and complexity increase. One fac-
tor that makes software maintenance more difficult is
the presence of code clones. A code clone is defined
as a code fragment occurring more than once in iden-
tical or similar form into a software system. For ex-
ample, the presence of code clones is a big factor of
overlooking some places that should be modified simul-
taneously. One technique that helps the number of code
clones is Refactoring. There are several research ef-
forts that provide support to refactor code clones, but
unfortunately some code clones cannot or should not be
refactored (ex. stereotyped process, absence of abstrac-
tion functionality, performance enhancement). In or-
der to support maintaining the consistency among code
clones, we propose a simultaneous modification support
method. Given a software system, firstly, a maintainer
identifies a code fragment that must be modified. Then,
only the code clones between the identified code frag-
ment and the source files of the software system are
detected. We developed a simultaneous modification
support tool, Libra, and applied it to open source soft-
ware systems. The results showed that Libra was a good
searching tool as much as grep, which is a useful tool
of UNIX.

1 Introduction

Software maintenance is defined as the modification
of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt
the product to a modified environment [17]. As the size
and the complexity of software increase, maintenance
tasks become more difficult and burdensome. Arthur
states that only one-fourth or one-third of all life-cycle

costs are attributed to software development [3]. Also,
Yip et al. says that some 67% of life-cycle costs are
expended in the operation-maintenance phase of the
life cycle [31].

A code clone is defined as a code fragment occur-
ring more than once in identical or similar form into a
software system (see section 2.1). The presence of code
clones is one factor making software maintenance more
difficult [28]. For example, if a code fragment is mod-
ified, it has to be determined whether or not modify
each of its code clones. Unfortunately, we often over-
look some of the code clones that should be modified
simultaneously.

One technique that helps reducing the number of
code clones is Refactoring. Refactoring is a disciplined
technique for restructuring an existing body of code, al-
tering its internal structure without changing its exter-
nal behavior [14]. By making refactoring efforts on a
set of code clones, they can be merged into a method
[8, 6, 15], a component [19], or an aspect [9].

Refactoring shall be an activity of perfective main-
tenance. The ISO Standard on Software Maintenance
classifies perfective and adaptive maintenance as en-
hancements, and it also classifies corrective and preven-
tive maintenance as corrections [18]. Some researchers
have reported that enhancements are account for 80%
of the total maintenance cost [1, 29]. That lets us know
the importance of refactoring efforts on code clones.

But refactoring efforts may not always be a good so-
lution to the code clone problem. An empirical study
of Kim et al. revealed two points [23]: first one is that
some code clones are short-lived, and merging them
wouldn’t improve the maintainability; second one is
that most of long-living code clones are not suited to be
refactored because there is no abstraction function of
the programming language. Also, Balazinska et al. re-
ported that differences between code clones tend to hin-
der merging them [5], which indicates that it requires

countermeasures to modifying all code clones sharing
the identical or similar form without overlooking.

In this paper, we describe a simultaneous modifica-
tion method for code clones: firstly, a maintainer iden-
tifies the code fragment that must be modified; sec-
ondly, only the code clones between the code fragment
and the source files of the system are detected. Detect-
ing only the code clones of the identified code fragment
has two advantages: the detection phase is much faster
than detecting all the code clones in the system, and
the maintainer are not confused by the information on
unconcern code clones. We developed a simultaneous
modification support tool, Libra, and applied it to open
source software systems. The results showed that Libra
is a good searching tool as much as grep, which is an
useful tool of UNIX.

The rest of this paper is organized as follows. Sec-
tion 2 provides the definition of code clone, and the
description of the code clone detection tool CCFinder.
Section 3 and 4 describe our proposed method and its
implementation respectively. In Section 5 we present
case studies using open source software systems, and
discuss the results. Section 6 describes related work,
section 7 concludes our study.

2 Code Clones

2.1 Definition

A code clone can be defined as a code fragment oc-
curring more than once (in identical or similar form)
into a software system. However, there is no single
and generic definition of code clone. So far, several
methods for detecting code clones have been proposed
[4, 8, 13, 24, 27], and all of them have different defini-
tions. Following describes primary code clone detection
techniques.

Line based : Each line of the source code is compared
with other lines.

Token based : After the source code is divided into
tokens, same token sequences which are longer
than a certain length are detected as code clones.

AST based : After building AST (Abstract Syntax
Tree) from the source code, subtrees having the
same structure are detected as code clones.

PDG based : After building PDG (Program Depen-
dency Graph) as a result of semantic analysis of
the source code, isomorphic subgraphs are de-
tected as code clones.

Metrics based : After measuring several metrics
from a certain unit (e.g. function, method, class)

f1
f2

f3
f4f5

f1
f2

f3
f4f5

Figure 1. Clone Pair and Clone Set

of software system, units having identical or sim-
ilar metrics values to each other are detected as
code clones.

In the past we have developed a code clone detec-
tion tool, CCFinder. CCFinder adopt token based tech-
nique in order to efficiently detect ‘copy and paste’ code
clones. Burd et al. compared CCFinder and other code
clone detection tools, and reported that CCFinder can
detect much more code clones than the others [10]. Sec-
tion 5.3 and 6 describe the bias derived from the use
of CCFinder

2.2 CCFinder

In CCFinder[20], a clone relation is defined as an
equivalence relation (i.e., a reflexive, transitive, and
symmetric relation) on code fragments. A code frag-
ment is a part of a source file and can be repre-
sented using a 5-tuple, (ID, Linestart, Columnstart,
Lineend, and Columnend). Given a code fragment f ,
ID(f) is the unique numeric ID assigned by CCFinder
to the file containing f . Linestart(f) and Lineend(f)
are respectively the line numbers of the start and end
of the code fragment. Similarly, Columnstart(f) and
Columnend(f) are respectively the column numbers of
the start and end of the code fragment. With this
definition, it is possible that some code fragments par-
tially overlap. There is a clone relation between two
code fragments if (and only if) the lexical token se-
quences are identical1. For a given clone relation, a
pair of code fragments is called clone pair if the clone
relation holds between them. An equivalence class of
the clone relation is called clone set. That is, a clone
set is a the largest possible set of code fragments, so
that a clone relation exits between any pair of them.

Figure 1 illustrates an example of clone relation. In
this figure, there are five code fragments, and a clone

1The sequences are the transformed as described below.

relation exists between the code fragments of the same
color. Code fragment f1 has a clone relation with code
fragment f4, and code fragments f2, f3, and f5 have a
clone relation with each other. In this example there
are four clone pairs, (f1, f4), (f2, f3), (f2, f5), (f3, f5),
and two clone sets, {f1, f4}, {f2, f3, f5}.

CCFinder detects code clones from source files, and
its output consists in the locations of the clone pairs.
The minimum code clone length to be detected is set by
the user in advance. The clone detection of CCFinder
is a process consisting of the following steps.

1. Lexical analysis
Each line of the source files is divided into lexi-
cal tokens corresponding to a lexical rule of the
programming language. The lexical tokens of all
source files are concatenated into a single token
sequence.

2. Normalization
The token sequence is transformed, i.e., tokens are
added, removed, or changed based on the transfor-
mation rules that aim at regularization of identi-
fiers and identification of structures.

3. Match detection
From all the sub-strings on the transformed to-
ken sequence, identified pairs are detected as clone
pairs.

4. Formatting
Each location of the detected clone pairs is con-
verted into the line and column numbers on the
original source files.

3 Proposed Method

3.1 Motivation

The presence of code clones makes the maintenance
process more complicated. For example, when a bug is
found and a code fragment including the bug is mod-
ified, it is necessary to determine whether or not each
code clone in the same clone set has to be modified. It
is likely to overlook some of them. Thus, it is impor-
tant to have a feature for searching the code clones of
a specified code fragment.

We propose a modification support method for code
clones. The method supports simultaneous modifica-
tions by showing the code clones of the code fragment
that the user is going to modify. The proposed method
can prevent the user from overlooking some code frag-
ments of the source files in the modification process,
and enable him/her to effectively maintain the system.

3.2 Approach

In this paper, a simultaneous modification support
method is proposed. The method is used after a main-
tainer identified a code fragment that must be modi-
fied. The method detects only the code clones between
the identified code fragment and the source files of the
system.

To detect only the code clones between the identified
code fragment and the source files, we use the following
options of CCFinder.

-cg- : do not detect code clones across groups,

-cf- : do not detect code clones across files,

-cw- : do not detect code clones within a file,

A group is a set of source files. The user can freely
construct groups before CCFinder’s code clone detec-
tion. Usually, we build a group from source files which
are in the same directory or in the same module. Build-
ing groups enables to measure the similarities at direc-
tory or module level.

In the proposed method, code clone detection is per-
formed on the following steps.

1. Group setting : Assign the identified code frag-
ment to group 1, and the source files to group 2.

2. Option setting : Set options -cf- and -cw-.

3. CCFinder execution : Run CCFinder from the
identified code fragment and the source files.

Code clone detection on the above steps allows us to
get only the code fragments that are identical or similar
to the identified code fragment in the source files. If we
execute CCFinder without the options, CCFinder detects
all code clones included in the source files.

Also, the proposed method counts the number of
lexical tokens of the identified code fragment, and set
it as minimum length of code clones which CCFinder
detects. This prevents CCFinder from detecting redun-
dant code clones.

Detecting only the minimum necessary code clones
(in other words, only the code clones between the iden-
tified code fragment and the source files) has two ad-
vantages: the detection speed is much faster than de-
tecting all code clones in the system, and maintainers
are not confused by the information of unconcern code
clones.

(a) Input fragment

(b) Detection result

Figure 2. Snapshots of Libra

4 Implementation

We implemented a tool, named Libra2, based on
the above-mentioned method. At first, the user inputs
the code fragment to be modified and specifies the tar-
get source files. Figure 2(a) shows the window where
the user inputs the code fragment. Next, Libra exe-
cutes CCFinder with the options previously described.
Figure 2(b) shows the window of the detection result.
On the left side, the target files are listed as a direc-
tory tree. Each file containing code clones of the input
code fragment is shown highlighted in color, with the
number of contained code clones next to it. When the
user selects a file in this view, the right side displays
its source code.

2http://sel.ist.osaka-u.ac.jp/icca/libra-e.html

ir_debug(Dmsg(10, "ProcWideReq3 start!!\n"));

buf += HEADER_SIZE; Request.type3.context = S2TOS(buf);
buf += SIZEOFINT; Request.type3.buflen = S2TOS(buf);

ir_debug(Dmsg(10,
"req->context = %d\n",
Recuest.type3.context));

(a) Before modification (version 3.6)

ir_debug(Dmsg(10, "ProcWideReq3 start!!\n"));

+ if (Request.type3.datalen != SIZEOFSHORT * 2)
+ return(-1);
+

buf += HEADER_SIZE; Request.type3.context = S2TOS(buf);
buf += SIZEOFINT; Request.type3.buflen = S2TOS(buf);

ir_debug(Dmsg(10,
"req->context = %d\n",
Recuest.type3.context));

(b) After modification (version 3.6p1)

Figure 3. An example of Canna’s modifica-
tions

5 Evaluation

We have applied Libra to actual modification in-
stances on open source software. We chose Ant
[2](version 1.6.0) and Canna [11](version 3.6) as our
targets.

Table 1 illustrates some attributes of the target soft-
ware. Since Libra is a tool for searching code fragments
to be modified simultaneously in the maintenance pro-
cess, we have evaluated whether Libra could find out
such code fragments.

We compared Libra’s search results to the search re-
sults obtained running grep, which is a command line
search tool of UNIX. In this case study, we regarded
the locations modified in the post-version as the cor-
rect set of code fragments that Libra and grep should
identify.

5.1 Canna

Canna 3.6 includes 92 .c files and 40 .h files, and the
size is 99,747 LOC. We used an actual modification
occurred between version 3.6 and version 3.6p1. In
version 3.6p1, a buffer overflow check is inserted in 21
places, before each process using buffers. Figure 3(a)
represents a code fragment before being modified, and
Figure 3(b) represents its modified version. The lines
beginning with ‘+’ were added in version 3.6p1.

We assumed that a maintainer had identified a code
fragment of them, and input it into Libra in Figure 2(a).
We investigated whether Libra could detect the 21 code
fragments. Two lines beginning with ‘#’ were the input

Table 1. Attributes of target software

Name Version Total LOC # Files Languagepre post pre post pre post
Canna 3.6 3.6p1 99,747 99,867 96 96 C
Ant 1.6.0 1.6.1 180,844 159,613 627 631 Java

of Libra, and 17 code fragments were detected as iden-
tical or similar to it. All the detected code fragments
were the modified code fragments in version 3.6p1, but
Libra couldn’t detect 4 modified code fragments. The
reason why they were not detected is that they did not
have the two lines consecutively.

As the input of grep, we chose string Request.type
which is part of the variable name used in the buffer
process. The reason why we didn’t use the whole of
the variable name is that there are many variables
having similar names to Request.type3.context. They
were used in different functions, but the functions had
similar logics. Request.type is the common character
sequence of the variables located at the places modi-
fied in version 3.6p1. As result, grep detected 58 Re-
quest.types, and 20 modified code fragments were in-
cluded3.

5.2 Ant

Ant 1.6.0 includes 627 .java files, and the size is
about 180,844 LOC. We used an actual modification
between version 1.6.0 and version 1.6.1. This modifi-
cation was the addition of log instructions in 10 places.
Figure 4(a) represents a code fragment before being
modified, and Figure 4(b) represents its modified ver-
sion. The lines beginning with ‘+’ were added and the
line with ‘!’ was changed.

We assumed that a maintainer had identified the
code fragment of Figure 2(a), and input it into Libra.
We investigated whether Libra could detect the 10 code
fragments. The five lines beginning with ‘#’ were the
input of Libra, and 12 code fragments were detected
as identical or similar to it. All 10 modified code frag-
ments were included in them, and the other 2 code frag-
ments were not modified in version 1.6.1. Because this
modification is not a bug fix but an addition of logging
instructions, we can’t judge whether the 2 code frag-
ments should be modified or not. However, pointing
out such code fragments may be helpful to the main-
tainer in some situations.

As the input of grep, we chose the string Exe-
cute.isFailure which is part of the if-statement condi-

3grep returned 234 lines, and 134 lines were related with a
modified code fragments.

commandLine.setExecutable(getClearToolCommand());
commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);
if (Execute.isFailure(result)) {
String msg = "Failed executing: " + commandLine.toString();
throw new BuildException(msg, getLocation());
}

(a) Before modification (version 1.6.0)

commandLine.setExecutable(getClearToolCommand());
commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

+ if (!getFailOnErr()) {
+ getProject().log("Ignoring any errors that occur for: "
+ + getViewPathBasename(), Project.MSG_VERBOSE);
+ }

result = run(commandLine);
! if (Execute.isFailure(result) && getFailOnErr()) {

String msg = "Failed executing: " + commandLine.toString();
throw new BuildException(msg, getLocation());

}

(b) After modification (version 1.6.1)

Figure 4. An example of Ant’s modifications

Table 3. Code clone detection result in the
case that the threshold is 20 tokens (without
the proposed method)

Target # detected code clones # run-time
Canna 8,747 27 secs.
Ant 31,372 53 secs.

tion. As a result, grep detected 25 Execute.isFailures,
and all modified code fragments were included4.

5.3 Discussion

Table 2 illustrates precisions, recalls and execution
times of Libra and grep. While the recall values be-
tween them are almost the same, the precision values

4grep returned 25 lines, and 10 lines were related with a mod-
ified code fragments.

Table 2. Comparison between Libra and grep
Target Libra grep
Name recall precision run-time recall precision run-time
Canna 81% 100% 8 secs. 95% 34% less than 1 sec.
Ant 100% 83% 10 secs. 100% 40% less than 1 sec.

of Libra are better than grep. This means that the re-
sults of Libra include less extra information. In other
words, maintainers can avoid spending time to check
code fragments which don’t need to be modified.

We also compared the execution time of Libra and
grep. The execution time of grep was less than a second
in both cases while Libra took 8 and 10 seconds respec-
tively. Libra’s execution times were far larger than the
execution times of grep, but we believe it is not a prob-
lem considering the high precision.

As a matter of course, it is possible to use other code
clone detection techniques [4, 8, 13, 24, 27] for simulta-
neous modification. However we believe that CCFinder
is better than other techniques/tools because of two
reasons: first one is that CCFinder can handle multiple
programming languages that are widely used; second
one is that CCFinder can detect much more code clones
than others from the same code base, which was empir-
ically proved by Burd et al. [10]. In the context of si-
multaneous modification, it is very important to detect
code fragments to be modified without overlooking.

The rest of this section describes the case that we de-
tected all code clones in the source code. In that case,
we used Gemini, which is an software tool for investi-
gating code clones in a software system [16]. When
using Gemini, we have to specify the minimum token
length of code clones to be detected because we don’t
specify the target code fragment. In contrast, in the
proposed method the appropriate threshold is auto-
matically specified from the size of the input code frag-
ment. It is difficult to manually specify the appropri-
ate threshold. If we specified a too big value, CCFinder
wouldn’t detect code clones that we concern. If we
specified a too small value, enormous number of code
clones would be detected and we would be confused by
the unconcern code clone information.

We specified 20 tokens as the threshold. Table 3
represents the detection results. An enormous number
of code clones were detected, but most of them were
not required to the modifications; in the case of Canna,
we wanted the location information of only 21 code
clones; in the case of Ant, we wanted 10 code clones.

The detection time is much slower than the proposed
method. This is due to CCFinder detection process:
CCFinder outputs code clones after sorting the detected

clone pairs and generating clone sets. A large amount
of unconcern code clones slowed the detection process.

From the comparison results with Gemini usage, we
can say that the proposed method can quickly detect
only the code clones that we need.

6 Related Work

Kim et al. performed experiments on the reposito-
ries of open source software systems to investigate how
code clones appear and disappear [23]. The experimen-
tal results revealed the following points, which, in past,
motivated us to propose a simultaneous modification
support method.

• Some code clones are short-lived. Merging them
wouldn’t improve the maintainability.

• Most of long-living code clones are not suited to be
refactored because there is no abstraction function
of the programming language.

Kapser et al. also suggested that code clones are
not always harmful from their experiences [21]. They
reported several situations where code duplication is a
reasonable or even beneficial way to handle large-scale
complex software systems: for example, when develop-
ing a new driver for a certain hardware family, there
may be already drivers to handle some other hardware
families; however, there are often considerable differ-
ences in the functionalities or features between the fam-
ilies, so that it is very risky and unrealistic to merge
code clones in the drivers of them. Nevertheless, if
a bug was found in the driver of a certain hardware
family, it would be very likely that there are the same
bugs in the drivers of the hardware families having sim-
ilar features to the family. We would have to find and
correct each bugs in the drivers without overlooking.
In cases like this, simultaneous modification can be a
great support of software maintenance.

Balazinska et al. reported what kinds of differ-
ences between code fragments tend to hinder apply-
ing reengineering actions to them [5]. The result was
quite natural, that strictly identical or superficially dif-
ferent code clones are easier to reengineer than code
clones including other kinds of differences. In other

words, code clones including some gaps are difficult to
be refactored. However, CCFinder can detect only iden-
tical or renamed code clones5, that is, it cannot detect
gapped code clones. It may be more effective to use an-
other clone detection technique that can detect gapped
code clones in the context of simultaneous modifica-
tion. Some of those techniques/tools are metrics-based
detection [27] and CP-Miner [25].

Toomim et al. has proposed a synchronous modi-
fication method on code clones included in the same
clone set [30]. In their method, there is a database of
code clone information in the backend of the editor pro-
gram. And when a code fragment included in a clone
set is modified, other code fragments in the clone set
are also simultaneously modified. Duala-Ekoko at al.
also has proposed a simultaneous editing method [12].
The method identifies corresponding lines in code frag-
ments being similar to each other based on the Leven-
shtein distance6 after the code fragments are detected.
A implementation of the method has been fully in-
tegrated in Eclipse. At the present, the method can
handle only clone pairs, in other words, cannot handle
clone sets consisting of there or more code fragments.
Since the both methods have a critical drawback, they
cannot be used in real software development or main-
tenance. The drawback is that they don’t consider the
differences between code fragments to be edited simul-
taneously despite there are often small differences be-
tween the code fragments. Their methods works well
on only identical code clones, which don’t include dif-
ferent identifiers, or reordered parameters.

Mann suggested that it should be effective to track
‘copy and paste’ actions [26]. That enables us to know
where arbitrary code fragment were derived from, and
to modify all of the code fragments derived from the
same source simultaneously. ‘Copy and paste’ is one
reason why there are code clones in the source code;
for example, Kim et al. reported that developers do
block or method level coy-and-paste actions approx-
imately four times per hour [22]; also, Balint et al.
reported that there often happens inconsistencies be-
tween ‘copy and pasted’ code [7]. Tracking ‘copy and
paste’ should be able to identify many code clones. The
advantage of this method is that we can identify any
kinds of code clones as long as they are generated by
‘copy and paste’. Each code clone detection technique
depends on its detection algorithm, in other words, it
cannot detect all kinds of code clones. Tracking ‘copy
and paste’ should be a good support for simultaneous

5Renamed code clones are the ones including different user-
defined names in variable name or method name.

6Levenshtein distance is a method for comparing string Sa

and Sb based on the number of insertion, deletions, and substi-
tutions required to transform Sa to Sb.

modification.

7 Conclusion

In this paper, we proposed a simultaneous modifi-
cation support method for code clones. The proposed
method detects only the code clones between the code
fragment to be modified and the source files. In the
process of source code modification (ex. debugging,
adding new functions), this method is deemed to be
effective.

We have also implemented a software tool, Libra
based on the proposed method and applied it to
open source software systems. The application results
showed that the precisions of Libra is better than the
precision of grep, but the detection with Libra is slower
than with grep.

Acknowledgements

This work has been conducted as a part of EASE
Project, Comprehensive Development of e-Society
Foundation Software Program, and Grant-in-Aid for
Exploratory Research(186500006), both supported by
Ministry of Education, Culture, Sports, Science and
Technology of Japan. Also it has been performed un-
der Grant-in-Aid for Scientific Research (A)(17200001)
supported by Japan Society for the Promotion of Sci-
ence. We would like to express our thanks to Simone
Livieri, a Ph.D student of our LAB for proofreading
this paper.

References

[1] A. Abran and H. Nguyenkim. Analysis of maintenance
work categories through measurement. In Proc. of the
Conference on Software Maintenance, pages 104–113,
Oct 1991.

[2] Ant. http://ant.apache.org/.

[3] L. Arthur. Software Evolution: The Software Mainte-
nance Challenge. Wiley, 1988.

[4] B. S. Baker. On finding duplication and near-
duplication in large software systems. In Proc. of
the 2nd Working Conference on Reverse Engineering,
pages 86–95, Jul 1995.

[5] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proc. of the 6th IEEE International
Symposium on Software Metrics, pages 292–303, Nov
1999.

[6] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Proc. of the 7th
IEEE International Working Conference on Reverse
Engineering, pages 98–107, Nov 2000.

[7] M. Balint, T. Girba, and R. Marinescu. How devel-
opers copy. In Proc. of the 14th IEEE International
Conference on Program Conprehension, pages 56–68,
Jun 2006.

[8] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc.
International Conference on Software Maintenance
98, pages 368–377, Mar 1998.

[9] M. Bruntink, A. V. Deursen, T. Tourẃe, and R. V. En-
gelen. An evaluation of clone detection techniques for
identifying crosscutting concerns. In Proc. of the 20th
IEEE International Conference on Software Mainte-
nance, pages 200–209, Sep 2004.

[10] E. Burd and J. Bailey. Evaluating clone detection tools
for use during preventative maintenance. In Proc. of
the 2nd IEEE International Workshop on Source Code
Analysis and Manipulation, pages 36–43, Oct 2002.

[11] Canna. http://canna.sourceforge.jp/.
[12] E. Duala-Ekoko and M. P. Robillard. Tracking code

clones in evolving software. In Proc. of the 29th Inter-
national Conference on Software Engineering, pages
158–167, May 2007.

[13] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proc. of the International Conference on Software
Maintenance 99, pages 109–118, Aug 1999.

[14] M. Fowlor. Refactoring: improving the design of ex-
isting code. Addison Wesley, 1999.

[15] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Aries: Refactoring support environment based on code
clone analysis. In Proc. of 8th IASTED International
Conference on Software Engineering and Applications,
pages 222–229, Nov 2004.

[16] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Method and implementation for investigating code
clones in a software system. Information and Software
Technology, 49(9-10):985–998, Sep 2007.

[17] IEEE. Standard for Software Maintenance. IEEE
Standard 1219, 1998.

[18] ISO/IEC. Software Engineering - Software Mainte-
nance. ISO/IEC 14764, 1999.

[19] S. Jarzabek and L. Shubiao. Eliminating redun-
dancies with a “composition with adaptation” meta-
programming technique. In Proc. of ESEC-FSE’03
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 237–246, Sep 2003.

[20] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multi-linguistic token-based code clone detection sys-
tem for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654–670, Jul 2002.

[21] C. Kapser and M. W. Godfrey. “cloning considered
harmful” considered harmful. In Proc. of the 13th
Working Conference on Reverse Engineering - Volumn
00, 2006.

[22] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in oopl. In Proc. of 2004 International Sym-
posium on Empirical Software Engineering, pages 83–
92, Aug 2004.

[23] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In Proc.
of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 187–196, Sep 2005.

[24] R. Komondoor and S. Horwitz. Using slicing to iden-
tify duplication in source code. In Proc. of the 8th In-
ternational Symposium on Static Analysis, pages 40–
56, Jul 2001.

[25] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Transaction on Software Engi-
neering, 32(3):176–192, Mar 2006.

[26] Z. A. Mann. Three public enemies: Cut, copy, and
paste. IEEE Computer, 39(7):31–35, Jul 2006.

[27] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a soft-
ware system using metrics. In Proc. of the Interna-
tional Conference on Software Maintenance 96, pages
244–253, Nov 1996.

[28] A. Monden, D. Nakae, T. Kamiya, S. Sato, and
K. Matsumoto. Software quality analysis by code
clones in industrial legacy software. In Proc. of the
8th IEEE International Software Metrics Symposium,
pages 87–94, Jun 2002.

[29] S. Pfleeger. Software Engineering: Theory and Prac-
tice. Prentice Hall, 1998.

[30] M. Toomim, A. Begel, and S. Graham. Managing
duplicated code with linked editing. In Proc. IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 173–180, Sep 2004.

[31] S. W. L. Yip and T. Lam. A software maintenance
survey. In Proc. of the 1st Asia-Pacific Software En-
gineering Conference, pages 70–79, Dec 1994.

